表面改性竹炭对微污染水中有机物的吸附
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用硝酸、氨水、微波三种改性方法对竹炭进行了表面改性,并研究了表面改性对微污染水中4种典型有机物指标的吸附效果。通过对改性前后竹炭基本吸附性能参数及微观结构的分析,探究了表面改性竹炭吸附效果变化的机理,结果表明:
     (1)表面改性竹炭中,在最佳吸附条件下,硝酸改性有利于对UV254、UV410的吸附,34%硝酸改性炭(O-2炭)使竹炭对两指标的去除率分别提高了28.18%和32.86%,但硝酸改性不利于对CODMn和2,4-DCP的吸附,高浓度硝酸改性条件对各指标的吸附均产生不利影响;低浓度氨水改性可以提高对各指标的吸附效果,但提高幅度不大,高浓度氨水使得改性效果降低;微波改性使竹炭对各指标的去除率均有所提高,且幅度大于氨水改性,微波改性对2,4-DCP的去除效果最优,相比于未改性炭,去除率提高了16.25%。
     (2)改性前后各竹炭对于有机物指标的吸附容量实验表明,改性前后竹炭对CODMn、UV254、UV410的吸附过程均可以Freundlich型吸附等温线表示;未改性炭、氨水、微波改性炭对于2,4-DCP的吸附过程均类似于单层吸附,适合用Langmuir型吸附等温线表示,而硝酸改性炭对2,4-DCP的吸附过程则适合用Freundlich型吸附等温线表示。
     (3)硝酸改性和氨水改性均导致竹炭碘值降低、灰分及水分含量减少,微波改性使竹炭碘值呈略增大趋势,也出现存在碘值减小的情况,灰分、水分含量随改性程度加深而减少。3种改性条件下,竹炭表面官能团含量发生明显变化:硝酸改性炭表面含氧官能团显著增加,总碱度下降;氨水改性炭表面总酸度下降,总碱度明显升高,含氮官能团增加;微波改性炭表面官能团含量总量减少,总酸度和总碱度略有增加。
     (4)综合采用SEM-EDS分析、XRD分析、红外光谱分析、拉曼光谱分析、TG-DSC分析等多种手段对改性前后竹炭的微观结果进行了分析。结果表明,硝酸改性炭氧含量明显增加,晶体结构趋于规整、有序,石墨化程度提高,使得硝酸改性炭有利于吸附较大的分子,使UV254、UV410得去除率明显提高,而碳结构表面含氧官能团的增加,使竹炭亲水性增强,总酸度增加,导致对CODMn和2,4-DCP去除率的下降;氨水改性炭表面总碱度增加,含氮官能团增多,疏水性增强,炭表面观察到被腐蚀的迹象,各指标去除率提高不大与微孔体积减小有关;微波改性使得竹炭微孔体积增大,从而有利于对各指标的吸附。
     表面改性提高了竹炭对有机物吸附的选择性。改性前后竹炭的吸附效果是由竹炭孔隙结构、表面性质及吸附质性质共同作用的综合结果,三种影响因素的强弱决定了最终吸附效果的趋势。
In this paper, three kinds of methods were used on the surface modification of bamboo charcoal, nitric acid modification, ammonia modification and microwave modification. The adsorption effects of these modified bamboo charcoals on four organic pollutions were also studied in this paper. Through the modification of the basic adsorption parameters before and after the charcoal and the analysis of its microstructure, exploration on the causes in changes on adsorption effect of surface-modified charcoal was made. The result of the study reveals that:
     (1)Among the three kinds of surface modification bamboo charcoal, the nitric acid modification is benefit for the absorption of UV254 and UV410 in the best adsorption conditions. Bamboo charcoal 34% nitric acid modified carbon (O-2) makes the two indicators of carbon removal rates increased by 28.18% and 32.86%, but nitrate modified wasn’t conducive to the CODMn and 2, 4-DCP adsorption, high concentrations of nitric acid modification conditions on the adsorption of each index were negatively; low concentration of ammonia modification could increase the adsorption of each index but not obviously. High concentrations of nitric acid makes the modified lower; microwave modified to make bamboo charcoal for the removal of all indexes were improved, and larger than ammonia modification, microwave modification on the 2,4-DCP removal efficiency of the most excellent, compared to unmodified carbon, the removal rate increased 16.25%.
     (2)The adsorption capacity for organic results of the bamboo charcoal before and after the modification show that, the adsorption process for CODMn, UV254, UV410 both before and after modification can be illustrated by Freundlich-type adsorption isotherm. The adsorption process for 2,4-DCP of unmodified charcoal, ammonia modified charcoal, and microwave modified charcoal is similar to the single-layer adsorption, can be illustrated by Langmuir-type adsorption isotherm.
     (3)Modification of nitric acid and ammonia led their iodine adsorption value, ash and moisture content decreased. The iodine values of micro-wave modification charcoal tend to slightly increase combined with a little decrease. Along with the degree of deepening, the ash, moisture content reduced. The contents of surface functional groups in bamboo charcoal significant change in three kinds of modified conditions: The nitric acid modified carbon surface oxygen groups increased significantly with the total alkalinity decreased; The total acidity of the ammonia surface modification carbon decreased and total alkalinity significantly increased, with the contents of the nitrogen functional group become higher; microwave carbons reduced the total content of surface functional groups, and make the total acidity and total alkalinity increased slightly.
     (4)SEM-EDS analysis, XRD, infrared spectroscopy, Raman spectroscopy, TG-DSC analysis were used in the study of modified charcoal microstructure analysis results .The results showed that the oxide content in the nitric modified carbon was increased remarkably, the crystal structure became regular, orderly, and the degree of graphitization increased that make its removal rate of large molecules conducive to UV254, UV410 significantly increased. While the carbon structure of the surface oxygen functional groups increased, so that bamboo charcoal can improve its hydrophilic and acidity increased, resulting the removal efficiency of CODMn and 2,4-DCP decreased. Total alkalinity of ammonia surface modified carbon increased, along with the nitrogen-containing functional groups and the hydrophobic increased. It is beneficial for the adsorption of the organic pollution indicators, but signs of corrosion in the surface of the ammonia surface modified carbon were observed, making the micro-porous volume decrease and resulting in the removal of the index. Micro-wave modification makes the charcoal micro-pore volume increases, thus facilitating the absorption of various indicators.
     Surface modification of bamboo charcoal improves the adsorption selection to organic pollutions. The adsorption effect of bamboo charcoal before and after modification was combined with the bamboo charcoal pore structure, surface properties and adsorptive interaction. The most important factors determine the final adsorption effect of the bamboo charcoal.
引文
[1]凌定勋,罗建中,孙国胜.微污染水处理技术进展[J].人民珠江,2003,3:76~78
    [2]中华人民共和国环境保护部[M].2007年中国环境状况公报,2008,6:4~18
    [3]张建策.活性炭表面改性及对饮用水中三氯甲烷吸附性能研究[D].湖南大学,2006:25~27
    [4]肖羽堂,张晶晶,吴鸣,等.我国的水资源污染与饮用水安全性研究[J].长江流域资源与环境,2001,10(1):51~58
    [5]李海涛,于长江.城市微污染水供水水质特点与存在问题的研究[J].工程技术,1994:242
    [6]肖羽堂,张晶晶,吴鸣,等.我国的水资源污染与饮用水安全性研究[J].长江流域资源与环境.2001,10(1):51~58
    [7]徐鸣,罗建中,肖明威.微污染水源水预处理技术进展[J].水资源与水工程学报,2005,16(3):65~67
    [8]崔玉川,傅涛.我国水污染及饮用水源中有机污染物的危害[J].城市环境与城市生态,1998,11(3):41~45
    [9] Symons J.M.Nellar I.A,Carswell J,K,et al.National organics reconnaissancesurvey for halogenated orgnics in drinking water [J].Water Works Assoc,1975,6:7~34。
    [10] Bethesda, Md.Report on the Carcinogenesis Bioassay of Chloroform[J].National Cancer Institute, 1976:83~89
    [11]张宝军,冯启言,张雁秋.微污染水源水处理技术的研究与发展[J].徐州建筑职业技术学院学报,2004,6,4(2):30~33
    [12]生活饮用水卫生标准[S],GB5749-85,国家环境保护总局,1985
    [13]生活饮用水卫生标准[S],GB5749-2006,国家环境保护总局,2006
    [14]贺瑞敏,朱亮,谢曙光.微污染水源水处理技术现状及发展[J].陕西环境,2003,10,1:37~40
    [15]王华成,吕锡武.微污染水源水饮用水处理研究进展[J].净水技术.2005,24(1):31~32
    [16]陈向明,王虹.优质饮用水深度处理技术探讨[J].给水排水,2001,27(8):1~5。
    [17]周娟娟,胡中华.生物活性炭技术(BAC)进展与应用[J].西南给排水,2003,25(2):13~17
    [18]朱晓辉.臭氧—活性炭深度处理东江水的应用[D].兰州交通大学,2007:22~33
    [19]左宋林,高尚愚,徐柏森,等.炭化过程中竹材内部形态结构的变化[J].林产化学与工业,2004,24 (4):56
    [20]朱江涛,黄正宏,康飞宇.竹炭的性能和应用研究进展[J].材料导报,2006,20(4):41~43
    [21]张文标,华毓坤,叶良明.竹炭导电机理的研究[J].南京林业大学学报(自然科学版) .2002,26(4):47~50
    [22]岩田圭司.导电性竹炭制造方法[P].日本公开特许公报,1998,9(14):10~446。
    [23]张文标,叶良明.竹炭的生产和应用[J].竹子研究丛刊,2001,20(2):48~53。
    [24]杨磊,陈清松,赖寿莲,等.竹炭对甲醛吸附性能的研究[J].林产化学与工业,2005,25(1):77~80
    [25]阪田佑佐,摊波竹已,等.竹活性炭制造方法及分子吸着特性[J].Bamboo Journal,1993(11):71~77
    [26]陈国青,周靖平,高琦,等.超细竹炭对水中Pb2+的吸附效果[J].解放军预防医学杂志,2006,24(6):405~407
    [27]张启伟,王桂仙.竹炭对引用水中氟离子的吸附条件研究[J].广东微量元素科学,2005,12(3):63~65
    [28]徐亦钢,石利利.竹炭对2,4-二氯苯酚的吸附特性及影响因素研究[J].农村生态环境,2002,18(1):35~37
    [29]周建斌,邓丛静,程金波,等.竹炭对水中余氯吸附性能的研究[J].世界竹藤通讯,2008,6(1):15~18
    [30] Babel S,Kurniawan T A.Chemosphere,2004;54(7):95l~967
    [31] Sukdeb P,Kyeong H L,Jongu K K,et a1. J Colloid Interf Sci,2006;303(1):39~48。
    [32] JianYW,FengY Z,Yong QH,et a1.Chin J Chem Eng,2006;l4(4):478~485。
    [33] Sab I H,Ham D A,Mohamed H I,et a1.Bioresource Technol,2007;98(4):874~880
    [34]余梅芳,胡晓斌,倪生良.化学改性活性炭对Cu(Ⅱ)离子吸附性能的研究[J].湖州师范学院学报,2006,28(2):42~45
    [35] A WITKOWSKIA,H GRAJEKA,M PAKUAB,et al.Voltammetric studies of the gradual thermal decomposition of activated carbon surface oxygen complexes[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2002,208(1-3):313~320
    [36] LEI LI,PATRICIA A QUINLIVAN,DETLEF R U KNAPPE.Effects of activated carbon surface chemistry and proe structure on the adsorption of organic contaminants from aqueous solution[J].Carbon,2002,40(12):2085~2100
    [37] RODRIGUEZ-REINOSO F,MOLINA-SABIO M.Activated carbons from lignocellulosic materials by chemical and/or physical activation:an overciew[J].Carbon,1992,30(7): 1111~1118
    [38]宋燕,凌立成,李开喜.超级活性炭材料的制备和结构及其性能研究进展[J].煤炭转化,2001,24(2):27~31
    [39] Polovina M , Babic B , Kaluderovic B , et al. Surface characterizationof oxidized activated carbon cloth [J].Carbon , 1998 , 35 (8):1047~1052
    [40]孙伟,孙宗贵.表面化学改性活性炭在水中的应用[J].水科学与工程技术,2008(1):35~37
    [41]白树林,赵桂英,付希贤.改性活性炭对水溶液中Cr(Ⅲ)吸附的研究[J].化学研究与应用,2001,6:21~24
    [42]单晓梅,朱书全,张文辉.氧化法改性煤基活性炭和椰壳活性炭的研究[J].中国矿业大学学报,2003,32(6):729~735
    [43] Hajime Tamon,Morio Kazaki,Influence of acidic surface ofides of autivated carbon on gas aoesorption chanacteristics[J].Carbon,1996,34(6):741~746
    [44] A Gil,Gde La Puenti,P Grange,Evidence of textural modifications of anactivated carbon on Liquidphase oxidation treatments[J].Microprous Materials,1997,12(1-13):51~61
    [45]范延臻,王宝贞,王琳.改性活性炭对有机物的吸附性能[J].环境化学,2001,20(5):444~448
    [46]刘守新,陈孝云,陈曦,等.表面酸碱2步改性对活性炭吸附六价铬的影响[J].环境科学,2005,26(6):89~93
    [47]刘守新,隋淑娟,孙承林.臭氧化对活性炭表面化学结构及六价铬吸附性质的影响[J].林产化学与工业,2006,26(1):33~38
    [48] S Haydar,M Aferro-Garcia,J Riveral-Utralla,et al.Adsorption of p-nitrophenol on an activated carbon with different oxidations[J].Carbors,2003,41(3):387~395
    [49] Menendez J A, Phillips J, Xia B, et al. On The Modification of Chemical Surface Properties of Active Carbon: In the Search of Carbon with Stable Basic Properties [J] . Langmuir, 1996, 12:4404~4410
    [50]金璇.表面化学改性活性炭对有机物吸附的研究进展[J].江苏环境科技,2006,19(2): 43~45
    [51] Manuel,Fernandor R,Pereira,Samania F Soares,et al.Adsorption of dtes onaetiual ted carhons influen ce of surface chemical groups[J]carhon,2003,41(4):811~821
    [52]李开喜,宋燕,凌立成.超级活性炭材料的制备和结构及其性能研究进展[J].煤炭转化,2001,24(2):27~31
    [53] A LisovskllIS,R Semlat,C Aharoni,Adsorption of sulfur dioxide by activecarhon treated by nireated by nitrie aeide;L Effeet of the treatment onadsorption of SO2 und ex-tractability of the acid formed[J].Carbon,1997,35(10-11):1639~1643
    [54] Vinke P Van Verbree M,Voskap A F,et al,Modifieation of the surtace of gas-active carbon and a chemically activated carbon with HNO3[J].Carbon,1994,32(4):675~686
    [55]万福成,李炳诗.活性炭富集溶液中Au(Ⅲ)的研究[J].信阳农业高等专科学校学报,1999,9(2):39~41
    [56]张群.微波对活性炭的改性及再生研究[D].浙江大学,2006:32~43
    [57]蒋文举.微波改性活性炭及其脱硫特性研究[D].四川大学,2004:78~82
    [58] Menende J Aetal. Modification of the surface Chemistry of Active Carbons by Means of Microwave一induced Treatments.Carbon,1999,37(7):1115~1121
    [59]一弓.活性炭的微波低温等离子体处理及其表面性能[J].等离子体应用技术快报,1999,(5):16~17
    [60] Rudolph A A, Huang B angzhou, D avis M , e t a l.D ecompos ition of PCB and othe r polychlorinated a rom aticsin soil us ing m ic row ave ene rgy. Chem osphe re, 1998, 37(8) : 1427~1436
    [61] Chih G. App lication of ac tiva ted ca rbon in a microwave radiation field to treat trichloroe thylene. Ca rbon, 1998, 36(11) : 1 643~1 648
    [62]张国宇,王鹏,姜思朋,等.微波诱导氧化处理雅格素红BF-3B150%染料废水的研究[J].环境科学,2004,25(增刊):52~55
    [63]王金成,薛大明,全燮.微波辐射处理活性艳蓝KN-R染料溶液的研究[J].环境科学学报,2001,21 (5):628~630
    [64]蒋齐光,严莲荷,周申范.微波催化氧化法处理富马酸废水[J].化工环保,2005,25(3):217~220
    [65]张启伟,王桂仙.竹炭的微波处理方法与效果的研究[J].林产化学与工业,2005,25(4):94~96
    [66]葛元新,朱志良,赵建夫.水体中腐殖酸含量与ClO2投加量间的相互关系研究[J].河南师范大学学报(自然科学版),2006,34(1):46~47
    [67]邓丛静.活性炭改性及对乙烯的吸附研究[D].南京林业大学,2008:23~24
    [68]水和废水监测分析方法(第四版)[M].北京,中国环境科学出版社,2002:225~228
    [69]黄伟,孙盛凯,李玉杰,等.硝酸改性处理对活性炭性能的影响[J].生物质化学工程,2006,40,11:17~21
    [70]陈芳艳,肖洁,唐玉斌.微波-改性活性炭- Fenton试剂氧化法降解水中2 , 4-二氯酚[J].化工环保,2008,28,2:106~110黄伟,孙盛凯,李玉杰,等.硝酸改性处理对活性炭性能的影响[J].生物质化学工程,2006,40,11:17~21
    [71]肖洁,唐玉斌,陈芳艳.微波-改性活性炭- Fenton试剂氧化法降解水中2 , 4-二氯酚[J].化工环保,2008,28,2:106~110
    [72]宋建刚,岳东北,聂永丰.硝酸改性活性炭对渗滤液中小分子有机物的吸附性能[J].环境化学,2009,28,6:788~792
    [73]刘守新,陈孝云,陈曦.表面酸碱2步改性对活性炭吸附Cr(Ⅵ)的影响[J].环境科学,2005, 26 (6)∶89~93
    [74]刘桂芳.表面改性活性炭吸附酚类内分泌干扰物的性能与机理研究[D].哈尔滨工业大学博士论文2008.6:50~90
    [75]周文军,杨瑞强,姜梅.表面活性剂对2,4-二氯苯酚在黄土中吸附行为的影响[J].中国环境科学2002,22(4):316~319
    [76]刘守新,陈曦,张显权.活性炭孔结构和表面化学性质对吸附硝基苯的影响[J].环境科学,2008, 29 (5):1192~1196
    [77]陈丽萍,苟小莉,李霞.活性炭改性及在发黄偏二甲肼脱色中的应用[J].火炸药学报,2009,32,5:83~86
    [78]四川大学编著,分析化学[M].北京,科学出版社,2006.2:296~299
    [79]周建斌.竹炭环境效应及作用机理的研究[D].南京林业大学硕士论文,2005,6:47~49
    [80] M.Nakamizo and K.Tamai.Raman Spectra of the Oxidized and Polished Surfaces of Carbon[J].Carbon,1984,22(2):97~198
    [81]王茂章.国外新型炭材料的开发[J].新型炭材料,1991,3(4):1~10
    [82]张佳.中孔活性炭的化学改性及其对铅的吸收[D].南京理工大学硕士论文,2005,6:35~49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700