基于蒽的有机电致发光材料的合成和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件(Organic light-emitting diodes, OLEDs)作为下一代显示器之一,并可以用在环保照明上,已经成为国际上竞争最激烈的前沿科学领域和非常热门的新兴平板显示器及照明产业。有机电致发光材料在有机电致发光器件中起了非常重要的作用,其性能很大程度地影响了器件产业化的进程。因此,研究和探索符合市场化要求的有机电致发光材料具有重大意义。蒽类化合物具有刚性结构、宽能隙和高荧光量子效率,同时又具有良好的成膜性、稳定性和适当的载流子传输性质等优点,使其备受关注,在有机电致发光器件中具有很好的实际价值和应用前景。
     本文就是基于蒽类衍生物良好的光电性质,通过在其9、10位或其他碳原子上进行取代修饰,引入各种官能团,合成了一系列功能化的蒽衍生物,并把它们应用在电致发光器件上来研究它们的性能。本文具体研究内容和研究成果包括如下几个方面:
     第一章综述了有机电致发光器件的基本概念、性能参数、器件结构、研究进展,同时也对蒽类衍生物的研究发展与应用做了详细的介绍。
     第二章通过在蒽的9,10位引入三苯胺和苯并咪唑基团,合成并表征了一系列具有空穴传输功能和电子传输功能的两性有机电致蓝光材料。这些化合物具有很高的热稳定性和较高的量子效率。通过测量发现这些化合物的荧光光谱具有很强的溶剂化效应,并测试了这些化合物在甲苯和四氢呋喃中的双光子荧光性能。制作三种类型器件分别研究这些化合物的发光性能、电子传输性能和空穴传输性能,化合物B1,B2和B4的器件发射蓝光,而化合物B2由于电子异构体的形成,导致在低电流密度(<5mA/cm2)下发射白光。由化合物B4做成的单层器件,在电流密度为20 mA/cm2下的电流效率为3.33 cd/A,CIE(x,y)值为(0.16,0.16),在8.7 V的驱动电压下的发光亮度为8472 cd/m2。
     第三章合成了两种不对称的无定型的9,10-二取代的蒽类衍生物。这两个化合物发射蓝光,具有很好的热稳定性,它们的玻璃化温度分别为132.5和133.8℃。通过电子扫描显微镜来研究这两个化合物的薄膜的形态稳定性,相比较对称的MADN,这两个化合物都具有更好的稳定性。用这两个同分异构体作为发光层制作的器件,发射蓝光,当以它们为主体发光层,掺杂一种天蓝光BUBD-1的客体材料时,得到了天蓝光的器件。通过改变电子传输层和空穴传输层,我们系统地研究了这两个材料,并制得一系列高效的蓝光器件。
     第四章合成并表征了一系列含有以三聚茚为核的蒽类衍生物。这些化合物发射蓝光,具有很高的溶液荧光量子效率,它们的热分解温度超过460℃,并随着分子量的增大而提高。用化合物NPAT作为发光层制作了结构为ITO/CFx/NPAT/TPBI or Alq3/LiF/Al的电致发光器件,通过调节发光层和电子传输层的厚度来优化器件。
     第五章把苯并咪唑接在蒽的9,10位上,合成了一个含蒽的电子传输材料。通过循环伏安测得这个材料的HOMO和LUMO分别为5.7 eV和2.7 eV。并作为电子传输材料应用在绿光和蓝光的掺杂器件上,通过跟经典的电子传输材料Alq3比较来研究化合物的电子传输性能。为了更好地研究目标化合物的电子传输和电子注入性能,制作了electron-only和electron-injection两种类型的器件。
     第六章介绍了一系列以MADN为底物,在蒽的2位上引入不同官能团,如具有电子传输功能的苯并咪唑、空穴传输性能的三苯胺的蒽衍生物。这些基团的引入不仅可以有效地调节光的颜色和化合物的热稳定性,还可以使这些化合物兼有发光功能和电荷传输性能。
     第七章介绍了两个含有六苯基苯的空穴传输材料。
     第八章总结了本论文的主要工作和内容。
Organic light-emitting diodes (OLEDs) have drawn great scientific and commercial attention in the past decades, due to their potential applications in full-color, flat-displays as well as solid-state lighting. The electroluminescent materials play a very important role in OLEDs, which largely affect the process of industrialization of OLEDs. Therefore, it is very important to study and explore the high-efficiency and stable materials. Anthracene derivatives have been intensively studied and applied in OLEDs, due to their rigid structure, high energy gap, high fluorescent quantum yield, amorphous thin film morphology, excellent thermal stability, balanced carrier mobility, as well as easier modification. Moreover, the anthracene derivatives are focused on the application because of their practical value and prospects in OLEDs.
     In this thesis, a series of functionalized anthracene derivatives by introducing different groups at the 9,10 or other positions of anthracene unit based on fantastic electro-optical properties of anthracene derivatives were synthesized and characterized, also were applied in OLEDs to study their electroluminescent properties. The main research contents and results were generalized as follows:
     In chapter 1, the basic concept, property parameter, device structure and recent progress of organic light-emitting diodes are reviewed. Especially, the development and application of anthracene derivatives were particularly introduced.
     In chapter 2, a series of bipolar anthracene derivatives containing hole-transporting triphenylamine and electron-transporting benzimidazole moieties were synthesized and characterized. These compounds possess high thermal properties and quantum yield in toluene solution, but their photoluminescence spectra are sensitive to the polarity of the solvent. The two-photon excited fluorescence characteristics of the bipolar anthracene derivatives in both toluene and THF solution have been measured. Three types of devices were fabricated to investigate their electron-transporting, hole-transporting as well as light-emitting properties. The electroluminescent spectra for the three derivatives B1, B3 and B4 show that they emit blue light, while the B2-based devices produced white light at a low current density because of the electromer formation. Moreover, a single layer OLED device for B4 exhibited a current efficiency of 3.33 cd/A with a pure blue color of CIE(x,y) of (0.16, 0.16) at 20 mA/cm2 and a maximum brightness of 8472 cd/m2 at 8.7 V.
     In chapter 3, two unsymmetrically amorphous 9,10-disubstituted anthracene derivatives have been synthesized and characterized. They emit the light in the blue region and possess glass transition temperature of 132.5℃and 133.8℃. The scanning electron microscope (SEM) was employed in studying the thin film morphological stability of the two unsymmetrical isomers. These two compounds were fabricated into typical trilayers devices with pure blue lighting performance. In addition, a series of highly efficient and stable sky blue devices doped with a sky blue dopant BUBD-1 have been fabricated by using these two isomers as the host.
     In chapter 4, a new series of anthracene derivatives containing a truxene moiety as the core have been synthesized and characterized. They emit in the blue region with excellent solution fluorescence quantum yields and possess high thermal decomposition temperature (Td>458℃). Typical electroluminescence performance was demonstrated by NPAT as the blue lighting material in the OLED with structure of ITO/CFx/NPAT/TPBI or Alq3/LiF/Al. Additionally, the effects of the different thickness of the different electron-transporting layers on the device performance were investigated.
     In chapter 5, we synthesized and characterized one electron-transporting material containing anthracene and benzimidazole moieties, and measured the HOMO energy level and LUMO energy level with 5.7 eV and 2.7 eV through cyclic voltammery (CV) analyses. The compound was applied in the green and blue devices as electron-transporting layer to achieve the better performance than those Alq3-based devices. The electron-only and electron-injection devices were also fabricated to study its electron-transporting and electron-injecting properties.
     In chapter 6, a new series of anthracene derivatives based on the common MADN by introducing the functional moiety including the triarylamine or benzimidazole at the 2 position of anthracene were synthesized and characterized. The introduced group can not only turn the emitting light and thermal stability, but also affect the emission and charge transporting properties of these materials.
     In chapter 7, two hole-transporting materials based on the hexaphenylbenzene were synthesized and characterized.
     The chapter 8 is conclusion
引文
[1]陈金鑫,黄孝文.OLED有机电致发光材料与器件.清华大学出版社.2007,1-265
    [2]田禾,苏建华,孟凡顺,陈孔常.功能性色素在高新技术中的应用.2000,89-123
    [3]黄春辉,李富友,黄维.有机电致发光材料与器件导论.2005,1-446
    [4]Chen S., Deng L., Xie J., Peng L., Xie L., Fan Q., Huang W. Recent developments in top-emitting organic light-emitting Diodes. Adv. Mater.2010,22:5227-5239
    [5]D'Andrade B. W., Forrest S. R. White organic light-Emitting devices for solid-state lighting. Adv. Mater.2004,16(18):1585-1595
    [6]Walzer K., Maennig B., Pfeiffer M., Leo K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev.2007,107:1233-1271.
    [7]Bernanose A., Comte M., Vouaux P. Sur un nuveau mode demission lumineuse chez certains composes organiques. J. Chim. Phys. Chim. Biol.1953,50:64-68
    [8]Pope M., Kalllmaon H., Magnance P. J. Electroluminescence inorganic crystals. J. Chem. Phys.1963,38:2042-2043
    [9]Helfrich W., Schneider W. G., Recombination radiation in anthracene crystals. Phys. Rev. Lett.1965,38(8):2042-2043
    [10]Vincett P. S., Barlow W. A., Han R. A., Roberts G. G. Electrica-conduction and low-voltage blue electro-luminescence in vacuum-deposited organic films. Thin Solid Films.1982,94(2):171-183
    [11]Tang C. W., Vanslyke S. A. Organic electroluminescent diodes. Appl. Phys. Lett.1987, 51:913-916
    [12]Adachi C., Tokito S., Tsutsui T., Saito S. Electroluminescence in organic films with three-layer structure. Jpn. J. Appl. Phys.1988,27(2):L269-L271
    [13]Adachi C., Tokito S., Tsutsui T., Saito S. Organic electroluminescent with a three-layer structure. Jpn. J. Appl. Phys.1988,27(4):L713-L715
    [14]Burroughes J. H., Bradley D. D. C., Brown A. R., Marks R. N., Mackay K., Friend R. H., Burns P. L., Holmes A. B. Light emitting diodes based on conjugated polymers. Nature.1990,347:539-541
    [15]Gustufsson G., Cao Y., Treacy G. M., Klavetter F., Colaneri N., Heeger A. J. Flexible light-emitting diodes made frome soluble conducting polymers. Nature,1992,357(2): 477-479
    [16]Cao Y., Treacy G. M., Smith P., Hegger A. J. Solution-cast films of polyaniline: optical-quality transparent electrodes. Appl. Phys. Lett.1992,60(22):2711-2719
    [1.7]Baldo M. A., O'Brien D. F., You Y., Shoustikov A., Sibley S., Thompson M. E., Forrest S. R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature,1998,395:151-154
    [18]Huang T.-S., Lin J. T., Chen L.Y., Lin Y.-T., Wu C.-C. Dipolar dibenzothiophene S,S-dioxide derivatives containing diarylamine:materials for single-layer organic light-emitting devices. Adv. Mater.2006,18:602-606
    [19]Lai M.-Y, Chen C.-H., Huang W.-S., Lin J. T., Ke T.-H., Chen L.-Y., Tsai M.-H., Wu C.-C. Benzimidazole/amine-based compounds capable of ambipolar transport for application in single-layer blue-emitting OLEDs and as hosts for phosphorescent emitters. Angew. Chem. Int. Ed.2008,47:581-585
    [20]Chen C.-H., Huang W.-S., Lai M.-Y., Tsao W.-C., Lin J. T., Wu Y.-H., Ke T.-H., Chen L.-Y, Wu C.-C. Versatile, benzimidazole/amine-Based ambipolar compounds for electroluminescent applications:single-layer, blue, fluorescent OLEDs, hosts for Single-Layer, phosphorescent OLEDs. Adv. Funct. Mater.2009,19:2661-2670
    [21]Shi J., Tang C. W. Doped organic electroluminescent devices with improved stability. Appl. Phys. Lett.,70(13):1665-1667
    [22]Hosokawa C., Sakamoto S., Kusumoto T. Organic electroluminescence device.1995, US 5389444
    [23]Wu K. C., Ku P. J., Lin C. S., Shih H. T., Wu F. I., Huang M. J., Lin J. J., Chen I. C. Cheng C. H. The photophysical properties of dipyrenylbenzenes and their application as exceedingly efficient blue emitters for electroluminescent devices. Adv. Funct. Mater. 2008,18:67-75
    [24]Wu C. C., Lin Y. T., Chiang H. H., Cho T. Y, Chen C. W., Wong K. T., Liao Y. L., Lee G. H., Peng S. M. Highly bright blue organic light-emitting devices using spirobifluorene-cored conjugated compounds. Appl. Phys. Lett.2002,81:577-579
    [25]Suzuki K., Seno A., Tanabe H., Ueno K. New host materials for blue emitters. Synth. Met.2004,143:89-96
    [26]Gao Z. Q., Li Z. H., Xia P. F., Wong M. S., Cheah K. W., Chen C. H. Efficient deep-blue organic light-emitting diodes:arylamine-substituted oligofluorenes. Adv. Funct. Mater. 2007,17:3194-3199
    [27]Shirota Y. Organic materials for electronic and optoelectronic devices. J. Mater. Chem. 2000,10:1-25
    [28]薛云娜,柴生勇,别国军,刘波,甘宁.蒽类电致发光材料研究进展.现代显示.2008,86:29-35
    [29]Adachi C., Tsutsui T., Saito S. Blue light-emitting organic electroluminescent devices.1990,56(9):799-801
    [30]Kang G. W., Ahn Y J., Park D. Y, Lee C. Efficient blue electroluminescence from 9,10-diphenyl anthracene. Proc. Of SPIE,2003,4800:208-218
    [31]Shi J., Tang C. W. Anthracene derivatives for stable blue-emitting organic electroluminescence devices. Appl. Phys. Lett.2002,80(17):3201-3203
    [32]Shi J. Method of using predoped materials for making an organic light-emitting device. 2001, EP Patent No.1156536
    [33]Balaganesan B., Shen W.-J., Chen C. H. Synthesis of t-butylated diphenylanthracene derivatives as blue host materials for OLED applications. Tetrahedron Letters.2003,44: 5747-5750
    [34]Lee M.-T., Wu Y.-S, Chen H.-H., Tsai C.-H., Liao L.-C., Chen C. H. Proceedings of the Society For Information Display, Seattle, Washington,23-28 May 2004.
    [35]Lee M.-T., Chen H.-H., Liao C.-H., Tsai C-H, Chen C. H. Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9,10-di(2-naphthyl)anthracene. Appl. Phys. Lett.2004,85:3301-3303
    [36]Lee M.-T., Chen H.-H., Liao C.-H., Tsai C-H, Chen C. H. Highly efficent, deep-Blue doped organic light-emitting devices. Adv. Mater.2005,17:2493-2497.
    [37]Lin M.-F.,Wang L., Wong W.-K., Cheah K.-W., Tam H.-L., Lee M.-T., Chen C. H. Highly efficient and stable sky blue organic light-emitting devices. Appl. Phys. Lett. 2006,89:121913-1-3
    [38]Kan Y., Wang L., Duan L., Hu Y, Wu G., Qiu Y Highly-efficient blue electroluminescence based on two emitter isomers. Appl. Phys. Lett.2004,84: 1513-1515
    [39]Ho M.-H., Wu Y.-S., Wen S.-W., Lee M.-T., Chen T.-M., Chen C. H. et. al. Highly efficient deep blue organic electroluminescent device based on 1-methyl-9,10-di(1-naphthyl)anthracene. Appl. Phys. Lett.2006,89:252903-1-3
    [40]Gao Z. Q., Mi B. X., Chen C. H., Cheah K.-W., Cheng Y K., Wen W.-S. High-efficiency deep blue host for organic light-emitting devices. Appl. Phys. Lett.2007,90: 123506-1-3
    [41]Hadjar B. H., Shioya T., Yoshiharu S. Y, Bazan G. Anthracene-containing binaphthol chromophores for light-emitting diode (LED) fabrication. Adv. Funct. Mater.2003,13: 883-886
    [42]Danel K., Huang T.-H., Lin J. T., Tao Y.-T., Chuen C.-H., Blue-emitting anthracene with end-capping diarylamines. Chem. Mater.2002,14:3860-3865
    [43]Yu M.-X., Duan J.-P., Lin C.-H., Cheng C.-H., Tao Y-T. Diaminoanthracene derivatives as high-performance green host electroluminescent materials. Chem Mater.2002,14: 3958-3963
    [44]Kim Y-H., Jeong H.-C., Kom S.-H., Yang K., Kwon S.-K. High-purity-blue and high-efficiency electroluminescent devices based on anthracene. Adv. Funct. Mater. 2005,15:1799-1805
    [45]Lyu Y.-Y., Kwak J., Kwon O., Lee S.-H., Kim D., Lee C., Char K. Silicon-cored anthracene derivatives as host materials for highly efficient blue organic light-emitting devices. Adv. Mater.2008,20:2720-2729
    [46]Shih P. I., Chuang C. Y., Chien C. H., Diau E., Shu C. F. Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups. Adv. Funct. Mater.2007,17:3141-3146
    [47]Kim S. K., Park Y. I., Kang I. N., Park J. W. New deep-blue emitting materials based on fully substituted ethylene derivatives. J. Mater. Chem.2007,17:4670-4678
    [48]Kim S. K., Yang B., Ma Y. G., Lee J. H., Park J. W. Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design. J. Mater. Chem.2008,18:3376-3384
    [49]Chien C.-H., Chen C.-K., Hsu F.-M., Shu C.-F., Chou P.-T, Lai.C.-H. Multi- functional deep-blue emitter comprising an anthracene core and terminal triphenylphosphine oxide groups. Adv. Funct. Mater.2009,19:560-566
    [50]Kim Y. H., Shin D. C., Kim S. H., Ko C. H., Yu H. S,. Chae Y. S., Kwon S. K. Novel blue emitting material with high color purity. Adv. Mater.2001,22:1690-1693
    [51]徐礼玲,赵立群,耿延候等.新型蒽衍生物蓝光材料的合成及光电性能.应用化学.2005,22(1):115-116
    [52]Gebeyehu D., Walzer K., He G., Pfeiffer M., Leo K., Brandt J., Agerhard, Stoβel P., Vestweber H. Highly efficient deep-blue organic light-emitting with doped transport layers. Synth. Met.2005,148:205-211
    [53]Shen W.-J., Dodda R., Wu C.-C., Wu F.-I., Liu T.-H., Chen H.-H., Chen C. H., Shu C.-F. Spirobifluorene-linked bisanthraceene:an efficient blue emitter with pronounced thermal stability. Chem. Mater.2004,16:930-934
    [54]Wu C. H., Chen C. H., Hsu F. M., Shih P. I., Shu. C. F. Efficient non-doped blue-light-emitting diodes incorporating an anthracene derivative end-capped with fluorene groups. J. Mater. Chem.2009,19:1464-1470
    [55]Kim K.-S., Jeon Y.-M., Lee H.-S., Kim J.-W., Lee C.-W., Jang J.-G., Gong M.-S., Blue organic electroluminescent devices based on the spiro[fluorene-7,9'-benzoflurene] derivatives as host and dopant materials. Synth. Met.2008,158:870-875
    [56]Gong M.-S., Lee H.-S., Jeon Y.-M. Highly efficient blue OLED based on 9-anthracene-spirobenzofluorene derivatives as materials. J. Mater Chem.,2010,20: 10735-10746
    [57]Park Y.-Ⅱ., Son J.-H., Kang J.-S., Kim S.-K., Lee J.-H., Park J.-W. Synthesis and electroluminescence properties of novel deeo blue emitting 6,12-dehydro-diindeno[1,2-b; 1',2'-e]pyrzine derivatives. Chem. Commun.2008,2143-2145
    [58]Wang L., Wong W.-Y., Lin M.-F., Wong W.-K., Cheah K.-W., Tam H.-L., Chen C.-H. Novel host materials for single-component white organic light-emitting diodes based on 9-naphthylanthracene derivatives, J. Mater. Chem.2008,18:4529-4536
    [59]Wang L., Fang L.-M., Wong W.-K., Cheah K.-W., Tam H.-Lam., Gao Z.-Q., Chen C. H. Highly efficient white organic light-emitting diodes with single small molecular emitting material. Appl. Phys. Lett.2007,91:183504-1-3
    [60]Xia Z.-Y., Zhang Z.-Y, Su J.-H., Zhang Q., Fung K.-M., Lam M.-K., Li K.-F., Wong W.-Y., Cheah K.-W., Tian H., Chen C. H. Robust and highly efficient blue light-emitting hosts based on indene-substituted anthracene. J. Mater. Chem.2010,20:3768-3774
    [61]Okumoto K., Kanno H., Humaa Y, Takahashi H., Shibata K. Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10%, Appl. Phys. Lett. 2006,89:063504-1-3
    [62]Okumoto K., Kanno H., Humaa Y, Takahashi H., Shibata K. High efficiency red organic light-emitting devices using tetraphenyldibenzoperiflanthene-doped rubrene as an emitting layer. Appl. Phys. Lett.2006,89:013502-1-3
    [63]Yoon S.-H., Bae J.-S., New materials for transporting electrons and organic electrominescent display using the same.2003, WO 03060956
    [64]Kawamura M., Yamamoto H., Hosokawa C. Nitrogenous heterocycle derivatives, and organic electroluminescent element employing the same.2005. WO 200509756
    [65]Xia Z.-Y., Su J.-H., Wong W.-Y., Cheah K.-W., Tian H., Chen C. H. High performance organic light-emitting diodes based on tetra(methoxyl)-containing anthracene derivatives as a hole transport and electron-blocking layer. J. Mater. Chem.2010,20: 8382-8388
    [66]Doi H., Kinoshita M., Okumoto K., Shirota Y A novel class of emitting amorphous molecular materials with bipolar character for electroluminescence. Chem. Mater.2003, 15:1080-1089
    [67]Kondakov D. Y Voltammetric study of Bphen electron-transport layer in contact with LiF/Al cathode in organic light-emitting diodes. J. Appl. Phys.2006,99:024901-1-4
    [68]Meerheim R., Scholz S., Olthof S., Schwartz G., Reineke S., Walzer K., Leo K. Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. J. Appl. Phys.2008,104:014510-1-8
    [69]Fong H. H., Choy W. C. H., Hui K. N., Liang Y. J. Organic light-emitting diodes based on a cohost electron transporting composite. Appl. Phys. Lett.2006,88,113510-1-3
    [70]Mohammad Q. S., Manoharan S. S. High mobility electron-transport material based on 2,5-dibenzthiazolyl thiophene. J. Appl. Phys.2005,97:096101-1-3
    [71]Earmme T., Ahmed E., Jenekhe S. A. Highly efficient phosphorescent light-emitting diodes by using an electron-transport material with high electron affinity. J. Phys. Chem. C,2009,113(43):18448-18450
    [72]Tao S., Lai S. L., Yu J., Jiang Y., Zhou Y, Lee C.-S., Zhang X. Lee S.-T. Efficient hole-blocker with electron transporting property and its applications in blue organic light-emitting devices. J. Phys. Chem. C,2009,113(38):16792-16795
    [73]Justin Thomas K. R., Lin J. T., Tao Y.-T., Chuen C.-H. New carbazole-oxadiazole dyads for electroluminescent devices:influenece of acceptor substituents on luminescent and thermal properties. Chem. Mater.2004,16:5437-5444
    [74]Justin Thomas K. R., Velusamy M., Lin J. T., Tao Y.-T., Chuen C.-H. Cyanocarbazole derivatives for high-performance electroluminescent devices. Adv. Funct. Mater.2004, 14(4):387-392
    [75]Justin Thomas K. R., Lin,J. T. Tao Y.-T., Chuen C. H. Electroluminescent bipolar compounds containing quinoxaline or pyridopyrazine and triarylamine segments. J. Mater. Chem.2002,12:3516-3522
    [76]Chen C.-T., Lin J.-S., Moturu M. V. R. K., Lin Y.-W., W. Yi, Tao Y.-T., Chien C.-H. Doubly ortho-linked quinoxaline/triarylamine hybrid as a bifunctional, dipolar electroluminescent template for optoelectronic applications. Chem. Commun.2005, 3980-3982
    [77]Chan L.-H., Yeh H.-C., Chen C.-T. Blue light-emitting devices based on Mmolecular glass materials of tetraphenylsilane compounds. Adv. Mater.2001,13(21):1637-1641
    [78]Guan M., Bian Z. Q., Zhou Y. F. Li F. Y, Li Z. J., Huang C. H. High-performance blue electroluminescent devices based on 2-(4-biphenylyl)-5-(4-carbazole-9-yl)-phenyl-1,3,4-oxadiazole. Chem. Commun.2003:2708-2709
    [79]Hsu F.-M., Chien C.-H., Shu C.-F., Lai C.-H., Hsieh C.-C., Wang K.-W., Chou P.-T. A bipolar host material containing triphenylamine and diphenylphosphoryl-substituted fluorene units for highly efficient blue electrophosphorescence. Adv. Funct. Mater.2009, 19:2834-2843
    [80]Hancock J. M., Gifford A. P., Zhu Y, Lou Y, Jenekhe S. A. n-Type conjugated oligoquinoline and oligoquinoxaline with triphenlyamine endgroups:efficient ambipolar light emitters for device applications. Chem. Mater.2006,18:4924-4932
    [81]Zhu Y, Kulkarni A. P., Wu P.-T., Jenekhe S. A. New ambipolar organic semiconductors. 1. synthesis, single-crystal structures, redox properties, and photophysics of phenoxazine-based donor-accptor molecules. Chem. Mater.2008,20:4200-4211
    [82]Hsu F.-M., Chien C.-H., Shih P.-I., Shu C.-F. Phosphine-oxide-containing bipolar host material for blue electrophosphorescent devices. Chem. Mater.2009,21:1017-1022
    [83]Tao S., Li L., Yu J., Jiang Y., Zhou Y., Lee C.-S., Lee S.-T., Zhang X., Kwon O. Bipolar molecule as an excellent hole-transporter for organic-light emitting devices. Chem. Mater.2009,21:1284-1287
    [84]Takizawa S., Montes V. A., Anzenbacher J. P. Phenylbenzimidazole-based new bipolar host materials for efficient phosphorescent organic light-emitting diodes. Chem. Mater. 2009,21:2452-2458
    [85]Gao Z. Q., Luo M., Sun X. H., Tam H. L., Wong M. S., Mi B. X., Xia P. F., Cheah K. W., Chen C. H. New host containing bipolar carrier transport moiety for high-efficiency electrophosphorescence at low voltages. Adv. Mater.2009,21,688-692
    [86]Lin S.-L., Chan L.-H., Lee R.-H., Yen M.-Y., Kuo C.-T., Jeng R.-J. Highly efficient carbazole-π-dimesitylborane bipolar fluorophores for nondoped bue organic light-emitting diodes. Adv. Mater.2008,20:3947-3752
    [87]Justin Thomas K. R., Velusay M., Lin J. T., Chuen C.-H., Tao Y.-T. Chromophore-labeled quinoxaline ferivatives as efficient electroluminescent materials. Chem. Mater.2005,17:1860-1866
    [88]Chou H.-H., Cheng C.-H. A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs. Adv. Mater.2010,22:2468-2471
    [89]Tao Y, Wang Q., Yang C., Zhang Z., Zou T., Qin J. Ma D. A simple carbazole/oxadiazole hybrid molecule:an excellent bipolar host for green and red phosphorescent OLEDs. Angew. Chem. Int. Ed.2008,47:8104-8107
    [90]Kuo C.-J., Li T.-Y, Lien C.-C., Liu C.-H., Wu F.-I., Huang M.-J. Bis(phenanthroimidazolyl)biphenyl deribatives as saturated blue emitters for electroluminescent devices. J. Mater. Chem.2009,19:1865-1871
    [91]Li Z. H., Wong M. S., Fukutani H. Tao Y Synthesis and light-emitting properties of bipolar oligofluorenes containing triarylamine and 1,2,4-Triazole moieties. Org. Lett. 2006,8(19):4271-4274
    [92]Ge Z., Hayakawa T., Ando S., Ueda M., Akiike T., Miyamoto H., Kajita T., Kakimoto M. Spin-coated highly efficient phosphorescent organic light-emitting diodes based on bipolar triphenylamine-benzimidazole deribatives. Adv. Funct. Mater.2008,18:584-590
    [93]Ge Z., Hayakawa T., Ando S., Ueda M., Akiike T., Miyamoto H., Kajita T., Kakimoto M. Solution-processible bipolar triphenylamine-benzimidazole deribatives for highly efficient single-layer organic light-emitting diodes. Chem. Mater.2008,20:2532-2537
    [94]Kido J., Hongawa K., Okuyama K., Nagai K. White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes. Appl. Phys. Lett.1994,64:815-817
    [95]Tang C. W., Van Slyke S. A., Chen C. H. Electroluminescence of doped organic thin films. J. Appl. Phys.1989,65:3610-3616
    [96]Adms T. M., Ramdas S. The crystal structure of solution-grown 9,10-diphenylanthracene. A combined computional and X-ray study. Acta. Crystallogr. B. 1979,35:679-683
    [97]Wang P., Xie Z., Hong Z., Tang J., Wong O., Lee C.-S., Wong N., Lee S. Synthesis, photoluminescence and electroluminescence of new 1H-pyrazolo[3,4-b]quinoxaline derivatives. J. Mater. Chem.2003,13:1894-1899
    [98]Justin Thomas K. R., Lin J. T., Tao Y.-T., Chuen C.-H. Green and yellow electroluminescent dipolar carbazole derivatives:features and benefits of electron-withdrawing segments. Chem. Mater.2002,14:3852-3859
    [99]Xia Z.-Y., Su J.-H., Fan H.-H., Cheah K.-W., Tian H., Chen C. H. Multifunctional diarylamine-substituted benzo[k]fluoranthene derivatives as green electroluminescent emitters and nonlinear optical materials. J. Phys. Chem. C.2010,114:11602-11606
    [100]Kim S., Zheng Q., He G. S., Bharali D. J., Pudavar H. E., Baev A., Prasad P. N. Aggegation-enhanced fluorescenece and..two-photon absorption in nanoaggregates of a 9,10-bis[4'-(4"-aminostyryl)styryl]anthracene derivative. Adv. Funct. Mater.2006,16: 2317-2323
    [101]Tokito S., Tanaka H., Noda K., Okada A., Taga Y. Thermal stability in oligomeric triphenylamine/tris(8-quinolinolato)aluminum electroluminescent devices. Appl. Phys. Lett.1997,70:1929-1931
    [102]Joswick M. D., Cambell I. H., Barashkov N. N., Ferraris J. P. Systematic investigation of the effects of organic film structure on light emitting diode performance. J. Appl. Phys.1996,80:2883-2890
    [103]Han E.-M., Do L.-M., Yamamoto N., Fujihira M. Crystallization of organic thin films for electroluminescent devices. Thin Solid Films.1996,273:202-208
    [104]Shen J. Y., Lee C. Y, Huang T.-H., Lin J. T., Tao Y.-T., Chien C.-H., Tsai C. High Tg blue emitting materials for electroluminescent devices. J. Mater. Chem.2005,15: 2455-2463
    [105]Brikmann M., Gadret G., Muccini M., Taliani C., Masciocchi N., Sironi A. Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(Ⅲ). J. Am. Chem. Soc.2000,122:5147-5157
    [106]Jiang Z., Yao H., Zhang Z., Yang C., Liu Z., Tao Y, Qin J., Ma D. Novel oligo-9,9'-spirobifluorenes through ortho-linkage as full hydrocarbon host for highly efficient phosphorescent OLEDs. Org. Lett.2009,12:2607-2610
    [107]Su Y. Z., Lin J. T., Tao Y.-T., Ko C.-W, Lin S.-C., Sun S.-S. Amorphous 2,3-substituted thiophenes:potential electroluminescent materials. Chem. Mater.2002,14:1884-1890
    [108]Koene B. E., Loy D. E., Thompson M. E. Asymmetric triaryldiamines as thermally stable hole transporting layers for organic light-emitting devices. Chem. Mater.1998,10: 2235-2250
    [109]Yeh H.-C., Lee R.-H., Chan L.-H., Lin T.-Y. J., Chen C.-T., Balasubramaniam E., Tao Y.-T. Synthesis, properties, and applications of tertraphenylmethane-based molecular materials for light-emitting devices. Chem Mater 2001; 13:2788-2796
    [110]Gomez-Lor B., de frutos, O., Ceballos P. A., Granier T., Echavarren A. M. Synthesis of new C3h and C3v truxene derivatives. Eur. J. Org. Chem.2001,2107-2114
    [111]Cao X.-Y., Liu X.-H., Zhang Y, Jiang Y, Cao Y, Cui Y-X., Pei, J. Giant extended π-conjugated dendrimers containing the 10,15-dihydro-5H-diindeno[1,2-a;1',2'-c] fluorene chromophore:synthesis, NMR behavior, optical properties, and electroluminescence. J. Org. Chem.2004,69:6050-6058
    [112]Luo J., Zhou Y, Niu Z.-Q., Zhou Q.-F., Ma Y, Pei J. Three-dimensional architectures for highly stable pure blue emission. J. Am. Chem. Soc.2007,129:11314-11315
    [113]Yuan S.-C., Sun Q.J., Lei T., Du B., Li Y.-F.,Pei J. Star-shaped oligo(fluorene ethynylene)-functionalized truxene derivatives:synthesis, characterization, and their size effects. Tetrahedron.2009,65:4165-4172.
    [114]Yang Z., Xu B., He J., Xue L., Guo Q., Xia H., Tian W. Solution-processable and thermal-stable triphenyl-based dendrimers with truxene cores as hole-transporting materials for organic light-emitting devices. Org. Electron.2009,10:954-959
    [115]Lei T., Luo J., Wang L., Ma Y, Wang. J., Cao. Y, Pei J. Highly stable blue light-emitting materials with a three-dimensional architecture:improvement of charge injection and electroluminescence performance. New J. Chem.2010,3:699-707
    [116]Jiang Y, Wang L., Zhou Y, Cui Y-X., Wang J., Cao Y, Pei J.π-Conjugated dendrimers as stable pure-blue emissive materials:photophysical, electrochemical, and electroluminescent properties. Chem. Asian J.2009,4:548-553
    [117]Perova T. S., Vij J. K. The influence of surface structure on the discotic liquid crystalline alignment. An infrared spectroscopy study. Adv. Mater.1995,7:919-922
    [118]Sandstroem D., Nygren M., Zimmermann H., Maliniak, A. Deuterium NMR investigation of a discotic mesogen based on hexasubstituted truxene. J. Phy. Chem. 1995,99:6661-6669
    [119]Lai W.-Y., Xia R., He Q., Levermore P. A., Huang W., Bradley D. D. C. Enhanced solid-state luminescence and low-ehresholed lasing from starburst macromolecular materials. Adv. Mater.2009,21:355-360
    [120]Zhou X., Feng J.-K., Ren A.-M. Theoretical investigation of the one-photon and two-photon absorption properties for star-shaped polycyclic based on oligothiophenes-functionalized truxene. Synth. Met.2005,155:615-617
    [121]Yuan M.-S., Liu Z.-Q., Fang, Q. Donor-and-acceptor substituted truxenes as multifunctional fluorescent probes. J. Org. Chem.2007,72:7915-7922
    [122]Ning Z., Zhang Q., Pei H., Luan J., Lu C., Cui Y, Tian H. Photovoltage improvement for dye-sensitized solar cells via cone-shaped structural design. J. Phys. Chem. C.2009, 113:10307-10313
    [123]Kanibolotsky A. L., Berridge R., Skabara P. J., Perepichka L. F., Bradley D. D. C., Koeberg M. Synthesis and properties of monodisperse oligofluorene-functionalized truxenes:highly fluorescent star-shaped architectures. J. Am. Chem. Soc.2004,126: 13695-13702
    [124]Wang J.-L., Yan J., Tang Z.-M., Xiao Q., Ma Y, Pei J. Gradient Shape-persistent π-conjugated dendrimers for light-harvesting:synthesis, photophysical properties, and energy funneling. J. Am. Chem. Soc.2008,130:9952-9962
    [125]Yuan M.-S., Fang Q., Liu Z.-Q., Guo J.-P., Chen H.-Y, Yu W.-T., Xue G, Liu D.-S. Acceptor or donor (diaryl B or N) substituted octupolar truxene:synthesis, structure, and chaige-transfer-enhanced fluorescence. J. Org. Chem.2006,71:7858-7861
    [126]Tomova R., Petrova P., Stoycheva-Topalova R. Role of bathocuproine as hole-blocking and electron-transporting layer in organic light emitting devices. Phys. Status Solidi C. 2010,7:992-995
    [127]Huang L. S., Chen C. H. Recent progress of molecular organic electroluminescent materials and devices. Mat. Sci. and Eng. R.2002,39:143-222
    [128]Meerheim R., Scholz S., Olthof S., Schwartz G., Reineke S., Walzer K., Leo K. Influence of charge balance and excition distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. J. Appl. Phys.2008,104:014510-1-8
    [129]Mohammad Q., Manoharan S. S. High mobility electron-transport material based on 2,5-dibenzthiazolyl thiophene. J. Appl. Phys.2005,97:096101-1-3
    [130]Nguyen T. P., Jonnard P., Vernard F., Staub P. F., Thiion J., Lapkowski M., Tran V. H. Characterization of the poly(para-phenene vinylene)-chromium interface by attenuated total reflection infrared and X-ray emission spectroscopies. Synth. Met.1997,75: 175-179
    [131]Matsushima T., Adachi C. Extremely low voltage organic light-emitting diodes with p-doped alpha-sexithiophene hole transport and n-doped phenyldipyrenylphosphine oxide electron transport layers. Appl. Phys. Lett.2006,89:253506-1-3
    [132]Tse S. C., Fong H. H., So S. K. Electron transit time and reliable mobility measurements from thick film hydroxyquinoline-based organic light-emitting diode. J. Appl. Phys. 2002,91:2033-2036
    [133]Aziz H., Popovic Z. D., Hu N. X., Hor A. M. Xu G. Degradation Mechanism of small molecule-based organic light-emitting devices. Science.1999,283:1900-1902
    [134]Popovic Z. D., Aziz H., Hu N. X., Ioannidis A., dos Anjos P. N. M. Simultaneous electroluminescence and photoluminescence aging studies of tris(8-hydroxyquinoline)-aluminum-based organic light-emitting devices. J. Appl. Phys.2001,89:4673-4635
    [135]Ho M.-H., Tsieh M.-T., Lin K.-H., Chen T.-M., Chen J.-F., Chen C. H. Study of efficient and stable organic light-emitting diodes with 2-methyl-9,10-di(2-naphthyl)- anthracene as hole-transport material by admittance spectroscopy. Appl. Phys. Lett.2009,94: 023306-1-3
    [136]Wu J., Pisula W., Mullen K. Graphenes as potential material for electronics. Chem. Rew. 2007,107:718-747
    [137]Justin Thomas K. R., Velusamy M., Lin J. T., Chuen C. H., Tao Y.-T. Hexaphenylphenylene dendronised pyrenylamines for efficient organic light-emitting diodes. J. Mater. Chem.2005,15:4453-4459
    [138]Huang C., Zhen C.-G., Su S. P., Loh K. P., Chen Z.-K. Solution-processable polyenylphenyl dendron bearing molecules for highly efficient blue light-emitting diodes. Org. Lett.2005,7(3):391-394
    [139]Chen C.-T., Chiang C.-L., Lin Y.-C., Chan L.-H., Huang C.-H., Tsai Z.-W., Chen C.-T. Ortho-substituent effect on fluorescence and electroluminescence of arylamino-substituted coumarin and stilbene. Org. Lett.2003,5(8):1261-1264
    [140]Lambert C., Noll G. One- and two-dimensional electron transfer processes in triarylamines with multiple redox centers. Angew. Chem. Int. Ed.1998,37(15): 2107-2110
    [141]Wu I-Y, Lin J. T., Tao Y.-T., Balasubramaniam E. Starburst molecules based on hexathienlbenzene units:potential hole-transport materials. Adv. Mater.2000,12(9): 668-669
    [142]Tong Q.-X., Lai S.-L., Chan M.-Y., Lai K.-H., Tang J.-X., Kwong H.-L., Lee C.-S., Lee S.-T. High Tg triphenylamine-based starburst hole-transporting material for organic light-emitting devices. Chem. Mater.2007,19:5851-5855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700