AlInGaN薄膜及GaN基DBR的生长和特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅲ族氮化物(GaN,AlN及InN)半导体材料具有优异的光学和电学特性,已引起人们广泛的关注和研究。特别是在任意组分下都具有直接带隙的AllnGaN四元材料在高效率短波长发光器件和电子器件领域有着广泛的应用前景,目前正逐渐成为继三元氮化物材料之后国际上新的研究热点。另一方面,GaN基垂直腔面发射激光器(VCSEL)一直是Ⅲ族氮化物器件研究的前沿课题,而高反射率氮化物分布布拉格反射镜(DBR)作为GaN基VCSEL的重要组成部分,其性能和结构也一直被改良和优化。本论文主要以AlInGaN材料的生长和GaN基DBR的制备两个方面为研究对象,详细研究了利用金属有机物化学气相沉积(MOCVD)方法在蓝宝石C面衬底上制备AlInGaN薄膜的生长条件和样品的表面、结构及光学性质,设计并制备了高反射率且表面平整的AlN/GaN DBR。具体的研究内容和相应结果有以下几个部分:
     1、研究了AlInGaN薄膜的MOCVD生长特性。重点研究了不同生长温度下AlInGaN材料表面形貌的变化及成因,实验上直接证明了不同厚度的AlInGaN薄膜内存在的组分拉伸现象(composition pulling effect)。发现反应室压强与AlInGaN材料组分及其均匀性有密切的关系。
     2、确认了低温AlN插入层对AlInGaN材料中应力和表面形貌的影响。
     3、分析了不同生长温度下AlInGaN薄膜的生长机制并提出了相关的生长模型,通过调整生长温度,成功制备出a轴品格匹配的AlInGaN/GaN异质外延结构。
     4、理论上模拟了折射率、周期数和各层厚度偏差对GaN基DBR结构反射特性的影响,为后续的GaN基DBR结构的生长和设计提供了理论指导和依据。生长了AlInGaN/GaN DBR结构,研究了生长温度和GaN缓冲层厚度对AlInGaN/GaN DBR表面和结构的影响。
     5、通过使用较薄的GaN缓沖层,低温AlN插入层和DBR中AlN层掺入In三种手段,利用MOCVD方法生长了具有高折射率差的AlN/GaN DBR,所制样品分别在蓝光和紫光波段达到99%的高反射率,并且表面较为平整。
Ⅲ-nitrides(GaN,AlN and InN) have been attracting a great deal of attention and research due to their outstanding optical and electrical properties.All quaternary AlInGaN alloys with arbitrary element contents are direct optical bandgaps,which can be used in high efficiency light-emitting and electronic devices.Nowadays,quaternary AlInGaN alloys are becoming a new study hotspot after their ternary alloy systems. On the other hand,GaN-based vertical cavity surface emitting laser(VCSEL) is always the frontier topic ofⅢ-nitrides.Therefore, high-reflectivity distributed Bragg reflector(DBR),as an important component in VCSEL,has also been widely studied.In this paper,we focus on preparation and characterization of quaternary AlInGaN films and GaN-based DBRs grown on C-plane sapphire by metal organic chemical vapor deposition(MOCVD).The main results are summarized as follows:
     1.Growth characteristics of quaternary AlInGaN films are investigated in details.It is found that growth temperature has significant influence on the surface morphology.We confirm that the composition pulling effect occurs in AlInGaN films.We also observe strong dependence of composition in AlInGaN films on the reactor pressure.
     2.It is demonstrated that low temperature(LT) AlN insertion layer between GaN buffer layer and AlInGaN epilayer can affect strain distribution and improve the surface morphology.
     3.The growth mechanism of AlInGaN at different temperatures is studied.By controlling the growth temperature,a-plane lattice-matched AlInGaN/GaN heterostructure is obtained.
     4.Based on geometrical optics theory,the influence of refractive index,period number and thickness deviation on reflective spectra is simulated.AlInGaN/GaN DBRs are fabricated on GaN/Sapphire templates,and the influence of growth temperature and GaN buffer layer on the performance of DBR is investigated
     5.High reflectivity AlN/GaN DBRs are grown on GaN/sapphire templates by MOCVD.By controlling the thickness of GaN buffer layer,inserting LT-AlN layer and doping Indium during the growth of theλ/4 AlN layers, the magnitude of strain in DBR is reduced and the surface morphology of the sample is improved.The peak reflectivity of two DBRs attains to 99% in violet and blue regions,respectively.
引文
[1]D.A.Neumayer,J.G.Ekerdt.Growth of group Ⅲ nitrides.A review of precursors and techniques[J].Chem.Mater.,1996,8(1):9-25
    [2]O.Ambacher.Growth and applications of Group Ⅲ-nitrides[J].J.Phys.D:Appl.Phys.,1998,31:2653-2710
    [3]S.C.Jain,M.Willander,J.Narayan,et al.Ⅲ-nitrides:Growth,characterization,and properties[J].J.Appl.Phys.,2000,87:965-1006
    [4]S.Strite,H.Morkoc.GaN,AlN,and InN:A review[J].J.Vac.Sci.Technol.B,1992,10(4):1237-1266
    [5]C.G Van de Walle,J.Neugebauer.First-principles calculations for defects and impurities:Applications to Ⅲ-nitrides[J].J.Appl.Phys.,2004,95:3851-3879
    [6]K.H.Ploog,O.Brandt.Doping of group Ⅲ nitrides[J].J.Vac.Sci.Technol.A,1998,16(3):1609-1614
    [7]D.Vogel,P.Kr(u|¨)ger,J.Pollmann.Structural and electronic properties of group-Ⅲ nitrides[J].Phys.Rev.B,1997,55:12836-12839
    [8]K.Lawniczak-Jablonska,T.Suski,I.Gorczyca,et al.Electronic states in valence and conduction bands of group-Ⅲ nitrides:Experiment and theory[J].Phy.Rev.B,2000,61(24):16623-16632
    [9]S.Nakamura,T.Mukai.High-power GaN P-N juntion blue-light-emitting diodes[J].Jpn.J.Appl.Phys.,1991,30(12A):L1998-L2001.
    [10]S.Nakamura,T.Mukai,M.Senoh.High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes[J].J.Appl.Phys.,1994,76(12):8189-8191
    [11]H.Hirayama.Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes[J].J.Appl.Phys.,2005,97:0911011-09110119
    [12]T.Mukai,M.Yamada,S.Nakamura.Characteristics of InGaN-based UV/blue/-green/amber/red light-emitting diodes[J].Jpn.J.Appl.Phys.,1999,38:3976-3981
    [13]C.Wetzel,T.Salagaj,T.Detchprohm,et al.GaInN/GaN growth optimization for high-power green light-emitting diodes[J].Appl.Phys.Lett.,2004,85:866-868
    [14]S.Nakamura,M.Senoh,S.Nagahama,et al.InGaN-based multi-quantum-well-structure laser diodes[J].Jpn.J.Appl.Phys.,1996,35:L74-L76
    [15]M.Kneissl,D.R Bour,C.G Van de Walle,et al.Room-temperature continuous-wave operation of InGaN multiple-quantum-well laser diodes with an asymmetric waveguide structure[J].Appl.Phys.Lett.,1999,75:581-583
    [16]T.Tojyo,T.Asano,M.Takeya,et al.GaN-based high power blue-violet laser diodes[J].Jpn.J.Appl.Phys.,2001,40:3206-3210
    [17]T.Someya,R.Werner,A.Forchel,et al.Room temperature lasing at blue wavelengths in gallium nitride microcavities[J].Science,1999,285(5435):1905-1906
    [18]T.Tawara,H.Gotoh,T.Akasaka,et al.Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors[J].Appl.Phys.Lett.,2003,83:830-832
    [19]T.C.Lu,C.C.Kao,H.C.Kuo,et al.CW lasing of current injection blue GaN-based vertical cavity surface emitting laser[J].Appl.Phys.Lett.,2008,92:1411021-1411023
    [20]Y.Higuchi,K.Omae,H.Matsumura,et al.Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection[J].Appl.Phys.Express, 2008,1:1211021-1211023
    [21]J.Li,K.B.Nam,K.H.Kim,et al.Growth and optical properties of In_xAl_yGa_(1-x-y)N quaternary alloys[J].Appl.Phys.Lett.,2001,78:61-63
    [22]H.Hirayama,A.Kinoshita,A.Hirata,et al.Growth and optical properties of quaternary InAlGaN for 300 nm band UV-emitting devices[J].phys.stat.soli,(a),2001,188(1):83-89
    [23]D.-B.Li,X.Dong,J.Huang,et al.Alloy compositional fluctuation in InAlGaN epitaxial films[J].Appl.Phys.A,2005,80:649-652
    [24]G Tamulaitis,K.Kazlauskas,S.Jursenas,et al.Optical bandgap formation in AlInGaN alloys[J].Appl.Phys.Lett.,2000,77(14):2136-2138
    [25]M.Nemoz,E.Beraudo,P.De Mierry,et al.High indium content AlInGaN films:growth,structure and optoelectronic properties[J].phys.stat.sol.(c),2007,4(1):137-140
    [26]M.Asif Khan,J.W.Yang,and G Simin,et al.Lattice and energy band engineering in AlInGaN/GaN heterostructures[J].Appl.Phys.Lett.,2000,76(9):1161 -1163
    [27]M.E.Aumer,S.F.LeBoeuf,S.M.Bedair,et al.Effects of tensile and compressive strain on the luminescence properties of AlInGaN/InGaN quantum well structures[J].Appl.Phys.Lett.,2000,77:821-823
    [28]M.Asif Khan,J.W.Yang,G Simin,et al.Energy Band/Lattice Mismatch Engineering in Quaternary AlInGaN/GaN Heterostructure[J].phys.stat.soli,(a),1999,176(l):227-230
    [29]Y.Liu,T.Egawa,H.Jiang,et al.Near-ideal Schottky contact on quaternary AlInGaN epilayer lattice-matched with GaN[J].Appl.Phys.Lett.,2004,85(24):6030-6032
    [30]A.Yasan,R.McClintock,K.Mayes,et al.Comparison of ultraviolet light-emitting diodes with peak emission at 340 nm grown on GaN substrate and sapphirefJ].Appl.Phys.Lett.,2002,81:2151-2153
    [31]M.Shatalov,J.Zhang,A.S.Chitnis,et al.Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells[J].IEEE Joural on selected topics in quantum elctronics,2002,8(2):302-309
    [32]J.Lee,P.G Eliseev,M.Osin'ski,InGaN-based ultraviolet emitting heterostructures with quaternary AlInGaN barriers [J].IEEE Joural on selected topics in quantum elctronics,2003,9(5):1239-1245
    [33]C.H.Chen,Y.F.Chen,Z.H.Lan,Mechanism of enhanced luminescence in In_xAl_yGa_(1-x-y)N quaternary epilayers[J].Appl.Phys.Lett.,2004,84:1480-1482
    [34]J.Zhang,J.Yang,G Simin,et al.Enhanced luminescence in InGaN multiple quantum wells with quaternary AlInGaN barriers[J].Appl.Phys.Lett.,2000,77:2668-2670
    [35]F.Wen,D.Liu,L.Huang.Research on optimizing barrier material for AlInGaN quantum wells[J].Chinese journal of semiconductors,2007,28(6):893-897
    [36]Y.Liu,T.Egawa,H.Ishikawa,et al.Influence of growth temperature on quaternary AlInGaN epilayers for ultraviolet emission grown by metalorganic chemical vapor deposition [J].Jpn.J.Appl.Phys.,2004,43(5A):2414-2418
    [37]J.S.Huang,X.Dong,X.D.Luo,et al.Growth temperature effect on the optical and material properties of Al_xInyGa_(1-x-y)N epilayers grown by MOCVD[J].J.Crystal Growth,2003,247:84-90
    [38]J.Leitner,J.Stejskal,P.Vonka.Thermodynamic modelingof AlGaInN growth by MOVPE[J].J.Crystal Growth,2004,267:8-16
    [39]M.Marques,L.K.Teles,L.M.R.Scolfaro,et al.Ab initio studies of indium separated phases in AlGalnN quaternary alloys[J].phys.stat.sol.(c),2005,2(7):2508-2511
    [40]M.Marques,L.K.Teles,L.M.R.Scolfaro,et al.Microscopic description of the phase separation process in Al_xGa_yIn_(1-x-y) quaternary alloys[J].Phys.Rev.B, 2004,70:0732021-0732024
    [41]J.P.Liu,R.Q.Jin,J.C.Zhang,et al.Indium mole fraction effect on the structural and optical properties of quaternary AlInGaN epilayers[J].J.Phys.D:Appl.Phys.,2004,37:2060-2063
    [42]C.B.Soh,S.J.Chua,S.Tripathy,et al.Influence of composition pulling effect on the two-dimensional electron gas formed at Al_xGa_yIn_(1-x-y)N/GaN interface[J].J.Appl.Phys.,2005,98:1037041-1037048
    [43]J.P.Liu,Y.T.Wang,H.Yang,et al.Investigations on V-defects in quaternary AlInGaN epilayers[J].Appl.Phys.Lett.,2004,84(26):5449-5451
    [44]C.B.Soh,W.Liu,S.J.Chua,et al.Inverted hexagonal pits formation in AlInGaN epilayer[J].J.Crystal Growth,2004,268:478-483
    [45]M.Herrera,A.Cremades,J.Piqueras,et al.Study of pinholes and nanotubes in AlInGaN films by cathodoluminescence and atomic force microscopy[J].J.Appl.Phys., 2004,95(10):5305-5310
    [46]K.Iga,F.Koyam,S.Kinoshita.Surface emitting semiconductor laser,IEEE J.Quant.Electron.,1988,24(9):1845-1855
    [47]H.Soda,K.Iga,C.Kitahara,et al.GaInAsP/InP surface emitting injection lasers,Jpn.J.Appl.Phys.,1979,18(12):2329-2330
    [48]K.Iga,S.Kinoshita,F.Koyama.Microcavity GaAlAs/GaAs surface-emitting laser with I = 6 mA,Electron.Lett.,1987,23(3):134-136
    [49]E.Feltin,R.Butte,J.F.Carlin,et al.Lattice-matched distributed Bragg reflectors for nitride-based vertical cavity surface emitting lasers[J].Electron.Lett.,2005,41(2):94-95
    [50]D.Simeonov,E.Feltin,H.-J.Biihlmann,et al.Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells[J].Appl.Phys.Lett.,2007,90:0611061-0611061
    [51]C.C.Kao,Y.C.Peng,H.H.Yao,et al.Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta_2O_5/SiO_2 distributed Bragg reflector[J].Appl.Phys.Lett.,2005,87(8):0811051-0811053
    [52]S.C.Wang,T.C.Lu,C.C.Kao,et al.Optically pumped GaN-based vertical cavity surface emitting lasers:technology and characteristics[J].Jpn.J.Appl.Phys.,2007,46:5397-5407
    [53]M.Diagne,Y.He,H.Zhou,et al.Vertical cavity violet light emitting diode incorporating an aluminum gallium nitride distributed Bragg mirror and a tunnel junction[J].Appl.Phys.Lett.,2001,79(22):3720-3722
    [54]O,Mitrofanov,S,Schmult,M,J,Manfra,et al.High-reflectivity ultraviolet AlGaN/AlGaN distributed Bragg reflectors [J].Appl.Phys.Lett.,2006,88(17):1711011-1711013
    [55]J.-F.Carlin,C.Zellweger,J.Dorsaz,et al.Progresses in Ill-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials[J].phys.stat.sol.(b), 2005,242(11):2326-2344
    [56]M.Herrera,A.Cremades,J.Piqueras,et al.Study of pinholes and nanotubes in AlInGaN films by cathodoluminescence and atomic force microscopy[J].J.Appl.Phys., 2004,95:5305-5310
    [57]W.Liu,C.B.Soh,P.Chen,et al.Characterization of AlInGaN quaternary epilayers grown by metal organic chemical vapor deposition[J].Journal of Crystal Growth,2004,268:509-514
    [58]H.H.Yao,C.F.Lin,H.C.Kuo,et al.MOCVD growth of AlN/GaN DBR structures under various ambient conditions[J].J.Crystal Growth,2004,262:151-156
    [59]T.Ive,O.Brandt,K.H.Ploog.Conductive and crack-free AlN/GaN:Si distributed Bragg reflectors grown on 6H-SiC(0001)[J].J.Crystal Growth,2005,278:355-360
    [1]H.M.Manasevit.Single-crystal gallium arsenide on insulating substrates[J].Appl.Phys.Lett.,1968,(12):156-159
    [2]H.M.Manasevit,W.I.Simpson.The use of metalorganics in the preparation of semiconductor materials[J].J.Electrochem.Sot.,1969,116(12):1725-1732
    [3]T.Webb.Thomas Swan MOCVD system manual[Z].Cambridge UK,Thomas Swan Scientific Equipment LTD.,2004
    [4]J.Goldstein,D.Newbury,D.Joy,et al.Scanning electron microscopy and X-ray microanalysis[M].Germany:Springer-Verlag,2003
    [5]许振嘉.半导体检测与分析[M].北京,科学出版社,2007
    [6]M.A.Moram,M.E.Vickers.X-ray diffraction of Ⅲ-nitrides[J].Rep.Prog.Phys.,2009,72:0365021-03650240
    [7]J.T.Grant,D.Briggs.Surface analysis by auger and X-ray photoelectron spectroscopy[M].Chichester UK,IM Publications,2003
    [8]B.Monemar,P.P.Paskov,T.Paskova,et al.Optical characterization of Ⅲ-nitrides[J].Mat.Sci.Eng.B,2002,93:112-122
    [9]M.Strassburg,A.Hoffmann,J.Holst,et al.The origin of the PL photoluminescence Stokes shift in ternary group-Ⅲ nitrides:field effects and localization[J],phys.stat.sol.(c),2003,0(6):1835-1845
    [10]H.Y.Joo,H.J.Kim,S.J.Kim,et al.Spectrophotometric analysis of aluminum nitride thin films[J].J.Vac.Sci.Technol.A,1999,17(3):862-870
    [11]D.J.Jones,R.H.Frech,H.Mullejans,et al.Optical properties of AlN determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry data[J].1999,J.Mater.Res.,14(11):4337-4344
    [12]A.Majid,A.Ali,J.Zhu.Temperature dependence of absorption edge in MOCVD grown GaN[J].J.Mater.Sci.:Mater.Electron,2007,18:1229-1233
    [1]T.L.Song.Strain relaxation due to V-pit formation in In_xGa_(1-x)/GaN epilayers grown on sapphire[J].J.Appl.Phys.,2005,98:0849061-0849069
    [2]J.P.Liu,Y.T.Wang,H.Yang,et al.Investigations on V-defects in quaternary AlInGaN epilayers[J].Appl.Phys.Lett.,2004,84:5449-5451.
    [3]C.B.Soh,S.J.Chua,S.Tripathy,et al.The influence of V defects on luminescence properties of AlInGaN quaternary alloys [J].J.Phys.:Condens.Matter,2005,17:729-736.
    [4]M.Herrera,A.Cremades,J.Piqueras,et al.Study of pinholes and nanotubes in AlInGaN films by cathodoluminescence and atomic force microscopy [J].J.Appl.Phys.,2004,95:5305-5310
    [5]W.Liu,C.B.Soh,P.Chen,et al.Characterization of AlInGaN quaternary epilayers grown by metal organic chemical vapor deposition[J].J.Crystal Growth,2004,268:509-514
    [6]C.B.Soh,W.Liu,S.J.Chua,et al.Inverted hexagonal pits formation in AlInGaN epilayer[J].J.Crystal Growth,2004,268:478-483.
    [7]C.B.Soh,S.J.Chua,S.Tripathy,et al.Influence of composition pulling effect on the two-dimensional electron gas formed at Al_yInxGa_(1-x-y)N/GaN interface[J].J.Appl.Phys.,2005,98:1037041-1037048.
    [8]S.Pereira,M.R.Correia,E.Pereira,et al.Compositional pulling effects in In_xGa_(1-x)N/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/-channeling study[J].Phys.Rev.B,2001,64:2053111-2053115.
    [9]M.R.Correia,S.Pereira,E.Pereira,et al.Direct evidence for strain inhomogeneity in In_xGa_(1-x)N epilayers by Raman spectroscopy[J].Appl.Phys.Lett.,2004,85:2235-2237
    [10]H.Y.Lin,Y.F.Chen,T.Y.Lin,et al.Direct evidence of compositional pulling effect in In_xGa_(1-x)N epilayers[J].J.Cryst.Growth,2006,290:225-228
    [11]S.Einfeldt,V.Kirchner,H.Heinke,et al.Strain relaxation in AlGaN under tensile plane stress[J].J.Appl.Phys.,2000,88:7029-7036
    [12]M.Sarzy(?)ski,M.Kry(?)ko,G.Targowski,et al.Elimination of AlGaN epilayer cracking by spatially patterned AlN mask[J].Appl.Phys.Lett.,2006,88:1211241-1211243
    [13]J.-M.Bethoux,P.Vennegues,E Natali,et al.Growth of high quality crack-free AlGaN films on GaN templates using plastic relaxation through buried cracks[J].J.Appl.Phys.,2003,94:6499-6507
    [14]M.Sumiya,K.Yoshimura,T.Ito,et al.Growth mode and surface morphology of a GaN film deposited along the N-face polar direction on c-plane sapphire substrate[J].J.Appl.Phys.,2000,88:1158-1165
    [15]P.Q.Miraglia,E.A.Preble,A.M.Roskowski,et al.Helical-type surface defects in GaNthin films epitaxially grown on GaNtemplates at reduced temperatures[J].J.Crystal Growth,2003,253:16-25.
    [16]J.E.Northrup,L.T.Romano,J.Neugebauer.Surface energetics,pit formation,and chemical ordering in InGaN alloys[J].Appl.Phys.Lett.,1999,74:2319-2321
    [17]M.Iwaya,S.Terao,N.Hayashi,et al.Realization of crack-free and high-quality thick Al Ga N for UV optoelectronics using low-temperature interlayer[J].Appl.Surf.Sci., 2000,159-160:405-413
    [18]H.Amano, S.Kamiyama, I.Akasaki.Impact of Low-temperature buffer layers on nitride-based optoelectronics[J].P.IEEE,2002,90(6):1015-1021.
    [19]R.Q.Jin,J.P.Liu,J.C.Zhang,et al.Growth of crack-free AlGaN film on thin A1N interlayer by MOCVD[J].J.Crystal Growth,2004,268:35-40
    [20]D.D.Koleske,M.E.Coltrin,K.C.Cross,et al.Understanding GaN nucleation layer evolution on sapphire[J].J.Crystal Growth,2004,273:86-99
    [21]D.G Zhao,J.J.Zhu,Z.S.Liu,et al.Surface morphology of A1N buffer layer and its effect on GaN growth by metalorganic chemical vapor deposition[J].Appl.Phys.Lett., 2004,85(9):1499-1501
    [22]S.Kim,J.Oh,J.Kang,et al.Two-step growth of high quality GaN using Ⅴ/Ⅲ ratio variation in the initial growth stagefj].J.Crystal Growth,2004,262:7-13
    [23]Q.S.Paduano,D.W.Weyburne,J.Jasinski,et al.Effect of initial process conditions on the structural properties of A1N films[J].J.Crystal Growth,2004,261:259-265
    [24]A.P.Grzegorczyk,L.Macht,P.R.Hageman,et al.Influence of the nucleation layer morphology and epilayer structure on the resistivity of GaN films grown on c-plane sapphire by MOCVD[J].J.Crystal Growth,2005,273:424-430
    [25]T.Lang,M.Odnoblyudov,V.Bougrov,et al.Morphology optimization of MOCVD-grown GaN nucleation layers by the multistep technique[J].J.Crystal Growth,2006,292:26-32
    [26]C.Q.Chen,J.P.Zhang,M.E.Gaevski,et al.AlGaN layers grown on GaN using strain-relief interlayers[J].Appl.Phys.Lett.,2002,81(26):4961-4963
    [27]Y.Liu,T.Egawa,H.Ishikawa,et al.Influence of growth temperature on quaternary AlInGaN epilayers for ultraviolet emission grown by metalorganic chemical vapor deposition[J].Jpn.J.Appl.Phys.,2004,43:2414-2418
    [1]N.Antoine-Vincent,F.Natali,M.Mihailovic,et al.Determination of Al_xGa_(1-x)N refractive indexes at low and room temperature,in the 300-600 nm range,for the optimisation of GaN-based microcavities[J],phys.stat.sol.(a),2003,195(3):543-550
    [2]连传昕,李向阳,刘骥.GaN折射率的椭圆偏振光谱研究[J].红外与毫米波学报,2004,23(4):262-264
    [3](U|¨).(O|¨)zg(u|¨)r,G.Webb-Wood,H.O.Everitt,et al.Systematic measurement of AlGaN refractive indices[J].Appl.Phys.Lett.,2001,79(25):4103-4105
    [4]N.A.Sanford,L.H.Robins,A.Vo Davydov,et al.Refractive index study of Al_xGa_(1-x)N films grown on sapphire substrates[J].J.Appl.Phys.,2003,94(5):2980-2991
    [5]H.A.Macleod.Thin-film Optical Filters.London:Adam Hilger Ltd.,1969
    [6]Y.C.Lin,W.Q.Lu.Principle of optical thin films.Beijing:National Defence Industry Press,1990
    [7]侯识华,赵鼎,孙永伟等.厚度偏差对VCSEL的反射谱和反射相移的影响[J].光学与光电技术,2004,2(4):31-33
    [8]洪灵愿,刘宝林.AlN/GaN分布布拉格反射器反射率的研究[J].集美大学学报,2005,10(2):164-168
    [9]T.Someya,Y.Arakawa.Highly reflective GaN/Al_(0.34)Ga_(0.66)N quarter-wave reflectors grown by metal organic chemical vapor deposition[J].Appl.Phys.Lett.,1998,73,3653-3655
    [10]T.Someya,R.Werner,A.Forchel,et al.Room Temperature Lasing at Blue Wavelengths in Gallium Nitride Microcavities[J].Science,1999,285:1905-1906
    [11]G.S.Huang,T.C.Lu,H.H.Yao,et al.Crack-free GaN/AlN distributed Bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition[J].Appl.Phys.Lett.,2006,88(6):0619041-0619043
    [12]T.Ive,O.Brandt,K.H.Ploog.Conductive and crack-free AlN/GaN:Si distributed Bragg reflectors grown on 6H-SiC(0001)[J].J.Crystal Growth,2005,278:355-360
    [1]H.H.Yao,C.F.Lin,H.C.Kuo,et al.MOCVD growth of AIN/GaN DBR structures under various ambient conditions [J].J.Crystal Growth,2004,262:151-156.
    [2]J.E.Northrup,C.G.Van de Walle.Indium versus hydrogen-terminated GaN(OOOl) surfaces:Surfactant effect of indium in a chemical vapor deposition environment[J].Appl.Phys.Lett.,2004,84:4322-4324
    [3]S.Keller,S.Heikman,I.Ben-Yaacov,et al.Indium-surfactant-assisted growth of high-mobility AIN/GaN multilayer structures by metalorganic chemical vapor depositionfj].Appl.Phys.Lett.,2001,79:3449-3451
    [4]S.Nicolay,E.Feltin,J.-F.Carlin,et al.Indium surfactant effect on AIN/GaN heterostructures grown by metal-organic vapor-phase epitaxy:Applications to intersubband transitions[J].Appl.Phys.Lett.,2006,88:1519021-1519023
    [5]H.S.Cheong,C.S.Park,C.-H.Hong,et al.Direct observation of hillocks on pendeo-epitaxial GaN films and stabilization of GaN seed layers for hillock-free surface[J].phys.stat.sol.(c),2003,0(7):2087-2090
    [6]M.Herrera Zaldivar,P.Ferna'ndez,J.Piqueras.Luminescence from growth topographic features in GaN:Si films[J].J.Appl.Phys.,1998,83(l):462-465
    [7]Z.Liliental-Weber,Y.Chen,S.Ruvimov,et al.Formation Mechanism of Nanotubes in GaN[J].Phys.Rev.Lett.,1997,79:2835 - 2838
    [8]P.D.Brown.A transmission electron microscopy investigation of buried defect sources within epitaxial GaN [J].J.Phys.:Condens.Matter,2000,12:10195-10203
    [9]P.Q.Miraglia,E.A.Preble,A.M.Roskowski,et al.Helical-type surface defects in InGaN thin films epitaxially grown on GaN templates at reduced temperatures [J].Thin Solid Films,2003,437:140-149
    [10]T.L.Song.Strain relaxation due to V-pit formation in In_xGa_(1-x)N/GaN epilayers grown on sapphire[J].J.Appl.Phys.98 (2005) 084906
    [11]X.L.Ji,R.L.Jiang,B.Liu,et al.Structural characterization of AlGaN/AlN Bragg reflector grown by metalorganic chemical vapor depositionfj].phys.stat.sol.(a),2008,205(7):1572-1574
    [12]A.Bhattacharyya,S.Iyer,E.Iliopoulos,et al.High reflectivity and crack-free AlGaN/AIN ultraviolet distributed Bragg reflectors [J].J.Vac.Sci.Technol.B,2002,20(3):1229-1233
    [13]I.Zieborak-Tomaszkiewicz,P.Gierycz.Calculations of thermal functions of group-Ⅲ nitrides[J].J.Therm.Anal.Calorim.,2008,93(3):693-699
    [14]J.Adhikari ,D.A.Kofke.Molecular simulation study of miscibility of ternary and quaternary InGaAlN alloys[J].J.Appl.Phys.,2004,95(11):6129-6137
    [15]C.F.Chu,F.I.Lai,J.T.Chu,et al.Study of GaN light-emitting diodes fabricated by laser lift-off technique[J].J.Appl.Phys.,2004,95(8):3916-3922
    [16]Z.Y.Fan,G Rong,N.Newman,et al.Defect annihilation in A1N thin films by ultrahigh temperature processing[J].Appl.Phys.Lett.,2000,76(14)1839-1841,
    [17]D.D.Koleske,A.E.Wickenden,R.L.Henry,et al.GaN decomposition in H2 and N2 at MOVPE temperatures and pressures[J].J.Crystal Growth,2001,223:466-483
    [18]A.Stonert,K.Pagowska ,R.Ratajczak,et al.Channeling study of thermal decomposition of Ⅲ-N compound semiconductors[J].Nucl.Instrum.Meth.B,2008,266:1224-1228
    [19]D.D.Koleske,M.E.Coltrin,K.C.Cross,et al.Understanding GaN nucleation layer evolution on sapphire[J].J.Crystal Growth,2004,273:86-99
    [20]B.M.Epelbaum,C.Seitz,A.Magerl,et al.Natural growth habit of bulk A1N crystals[J].J.Crystal Growth ,2004,265:577-581
    [21]A.Rebey,T.Boufaden,B.El Jani.In situ optical monitoring of the decomposition of GaN thin films[J].J.Crystal Growth,1999,203 :12-17
    [22]C.B.Soh,W.Liu,S.J.Chua,et al.Inverted hexagonal pits formation in AlInGaN epilayer[J].J.Crystal Growth,2004,268:478-483
    [23]H.P.D.Schenk,P.de Mierry,P.Vennegues,et al.In situ growth monitoring of distributed GaN-AlGaN Bragg reflectors by metalorganic vapor phase epitaxy[J].Appl.Phys.Lett.,2002,80(2):174-176
    [24]V.S.Harutyunyan,A.P.Aivazyan,E.R.Weber,et al.High-resolution x-ray diffraction strain-stress analysis of GaN/sapphire heterostructures[J].J.Phys.D:Appl.Phys.,2001,34:A35-A39.
    [25]K.E.Waldrip,J.Han,J.J.Figiel,et al.Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors[J].Appl.Phys.Lett.,2001,78(21):3025-3027
    [26]T.Ive,O.Brandt,K.H.Ploog.Conductive and crack-free AlN/GaN:Si distributed Bragg reflectors grown on 6H-SiC(0 0 0 1)[J].J.Crystal Growth,2005,278:355-360
    [27]X.H.Zhang,S.J.Chua,W.Liu,et al.Crack-free fully epitaxial nitride microcavity with AlGaN/GaN distributed Bragg reflectors and InGaN/GaN quantum wellsfJ].Appl.Phys.Lett.,2006,88:1911111-1911113
    [28]M.Diagne,Y.He,H.Zhou,et al.Vertical cavity violet light emitting diode incorporating an aluminum gallium nitride distributed Bragg mirror and a tunnel junction[J].Appl.Phys.Lett.,2001,79 (22):3720-3722
    [29]O.Mitrofanov,S.Schmult,M.J.Manfra,et al.High-reflectivity ultraviolet AlGaN-AlGaN distributed Bragg reflectors [J].Appl.Phys.Lett.,2006,88:1711011-1711013
    [30]J.Dorsaz,J.-F.Carlin,S.Gradecak,et al.Progress in AlInN-GaN Bragg reflectors:Application to a microcavity light emitting diode[J].J.Appl.Phys.,2005,97:0845051-0845056
    [31]E.Feltin,J.-F.Carlin,J.Dorsaz,et al.Crack-free highly reflective AlInN/AlGaN Bragg mirrors for UV applications [J].Appl.Phys.Lett.,2006,88:0511081 -0511083
    [32]S.C.Wang,T.C.Lu,C.C.Kao,et al.Optically pumped GaN-based vertical cavity surface emitting lasers:technology and characteristics [J].Jpn.J.Appl.Phys.,2007,46(8B):5397-5407
    [33]T.C.Lu,C.C.Kao,H.C.Kuo,et al.CW lasing of current injection blue GaN-based vertical cavity surface emitting laser[J].Appl.Phys.Lett.,2008,92(14):1411021-1411023
    [34]T.Someya,R.Werner,A.Forchel,et al.Room temperarure lasing at blue wavelengths in Gallium Nitride microcavities[J].Science,1999,285(5435):1905-1906
    [35]C.C.Kao,Y C.Peng,H.H.Yao,et al.Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta_2O_5/SiO_2 distributed Bragg reflectory.Appl.Phys.Lett.,2005,87(8):0811051-0811053
    [36]N.Antoine-Vincent,F.Natali,M.Mihailovic,et al.Determination of In_xGa_(1-x)N refractive indexes at low and room temperature,in the 300-600 nm range,for the optimisation of GaN-based microcavities[J].phys.stat.sol.(a),2003,195(3):543-550

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700