CO_2在铂、锡修饰纳米TiO_2电极上的电催化还原及其电解固定产物的结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的进一步发展,由 CO_2导致的环境问题已引起人们的高度重视。如何减少大气中 CO_2的含量,缓解“温室效应”,已成为世界关注的焦点。电化学方法固定 CO_2具有反应条件温和、对环境友好的优点,属于“绿色化学”方法,近年来受到化学工作者的普遍关注。
    本论文研究了铂、锡修饰纳米TiO_2电极电催化还原 CO_2及其电解固定产物的结构表征,主要内容分为下面三部分:
    一. 铂、锡微粒修饰纳米TiO_2电极的制备及电化学测试。采用“牺牲”金属阳极法电合成TiO_2前驱体—钛酸乙酯,经水解、涂膜、煅烧制备纳米TiO_2膜电极;采用电沉积法将铂、锡微粒分散在纳米TiO_2膜表面。通过电化学暂态法研究了纳米TiO_2膜电极及铂、锡微粒修饰纳米TiO_2电极在 CO_2还原中的电催化活性。发现三种电极对 CO_2还原均具有催化活性。
    二. 铂、锡微粒修饰Ti/nano-TiO_2电极上 CO_2的电化学还原固定。在0.5M KHCO3溶液中分别采用控电流、控电位方式进行 CO_2的电解固定,反应在常温、常压下进行,分别以铂、锡修饰纳米TiO_2电极作阴极,研究了 CO_2的电解还原固定。化学检验方法及高效液相色谱法(HPLC)对溶解在溶液中的 CO_2还原产物进行初步分析表明产物为极性物质,化学性质活泼。
    三. CO_2的电化学固定产物的表征及结构确定。采用HPLC、紫外光谱(UV)、质谱(MS)、红外光谱(IR)、核磁共振波谱(1HNMR)等手段对 CO_2还原产物进行表征,经综合分析确定产物的分子量为258,分子式为C11H14O7,为一含有共轭链的多羰基化合物,这个结果在CA分子式检索中尚未发现,是一新的化合物。
With the further development of global economy, environment problems resulted from CO_2 had got much serious considerations. It has become a world focus that how to reduce CO_2 in the air, buffering "greenhouse effect". The electrochemical fixation of CO_2 has the advantages that reactive conditions are mild and it is friendly to environment, which belongs to "green chemistry" methods and recently receives great attentions from chemists.
    The electrocatalytic reduction of CO_2 on nanocrystalline TiO_2 electrodes modified by Pt or Sn were investigated and the electrolytic fixed product was structurally characterized in this paper, which was composed of three parts:
    First, preparations and electrochemical tests of Pt or Sn particulates modified nano- TiO_2 electrodes. TiO_2 precursor, Ti(OEt)4, which was directly hydrolyzed, coated, and calcined to produce nano-TiO_2 film electrode, was electro-synthesized using sacrificial metal anode method. Nanocrystalline TiO_2 -Pt(or Sn) modified titanium electrodes were prepared by electro- depositing Pt or Sn particulates on nanocrystalline TiO_2 film. Electrocatalytic activities of Ti/nano-TiO_2 and Ti/nano-TiO_2-Pt(or Sn) electrodes in the reduction of CO_2 were studied by electrochemically transient methods. The results showed that the three electrodes have electrocatalytic activities in the reduction of CO_2 all.
    Second, the fixation of CO_2 on Ti/nano-TiO_2-Pt(or Sn) electrodes were investigated by controlled-voltage or controlled-current electrolysis in 0.5M KHCO3 solution under room temperature and ambient pressure. Electrolysis fixed product resolved in solution of CO_2 were identified using HPLC method and chemical tests, which revealed that reduced products are polar matter and chemically active.
    Finally, analysis and characterization of reduced product of CO_2 using HPLC, UV, IR, MS,and 1HNMR methods were carried out. According to analysis by synthesis on the four spectra of product, molecular weight was determined to be 258, and molecular formula C11H14O7. The product is a conjugated multiple-carbonyl compound and it is a new compound, due to not been searched out in CA formula index.
引文
[1] 马淳安. 有机电化学合成导论[M]. 科学出版社,2002:1-6
    [2] 王光信,张积树. 有机电合成导论[M]. 化学工业出版社,1997:1-6
    [3] 黄培强,高景星. 绿色合成:一个逐步形成的学科前沿[J]. 化学进展,1998,3:265-272
    [4] 冯玉杰,李晓岩,尤宏,丁凡. 电化学技术在环境工程中的应用[M]. 化学工业出版社,2002:1-9,224-226
    [5] Fry A J. Synthetic Organic Electrochemistry[M]. John Wiley&Sons,Inc, 1989:1-16
    [6] 陈敏元. 有机电化学将成为21世纪的热门学科[J]. 化工时刊,1999,13(5):40-43
    [7] 王书明,江琦. 由二氧化碳出发合成有机碳酸酯[J]. 现代化工,2002,22(3):18-22
    [8] Lee M Y, Park D C. Alkyl carbonate synthesis by new catalytic system[J]. Stud Surf Sci Catal, 1999,66(5):631-640
    [9] Chun H L, Baizer M M. The electrochemistry of biomass and derived materials[M]. American Chemistry Society, Washington,D.C.,1985:141-156
    [10] 陶映初,吴少晖,张曦. CO_2电化学还原研究进展[J]. 化学通报,2001,5:272-277
    [11] 陈敏元等编著. 有机电化学及其应用[M]. 邯郸市化工自动化应用技术研究所出版,1989,357.
    [12] Bewick A, Greener G P. The electroreduction of CO_2 to Malate on a Mercury cathode[J]. Tetrahedron Letter,1969,10 (53):4623-4626
    
    
    [13] Bewick A, Greener G P. The electroreduction of CO_2 to glycollate on a lead cathode[J] Tetrahedron Letter,1970,11 (5):391-394
    [14] Vassiliev Yu B, Bagotzky V S, Osertrova N V et al. The mechanism and kinetics of electroreduction of CO_2 in aqueous solutions on metals with high and moderate hydrogen overvoltages[J]. J. Electroanal. Chem., 1985,189: 271-324
    [15] Hara K, Kudo A, Sakada T. Electrochemical reduction of Carbon Dioxide under high pressure on various electrodes in an aqueous electrolyte[J]. Journal of Electroanalytical Chemistry, 1995,391:141-147
    [16] Todoroki M, Hara K, Kudo A, Sakada T. Electrochemical reduction of high pressure CO_2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution[J]. Journal of Electroanalytical Chemistry, 1995,394:199-203
    [17] Hara K, Kudo A, Sakata T. Electrochemical reduction of high pressure Carbon Dioxide on Fe electrodes at large current density[J]. Journal of Electroanalytical Chemistry, 1995,386:257-260
    [18] Hara K, Sakata T. Electrocatalytic Formation of CH4 from CO_2 on a Pt Gas Diffusion Electrode[J]. J. Electrochem. Soc., 1997, 144(2):539-545
    [19] Kaneco S, Hiei N, Xing Y, et al. Electrochemical conversion of Carbon Dioxide to Methane in aqueous NaHCO3 solution at less than 273 K[J]. Electrochimica Acta, 2002,48:51-55
    [20] Ogura K, Endo N, Nakayama M. Mechanistic Studies of CO_2 Reduction on a Mediated Electrode with Conducting Polymer and Inorganic Conductor Films[J]. J. Electrochem. Soc.,1998, 145(11):3801-3809
    [21] Ogura K, Endo N. Electrochemical reduction of CO_2 with a functional Gas-Diffusion electrode in aqueous Solutions with and without Propylene Carbonate[J]. Journal of The Electrochemical Society, 1999,146(10):3736-3740
    [22] Yamamoto T, Donald A T, fujishima A, Ohata H. Production of syngas plus oxygen from CO_2 in a gas-diffusion electrode-based electrolytic cell[J]. Electrochimica Acta, 2002,47:3327-3334
    [23] Yamamoto T, Donald A. Tryk, Kazuhito Hashimoto, et al. Electrochemical reduction of CO_2 in the micropores of Activated Carbon Fibers[J]. Journal of The Electrochemical Society, 2000,147(9):3393-3400
    [24] Shibata M, Yoshida K, Furuya N. Electrochemical synthesis of Urea on reduction of Carbon Dioxide with Nitrate and Nitrite ions using Cu-loaded gas-diffusion electrode[J]. Journal Electroanalytical Chemistry, 1995,387:143-145
    Shibata M, Yoshida K, Furuya N. Electrochemical Synthesis of Urea at Gas-Diffusion Electrodes. IV. Simultaneous Reduction of Carbon Dioxide and Nitrate Ions with
    
    [25] Various Metal Catalysts[J]. J. Electrochem. Soc.,1998, 145(7):2348-2353
    [26] Yano H, Shirai F, Nakayama M, Ogura K. Electrochemical reduction of CO_2 at three-phase(gas│liquid│solid) and two-phase(liquid│solid) interfaces on Ag electrodes[J]. Journal of Electroanalytical Chemistry,2002,533:113-118
    [27] Yano H, Shirai F, Nakayama M, Ogura K. Efficient electrochemical conversion of CO_2 to CO, C2H4 and CH4 at a three-phase interface on a Cu net electrode in acidic solution[J]. Journal of Electroanalytical Chemistry,2002,519:93-100
    [28] Lee J, Tak Y. Electrocatalytic activity of Cu electrode in electroreduction of CO_2[J]. Electrochimica Acta,2001, 46:3015-3022.
    [29] Jesus-Cardona H, Moral C, Cabrera C R. Voltammetric study of CO_2 reduction at Cu electrodes under different KHCO3 concentrations, temperatures and CO_2 pressures[J]. Journal of Electroanalytical Chemistry,2001,513:45-51
    [30] Stevens G B, Reda T, Raguse B. Energy storage by the electrochemical reduction of CO_2 to CO at a porous Au film[J]. Journal of Electroanalytical Chemistry, 2002,526:125-133
    [31] Ohmori T, Nakayama A, Mametsuka H, Suzuki E. Influence of sputtering parameters on electrochemical CO_2 reduction in sputtered Au electrode[J]. Journal of Electroanalytical Chemistry,2001,514:51-55
    [32] Ishimaru S,.Shiratsuchi R,.Nogami G. Pulsed electro- reduction of CO_2 on Cu-Ag alloy eletrodes[J]. Journal of The Electrochemical Society, 2000, 147(5):1864-1867
    [33] Takahashi I, Koga O, Hoshi N, Hori Y. Electrochemical reduction of CO_2 at copper single crystal Cu(S)-[n(111)×(111)] and Cu(S)-[n(110)×(100)] electrodes[J]. Journal of Electroanalytical Chemistry,2002,533:135-143
    [34] Hoshi N, Hori Y. Electrochemical reduction of Carbon Dioxide at a series of Platinum single crystal electrodes [J]. Electrochimica Acta, 2000,45:4263-4270
    [35] Ohta K, Suda K, Kaneco S, et al. Electrochemical reduction of Carbon Dioxide at Cu electrode under ultrasonic irradiation[J]. Journal of The Electrochemical Society, 2000,147(1):233-237
    [36] Anpo M, Yamashita H, Ichihashi Y, et al. Photocatalytic reducion of CO_2 with H2O on various titanium oxide catalysts[J]. Journal of Electroanalytical Chemistry, 1995,396: 21-26
    [37] Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature,1979,277: 637-638
    Donald A.T., Toshio Yamamoto, Masahide Kokubun, et al. Recent developments in electrochemical and photoelectro- chemical CO_2 reduction: involvement of the
    
    [38] ( CO_2)2 ·- dimmer radical anion[J], Appl. Organometal. Chem., 2001; 15: 113-120.
    [39] Kapusta S, Hackerman N. Carbon Dioxide reduction at a metal Phthalcocyannine catalyzed Carbon electrode[J]. J. Electrochem. Soc., 1984, 131(7):1511-1514
    [40] Frese Jr KW, Leach S. Electrochemical reduction of Carbon Dioxide to Methane, Methanol, and CO on Ru electrodes[J] J. Electrochem. Soc., 1985, 132(1):259-260
    [41] Summers D P, Leach S, Frese Jr KW. The electrochemical reduction of aqueous carbon dioxide to methanol at Molybdenum electrodes with low overpotentials [J]. Journal of Electroanalytical Chemistry, 1986,205:219-232
    [42] Ohkawa K, Noguchi Y, Nakayama S, et al. Electrochemical reduction of Carbon Dioxide on hydrogen-storing materials: Part 4. Electrochemical behavior of the Pd electrode in aqueous and nonaqueous electrolyte[J]. Journal of Electroanalytical Chemistry, 1994,369:247-250
    [43] Yoshitake H, Kikkawa T, Muto G, et al. Poisoning of surface hydrogen processes on a Pd electrode during electrochemical reduction of Carbon Dioxide [J]. Journal of Electroanalytical Chemistry, 1995,396:491-498
    [44] Yoshitake H, Kikkawa T, Ota K. Isotopic product distributions of CO_2 electrochemical reduction on a D flowing-out Pd surface in protonic solution and reactivities of "subsurface" hydrogen[J]. Journal of Electroanalytical Chemistry, 1995,390:91-97
    [45] Sakata T, Azuma M, Hashimoto K, Hiramoto M, Watanabe M. Electrochemical reduction of Carbon Dioxide on various metal electrodes in low-temperature aqueous media[J]. J. Electrochem. Soc., 1990, 137(6):1772-1778
    [46] Fischer J, Lehmann T, Heitz E. The production of Oxalic Acid from CO_2 and H2O[J].J. Appl. Electrochem, 1981, 11:743-750
    [47] Ohta K, Kawamoto M, Mizuno T. Electrochemical reduction of Carbon Oxide in Methanol at ambient temperature and pressure[J].Journal of Applied Electrochemistry, 1998,28:717-724
    [48] Kaneco S, Iiba K, Hiei N, et al. Electrochemical reduction of Carbon Dioxide to Ethylene with high Faradaic efficiency at a Cu electrode in CsOH/Methanol[J]. Electrochimica Acta 1999,44:4701-4706.
    [49] Eggins B R, Ennis C, Mcconnell R, Spence M. Improved yields of Oxalate, Glyoxylate and Glycolate from the electrochemical reduction of Carbon Dioxide in Methanol[J]. Journal of Applied Electrochemistry,1997,27:706-712
    [50] Halmann M, Aurian-Blajeni B. Electrochemical reduction of Carbon Dioxide at elevated pressure on semiconductor electrodes in aqueous solution[J]. Journal of Electroanalytical Chemistry,1994,375:379-382
    
    
    [51] Aydin R, Koleli F. Electrochemical reduction of CO_2 on a Polyaniline electrode under ambient conditions and at high pressure in methanol[J]. Journal of Electroanalytical Chemistry, 2002,535:107-112
    [52] Wawzonek S, Wearring D. Polarographic Studies in Acetonitrile and Dimethylformamide. IV. Stability of Anion-free Radicals[J] J.Am.Chem.Soc., 1959,81:2067 - 2069
    [53] Derien S, Clinet J-C, Dunach E, Perichon J. Activation of Carbon Dioxide:Nickel-catalyzed electrochemical carboxylation of Diynes[J]. J.Org.Chem., 1993,58:2578-2588
    [54] 丁绍民,王继东,宋华付. 消耗阳极法在有机电合成中的应用[J]. 精细化工,2000,17(Suppl.):7-9
    [55] Sock O, Troupel M, Perichon J. Electrosynthesis of Carboxylic Acids from Organic Halides and Carbon Dioxide[J]. Tetrahedron Letters, 1985,26(12):1509-1512
    [56] Isse A A, Gennaro A. Electrochemical synthesis of Cyanoacetic Acid from Chloroacetonitrile and Carbon Dioxide[J]. Journal of The Electrochemical Society, 2002,149(8):D113-D117
    [57] Tescedda P, Dunach E. Electrosynthesis of cyclic Carbamates from Aziridines and Carbon Dioxide[J]. Chem.Commun., 2000: 449-450.
    [58] Bhugun I, Lexa D, Saveant J M. Ultraefficient selective homogeneous catalysis of the electrochemical reduction of Carbon Dioxide by an Iron(0) Porphyrin associated with a weak Bronsted acid cocatalyst[J]. J. Am. Chem. Soc.,1994,116:5015-5016
    [59] Bhugun I, Lexa D, Saveant J M. Catalysis of the electrochemical reduction of Carbon Dioxide by an Iron(0) Porphyrins: synergystic effect of weak Bronsted acids[J]. J. Am. Chem. Soc.,1996,118:1769-1776
    [60] Gennaro A, Isse A A, Saveant J M, et al. Homogeneous electron transfer catalysis of the electrochemical reduction of Carbon Dioxide[J]. J. Am. Chem. Soc., 1996, 118: 7190-7196
    [61] Tanaka K, Mizukawa T. Selective formation of Ketones by electrochemical reduction of CO_2 catalyzed by Ruthenium complexes[J]. Applied Organometallic Chemistry, 2000,14: 863-866.
    [62] 蔡传英,陈峰,李青山. 1999年聚合物/无机纳米材料最新进展与21世纪发展战略[J]. 化工时刊,2000,1:13-18
    [63] 倪永红,葛学武,徐相凌,等. 纳米材料制备研究的若干新进展[J]. 无机材料学报,2000,15(1): 9-15
    [64] 薛群基,徐康. 纳米化学[J]. 化学进展,2000,12(4):431-444
    Alivisatons A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J].
    
    [65] Science, 1996, 271:933-936
    [66] Che G, Lakshmi B B, Fisher E R, et al.. Carbon Nanotubule Membranes for Electrochemical Energy Storage and Production[J]. Nature, 1998, 393:346-349
    [67] O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films[J]. Nature, 1991, 353:737
    [68] Ravichandran C, Chellammal S, Anantharaman P N, et al. Indirect electroreduction of o-aminophenol on titanium dioxide coated titanium electrodes[J]. J. Appl. Electrochem., 1991, 21:60-63
    [69] Ravichandran C, Noel M, Anantharaman p N. Electrosythesis of toluidines using thermally coated Ti/TiO_2 electrodes[J]. J. Appl. Electrochem., 1994, 24:965-969
    [70] Ravichandran C, Chellammal S, Anantharaman P N. Electroreduction of nitrobenzene to p-aminophenol at a TiO_2/Ti electrode[J]. J. Appl. Electrochem., 1989,19:465-466
    [71] Vasudevan D, Chellammal S, Anantharaman P N. Synthesis of 5-amino salicylic acid at a TiO_2/Ti electrode[J]. J. Appl. Electrochem., 1991, 21:839-840
    [72] Ravichandran C, Noel M, Anantharaman P N. Comparative evaluation of nitrobenzene and m-dinitrobenzene on Ti/ TiO_2 electrodes in H2SO4[J]. J. Appl. Electrochem., 1994,24:1256-1261
    [73] Vasudevan D. Reduction of maleic acid at Ti/ceramic TiO_2 cathode[J]. J. Appl. Electrochem., 1995, 25:176-182
    [74] Nazeeruddn N K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyl-4,4'-Dicarboxylate) ruthenium(Ⅱ) Charge-Transfer sensitizers (X=Cl-,Br-,I-,CN-,and SCN-) on nanocrystalline TiO_2 electrodes[J]. J.Am.Chem.Soc.,1993,115:6382-6390
    [75] Jeremiah K N, Mbindyo, James F, et al. Catalytic electrochemical sythesis using nanocrystalline Titanium Dioxide Cathodes in microemulsions[J]. Langmuir,1998, 14:7027-7033
    [76] 沈广霞. 纳米TiO_2催化电极的制备、表征及其在有机电合成的应用,硕士研究生毕业论文,2001,23-30
    [77] 褚道葆,沈广霞,周幸福,等. Ti表面修饰纳米TiO_2膜电极的电催化活性[J]. 高等学校化学学报,2002, 23(4): 678-681
    [78] 褚道葆,沈广霞,朱琼霞,等. 纳米TiO_2电极在不同介质中的电化学行为[J]. 应用化学,2002,19(7):633-636
    [79] 褚道葆,沈广霞,周幸福,等. 高活性Ti基纳米TiO_2膜催化电极的制备[J]. 电化学,2001,7(2):249-254
    [80] 褚道葆,林昌健,周幸福,等. 纳米TiO_2电极上硝基苯的间接电催化还原[A]. 第十届全国电化学会议交流论文,杭州,1999:A068
    [81] 褚道葆,沈广霞,董宗木,等. 马来酸在纳米TiO_2膜电极上的电催化还原[A]. 第八届全国有机电化学与工业学术会议论文集,芜湖,2002:50-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700