ZnSe薄膜的电沉积法制备及其性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnSe晶体属直接带隙Ⅱ-Ⅳ族半导体,在蓝光半导体激光器件、非线性光热器件、红外器件以及薄膜太阳能电池等方面有着广泛的应用。
     使用MBE和MOCVD方法制备ZnSe薄膜的工艺已经比较成熟,但由于这两种方法需要昂贵的设备和很高的运行成本,所以不利于ZnSe薄膜制备技术的推广和发展。
     本文采用恒电位沉积的方法以ZnCl_2和SeO_2的水溶液为电解液,在ITO透明导电玻璃基底上制备出接近化学计量的、纯立方相的ZnSe薄膜。考察了PH值、电流密度、沉积温度、n(Z~(2+))/n(SeO_3~(2-))浓度比、沉积时间等因素对ZnSe薄膜性能的影响。通过正交实验确定了制备ZnSe薄膜的最佳工艺条件:电解液的PH值为6、电解液的电流密度为3mA.cm~(-2)、电解液的温度为65℃、电解液的n(Zn~(2+)/n(SeO_3~(2-))浓度比为250:1、沉积时间为10min。采用XRD、SEM、和UV-VIS对ZnSe薄膜的结晶形貌、透光率进行了表征。
ZnSe crystal is a direct band gapⅡ-ⅣSemiconductors, ZnSe have a wide range of applications in the Blu-ray diode laser devices, thermal non-linear optical devices, infrared devices, as well as thin film solar cells, and so on。
     The mathods of MOCVD and MBE preparing ZnSe films have been more mature process, but both methods require expensive equipment and high operating costs, it is not conducive to ZnSe films prepared to promote technology and development。
     In this paper, the Pure, cubic ZnSe films were prepared with the method of Potentiostatic deposition on a transparent ITO conductive glass substrate from electrolytes containing ZnCl_2 and SeO_2。The effect of the current density, temperature deposition, Concentration ratio of n(Zn~(2+))/n(SeO_3~(2-)), deposition time on the ZnSe film was studied。Determined the optimum conditions of the preparation of ZnSe films by orthogonal experiments: the PH value of the electrolyte is 6, the current density of electrolyte is 3mA.cm~(-2), the temperature of the electrolyte is 65℃, the n(Zn~(2+)/n (SeO_3~(2-)) ratio of the electrolyte is 250: 1, deposition time is 10mins。The surface and cross-section pattern and transmittance of ZnSe films were characterized by SEM and UV-VIS。
引文
[1] Biswajit D, Pavan S. Novel quantum wire infrared photodetectors [J].Infrared Phy Technol, 2005, 46: 209-218
    [2] 王向阳,黄存新.8-14μm红外波段的窗口材料[J].人工晶体学报.1995,24(4):359-362
    [3] 李国华,李国昌.高效三功能层单晶薄膜太阳能电池的研究[J].太阳能学报.1998,19(2):62-66
    [4] Li Guochang, Li Guohua. Theoretical investigation on new materials for raising efficiency of energy conversion in PEC solar cells[J].Solar Energy Materials and Solar Cells, 1993, 30: 61-64
    [5] M. A. Green, Photovoltaics: coming of age, in Conference Record, 21st IEEE Photovoltaic Specialists Conference, Orlando, May 1990, IEEE Publ. 90CH 2838-1. p.1
    [6] D. M. Chapin, C. S. Fuller, and G.. L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power, J. Appl. Phys.
    [7] Mirtat Bouroushian, et al. Electrochemical formation of zinc selenide from acidic aqueous solutions[J]. J. Solid State Electrochem., 2002, 6: 272-278
    [8] Bouroushian M, et al. Aspects of ZnSe electrosynthesis from selenite and selenosulfite aqueous solutions[J]. J. Solid State Electrochem., 2005, 9: 55-60
    [9] Christian KEnigstein et al. Electrodeposition of ZnSe labor ratoire dephysique des solides [J]. Proceedings of the10 th Workshop on Quantum Solar Energy Conversion, 1998. 8-14
    [10] 谢光炎,梁开文,肖锦.废水净化的电化学方法进展.给水排水.1998,24(1):64-68
    [11] 贾金平,申哲民,周红.电化学方法治理废水的研究与进展.上海环境科学.1999,18(1):29-31
    [12] 姚培正.铁屑活性炭内电解法处理废水研究.环境科学研究.1994,7(3):54
    [13] 肖羽堂,王继微,张盼月.电化学腐蚀法预处理难生化的染料中间体废水研究.工业水处理.1997,17(5):27-29
    [14] 詹晖,周运鸿.电化学方法进展.电源技术.1999,21(4):102
    [15] 余敬賢,陈永言,黄清安等.电沉积Zn-Ni-P合金的研究.高等学校化学学报.1999,20:107
    [16] Schwarz Ralf, Moelle Matthias, et al.Experimental study of ternary M-Zn-Se (M equals W, Au, In, Ti) phase equilibria, Journal of Alloys and Compounds 1997, 247(1-2): 158-163
    [17] C. R. Romesh, Y. Austin Chang, Thermodynamic analysis and phase equilibrium calculations for the Zn-Se and Zn-S systems, J. Crystal Growth , 1988, 88: 193-204
    [18] M. P. Kulakov.LV. Balyakina.N. N.Kolesnikov,Phase diagram and crystallization in the system CdSe-ZnSe, Inorg. Mater., 1989, 25(10): 1637-1640
    [19] Okada H. , Kawanaka T. , Ohmotos. , Study on the ZnSe phase diagram by differential thermal analysis, J. Crystal Growth 1996, 165: 31-38
    [20] H. Okada, solid-solidT. Kawanaka, Melt growth of ZnSe single crystals with B203 encapsulant: phase transformation on macro-defect generation in ZnSe crystals, the role of J CrystalGrowth, 1997, 172: 361-367
    [21] M. P. Kulakov, LR.Savtchenko, A. V. Fadeev, Some properties of melt-grown Crystals, J. Crystal Growth, 1981, 52: 609-615
    [22] R. N. Bhargara, The role of impurities in refined ZnSe and other Ⅱ-Ⅵ semiconductors, J. Crystal Growth, 1982, 59: 15-23
    [23] 王吉丰,黄锡眠.用改进升华的方法生长ZnSe 单晶.人工晶体学报. 1990, 19 (3): 212-214
    [24] S. Fajiwara, T. Kotani, Growth of diameter ZnSe single crystals by the rotational CVT method J. Crystal Growth, 1999, 205: 43-48
    [25] Kita K, Kyuno K, Toriumi A. Permittivity increase of yttrium-doped HfO_2 through structural phase transformation Appl Phys Lett, 2005, 86 (10): 10290621
    [26] Kamiyama S, Miura T, Nara Y, et al. Elect rical properties of0.5 run thick Hfsilicate top-layer/HfO_2 gate dielect rics by atomic layer deposition. Appl Phys Lett, 2005, 86 (22): 22290421
    [27] Park M, Koo J, Kim J, et al. Suppression of parasitic Sisubst rate oxidation in ult rathin-A1203-Si st ructures prepared by atomic layer deposition. Appl Phys Lett, 2005, 86 (25): 25211021
    [28] Choi K, Temkin H, Harris H, et al. Initial growth of interfacial oxide during deposition of HfO_2 on silicon. Appl Phys Lett, 2004, 85 (2): 215
    [29]ToyodaS, Okabayashi J, Kumigashira H, et al. Effects of interlayer and annealing on chemical states of HfO_2 gate insulators studied by photoemission spect roscopy. Appl Phys Lett, 2004, 84 (13) 2328
    [30] Puthenkovilakam R, Sawkar M, Chang J P. Elect rical characteristics of post deposit ion annealed HfO_2 on silicon. Appl Phys Lett, 2005, 86 (20): 20290221
    [31] Elshocht V, Brijs S, Caymax B, et al. Deposition of HfO_2 on germanium and the impact of surface pret reatments. Appl Phys Lett, 2004, 85 (17): 3824
    [32] Rumberg A, Sommerhalter Ch, ToplakM, etal.ZnSe thin films grown by chemical vapour deposition for application as buffer layer in CIGSS solar cells[J]. Solar Energy Material and Solar Cells, 2000, 361-362: 172—176
    [33] R Pal, S Chaudhuri and A K Pal, ZnSe film: preparation and properties, 1995, 26 (1): 1255-1260,
    [34] Sony J. S. , Chant J. H. , Honk S. Kby inserting a low temperature buffer etal. Improvement in crystallinity of ZnSe layer between the ZnSe epi-layer and the GaAs substrate, Journal of Crystal Growth, 2002, 242: 95-103
    [35] Mendez-Garcla V H, Centeno A Perez, LopezLopez M, etal. Improvement in the crystal quality of ZnSe films on Si (111) substrate with a nitrogen suface treatment[J]. Thin Solid Films, 2000, 373: 33-
    [36] Bousquet V, Tournie E, Faurie J P. Defect density in ZnSe pseudomorphic layers grown by molecular beam epitaxy on to various GaAs buffer layers [J]. Journal of Crystal Growth, 1998, 192: 102-108
    [37] Chen W R, Chang S J, SUYK, etal. ZnSe epitaxial layers and ZnSSe/ZnSe strain layer superlattices grown by molecular beam epitaxy[J]. Superlattice and Microstructure, 2002, 32: 59-63
    [38] Mendez-Garcla V H, Centeno A Perez, Lopez-Lopez M, etal. Improvement in the crystal quality of ZnSe films on Si (111) substrate with anitrogen suface treatment[J]. Thin Solid Films, 2000, 373: 33-36
    [39] 王善忠,協绳武,庞乾骏等.ZnSe 单晶薄膜生长控制. 量子电子学报.2000, 17 (2): 139-144
    [40] K.HINGERL and H. SITTER, Growth and characterization of ZnSe growth on GaAs by hot-wall epitaxy Journal of Crystal Growth , 1990, 101: 180-184
    [41] Siebentritt S, Kampschulte T, Baukneche A, etal. Cd-free buffer layers for CIGSS solar cells prepared by a dry process[J].Solar Energy Material and Solar Cells, 2002, 70: 447-457
    [42] Noda Y, Ishikawa T, Yamabe M, etal. Growth of ZnSe thin films by metalorganic chemical vapor deposition using nitrogen trifluoride[J].Applied Surface Science, 1997, 113/114: 28-32
    [43] Aoki T, Motrita M, Wichramanayaka S, etal.Growth of ZnSe thin films by radical assisted MOCVD method[J]. Applied Surface Science, 1996, 92: 132-137
    [44] Aoki T, Ikeda T, Korzec D, etal. ZnSe growth by radical assisted MOCVD using hollow cathode plasma[J]. Thin Solid Films, 2000, 368: 244-248
    [45] Morimoto K. Nitrogen-doped ZnSe grown by low-pressure metalorganic chemical vapor dep-sition with alternate growth and active ni-trogen doping[J]. Journal of Crystal Growth, 1996, 159: 317-320
    [46] Lokhande C D, Patil P S, Tributsch H, etal. ZnSe thin films by chemical bath deposition method[J]. Solar Energy Material and Solar Cells, 1998, 55: 379-393
    [47] Perna G. , Capozzi V. , Plantamura M. C. , et al. Structural and optical properties of ZnSe films deposited on crystalline A1_2O_3 substrate by laser ablation technique, Applied-Surface Science, 2003, 208-209: 582-588
    [48] Perna G. , Capozzi V. , Plantamura M. C. , et al. Structural and optical properties of pulsed laser deposited ZnSe films, Applied Surface Science, 2002, 186: 521526
    [49] Mitra A. , Thareja R. K. , Ganesan V. , et al. Synthesis and characterization of ZnO thin films for UV laser, Applied Surface Science, 2001, 174: 232-239
    [50] Ganguli T., Vedvyas M., Bhattacharya P. , et al. Crystalline quality of ZnSe thin films gown on GaAs by pulsed laser deposition in He and Ar ambients, Thin Solid Films, 2001, 388: 189-194
    [51] Boo H. B. , Xu N. , Lee J. K. , Growth of crystalline ZnSe: N thin films by pulsed laser ablation deposition, Vacuum, 2002, 64: 145-151
    [52] S. Soundeswaran, O.Senthil Kumar, R. Dhanasekaren, Growth of ZnSe film by electrocrystallization technique, Materials Chemistry and Physic , 2003, 82: 268-272
    [53] Sanchez S. , Lucas C, G. Thin S. , et al. Molten saltroute for ZnSe Solid Films, 2000, 107: 361-362
    [54] GRiveros, H. Gomez, R. Henriquez, et al. Electrodeposition and characterization of ZnSe semiconductor thin films, Solar Enemy Materials Solar Cells, 2001.
    [55] 刘庆,陆文雄,印仁和.电化学制备纳米材料的研究现状. 2004, 37(2): 33-36
    [56] J.A. Switzer, M. GShumsky, E. W. Bohannan, Electrodeposited ceramic single Crystals, Science, 1999, 284(5412): 293-296
    [57] Samantilleke A P, et al. Electrodeposition of n-type and p-type ZnSe thin films for application in large area op to electronic devices [J].J. of Materials Science, 1998, 290-298
    [58] Soundeswaran S, et al. Materials Chemistry and Physics2003, 82: 268-72.
    [59] Samantilleke A P, et al. Growth of n-type and p-type ZnSe thin films using an electrochemical technique for applications in large area op to electronicdevices[J]. JournalofMaterials Science, 1998.
    [60] Dharmadasa IM, et al. Electrodeposited p-type and n-type ZnSe layers for light emitting devices andmulti-layer tandemsolar cells[J]. J. of Materials Science, 1999.
    [61] Riveros G, et al. Electrodeposition and characterizationof ZnX(X=Se, Te)[J]. Semiconductor Thin Films. Bol. Soc. Chil. Quim. , 2002.
    [62] Mirtat Bouroushian, et al. Electrochemical formation of zinc selenide from acidic aqueous solutions[J]. J. Solid State Electrochem, 2002, 6: 272-278
    [63] Bouroushian M, et al. Aspects of ZnSe electrosynthesis from selenite and selenosulfite aqueous solutions[J]. J. Solid State Electrochem, 2005, 9: 55-60
    [64] Christian KEnigstein etal. Electrodeposition of ZnSe labo-ratoire dephysique des solides[A]. Proceedings of the 10th Workshop on Quantum Solar Energy Conversion, 1998, 9 (3): 54.
    [65] 方景礼.多元络合物电镀.国防工业出版社.1983,7 (3): 18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700