微生物完整细胞在有机介质中进行还原生物转化的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机相生物转化是当前生物技术中一个具有理论研究意义和应用价值的领域,目前该领域的研究大多集中在利用分离的酶进行生物催化,利用微生物完整细胞进行的研究比较少。本论文以Baker's酵母细胞作为生物催化剂,采用香叶醇还原转化为香茅醇的反应为模型反应,探讨了微生物在非水介质中催化还原反应的影响因素,得出如下结论:
     1.根据该模型反应中底物和产物都是微量的(μmol/ml)这一特点,建立了以气相色谱(GC)、火焰离子检测器(FID)作为手段的检测方法。采用标准图谱比较和添加产物标准品对照的方法进行定性分析;确立了苯乙酮为内标物和用内标法进行定量分析的方法。
     2.比较了八种酵母的生物转化能力,发现在有机合成生物转化中应用最广泛的生物催化剂Baker's酵母最适合催化该模型反应;
     3.从生物相容性和有利于转化的角度对两种溶剂,正己烷和乙酸丁酯进行了比较,确定了正己烷—忆二醇为该模型反应的溶剂体系。
     4.借助SAS软件,利用响应面分析实验设计(包括部分因子重复实验设计、最陡爬坡实验、中心组合实验设计)对生物催化剂的活化培养基进行了优化,详细讨论了培养基成分及各组分含量对转化的影响。其培养基优化的结果表明:葡萄糖、硫酸镁、氯化钠三个因子对转化有显著的影响,并得到以转化率为响应的拟合方程:
     根据模型寻优得出了最佳培养基配方,即:酵母膏8g/L,蛋白胨15g/L,葡萄糖26g/L,氯化钠2.8g/L,硫酸镁0.3g/L,磷酸二氢钾0.3g/L。
     5.探讨了不同活化时间对模型反应的影响,结果表明,将生物催化剂培养30小时,进行有机相中转化可以得到最高的转化率。
     6.在后处理阶段,比较了几种固定化方式对模型反应的影响,确立了以海藻酸钠作为包埋剂、Ca~(2+)为交联剂进行生物催化剂固定化的方法。进一步的研究表明,海藻酸钠为3%(质量浓度)、氯化钙为0.6mol/L的情况下最有利于模型反应的进行。
     7.pH记忆、水活度及通透性处理的实验结果表明,pH记忆对转化有明显的影响,水活度对模型反应的影响不大;作为完整细胞生物催化,细胞的通透性可能是传质阻力的重要组成部分,利用不同浓度的乙醇和超声波对细胞进行处理,结果表明,在有机相完整细胞生物催化中,通透性处理对转化产生的是负面影响。
     8.对生物催化剂用量、底物浓度以及反应进程三个主要的动力学因素进行了探讨,结果表明三个因素都有不同程度的影响,实验结果表明,在10ml溶剂中,生物
    
     浙江大学硕上论文
     催化剂用量为 15g(固定化方式人底物浓度为 90…、转化时间为 32小时的条件下,
     最有利于模型反应的转化,最终使转化从初期的产物浓度2.29apOUIlll、转化率5.92%
     (10m反应体系中,香叶醇7()p)提高到产物浓度7.77删Ufnl、转化率15石2%(10m
     反应体系中,香叶醇go…人
Biotransformation in organic solvent is an attractived field in nowadays. Compared with isolated enzyme whole cell is not used broadly as biocatalyst. In this research the cells of Baker's yeast is adopted to mediated a model reaction in organic solvent, in which geraniol is converted to citronellol reductively. Several factors which maybe have effect on the reaction are discussed with transformation rate as target.
    In this model reaction the concentration of product and substrate in solvent system is at a level of umol/ml. as the same time Gas Chromatogram (GC) permits rapid analysis of microliter quantities of sample with high resolution. According to these the quantitative analysis for product citronellol is carried out by GC with FID (fire iron detector) as detector using hypnone as an internal standard.
    The result of using eight kinds of different yeast strain as biocatalyst reveals that baker's yeast is the best biocatalyst in this transformation. As to the solvent, hexane and butvul acetate is discussed and former is more suitable for biotransformation. Among
    seven kinds of energy source: menthoK alcohoK glycok glyceroU 1-hexanoK butyl alcohoL octyl alcohol, glycol is selected as energy source, so hexane-glycol is used as reaction system.
    In the preparation stage of experiment the influence of yeast activity condition on transformation rate is observed and composition of culture media is discussed in detail. Using SAS software with Response Surface Methode(RSM)(including Fraction Factor design ^ the steepest ascent design and Central Composite Design) design the analysis result indicates that there component: Glucose N Magnesium vitrioK Sodium chloride in media have remarkable effect on transformation, model equation with transformation rate as responding value is gotten:
    Tr=l.404500A1-0.219500A4+0.818000A5-0.789333Ai2+0.022000AiA4-0. 63900 OAiAs-0. 575333x42+0.125000x4x5-0. 552333x52
    The most optimized media is decided, that is Glucose 26g/L, MgSOa 0.3g/L, NaCl 2.8g/L, yeast extraction 8g/L,peptide 15g/L, KJHbPO4 0.3g/L.Study of correlation between culturing time and transformation rate reflects that 30 hours is needed.
    During down processing biocatalyst several immobilization method are discussed and the result reveals that the method with Alginate Sodium as entrapment and CaCh as cross-linking reagent is best for the conversion, and the concentrate of those are 3% and 0.6mol/L. Study of "pH memory" and Activity water(Aw) in processing of immobilization indicates that former factor has much effect on transformation and the latter just has little effect. Permeabilization treating of Baker's cell with alcohol and ultrasonic leads to lower transformation rate, which illustrates that permeabilization procedure has negative role on biotransformation with whole cell as biocatalyst in organic solvent.
    In simple dynamics research amount of biocatalysu concentration of substrate and
    
    
    reaction course are considered and all of them have remarkable effect on transformation. At last transformation rate from initiate 5.92% rise to 15.62% and concentration of product from 2.29nmol/ml to 7.77mol/ml.
引文
1. Kieslich Malcolm. D. Lilly. Advances in Biotransformation Process. Chem. Engin. Sci. 1994, Vol 40, No.2:157-159.
    2. Wendy A.Loughlin. Biotransformation in Organic Synthesis. Bioresouce Technology. 2000, 74: 49-62.
    3. Kieslich, K. in "Microbial Enzymes and Biconversion". Academic Press, New York, 1980.
    4. Goodhue, C. T., J. P. Rosazza, and G. P. Peruzzotti. Manual of Industrial Microbiology and Biotechnology. American Society for Microbiology, Washinton, D C,1986.
    5. Crump S.Rozzell J D. Biocatalytic Production of Amino Acids by Transamination. in Biocatalutic production of amino acids and derivatives, Manser Publishers Munich,1992:43-58,
    6. J.David Rozzell. Commercial Scale Biocatalysis:Myths and Realities. Bioorganic & Medcinal Chemistry, 1999, 7:2253-2261.
    7. Ogawa J,Shimazu S. Microbial Enzymes:New Industrial Applications from Traditional Screening Methods. Trends Biotechnology, 1999, 17:13-21.
    8. Adams WWW, Perler FB, Kelly RM.Extremozymes:Expanding the Limits of Biocatalysis. Biotechnology 1995,13:662-668,
    9. Robert M Kelly and Herbert Waldrmann. Biocatalysis and biotransformation Editional overview. Current Opinion in Chemical Biology, 1999,3:9-10.
    10. O. P. Ward and C. S. Young. Reductive Biotransformations of Organic Compounds by Cells or Enzymes of Yeast. Enzyme Microbiology Technology, 1990,Vol 12, July:482-492,
    11. E. Timothy Dives and Gillian M. Stephens. Effect of Growth Substrate and Electron Donor on Hydrogenation of Carbon-carbon Double Bonds by Acetobacterium woodii. Enzyme Microb. Technol. ,1998, Vol23, July/August 1:129-132.
    12. Boyd DR, Sharma ND, Bowers NI,et al.Stereoselective Dioxygenase-catalyed Benzulic Hydroxulation of Prochiral Methylene Groups in the Chemoenzymatic Synthesis of Enantiopure Vicinal Aminoindanols.Tetrahedron Asymmetry, 1996,7:1559-1562,
    13. Err-Cheng Chan and Jimmy Kuo. Biotransformation of Dicarboxylic Acid by Immobilized Cryptococus cells.Enzyme and Microbial Technology 1997,20:585-589.
    14. 张铁玲,胶粘红酵母细胞对7-ACA的生物转化,国外医药抗生素分册,1997,11月18卷6 期:420-433。
    15. 刘志煜,李恒光,陈淑华,面包酵母对1,4,4,8-四氢-1,4-亚甲基萘-5,8-二酮的催化异构 化。有机化学,1995,15:619-621。
    16. Hiroki Hamada, Hideaki Yasumune,Yoshihiro Fuchikami, et al. Biotransformation of Geraniol, Nerol and (+)-and (-)-Carvone By Suspension Cultured Cells of Cathranthus roseus. Phytochemistry, 1997, Vol44, No4:615-621.
    17. Herbert L Holland. Microbial transformations. Current Opinion in Chemical Biology, 1998, 2: 77-84
    18. Sakai,T,Miki,Y,Ema,T,et al. Lispase-catalysed Kinetic Resolution of 2-acyloxy-2-(pentafluorophenyl)-acetonitrile. TetrahedronLett,1998a,39:7881-7884.
    19. Taber, D. F., Kanai,K.. Synthesis of the Four Enantiomerically Pure Isomers of 15-F21-isaprostane. Tetrahedron ,54:11767-11782.
    
    
    20. Meth-Cohn O, Wang M-X. An In-depth Study of the Biotransformation of Nitriles into Amides and/or Acids Using Rhodococcus rhodochrous AJ270. J Chem Soc Perkin Trans, 1997,1: 1099-1104。
    21. Fallon RD, Stieglitz B, Turner. A Pseudomonas putida Capable of Stereoselective Hydrolysis of Nitriles. Appl Microbiol Biotechnol, 1997, 47:156-161。
    22. Kroutil W, Osprian I,Mischitz M,et al. Chemoenzumatic Synthesis of (S)-(-)-Frontalin Using Bacterial Epoxide Hydrolases,Synthesis, 1997: 156-158。
    23. Grogan G,Rippe C,Willetts A. Biohydrolysis of Substituted Styrene Oxides by Bearveria Densa CMC 3240.J Mol Catal B,1997,3: 253-257。
    24. Ema, T.,Sugiyama, Y.,Fukumoto,M.,et al,Highly enantioselective reduction of carbonyl compounds using a reductase purified from baker's yeast ,J.Org. Chem 1998,63:4996-5000
    25. Blackie JA,Turner NJ,Wells AS. Concering the Baker's Yeast(saccharomyces cerevisiae)Mediated Reduction of Nitroarenes and Other N-O Containing Functional Groups. Tetrahedron Lett,1997,38: 3043-3046。
    26. Peter H.Buist and Gerald P. Dimnik. Use of Sulfup as a Chemical Connector. Tetrahedron Letters, 1986,Vol 27,No. 13: 1457-1460。
    27. Paola Gramatica, Giuseppe Giardina,Giovanna Speranza,et al. Baker's Yeast Hydrogenation of Carbonyl Activated Double Bonds, Chemistry Letters, 1985: 1395-1398。
    28. Bianchini,E.,Chinaglia, N.,Dean,M.,et al. Regiospecific Oxidoreductions Catalyzed by a New Pseudomonas paucimobilis Hydroxysteroid Dehydrogenase. Tetrahedron, 1999,55: 1391-1398。
    29.陈绍怡,杨秀,秦玉静,手性药物合成中的生物转化,生物工程进展,2000,Vol 20,No.4:60-63
    30.孙万儒,手性化合物与生物催化剂,精细与专用化学品,1999,5:6-8
    31.王善普,手性药物的生物合成,精细与专用化学品,1999,第5期,9-11
    32. Grifantini R, Galle G, Pratesi C, et al. Efficient Coversion of 5-Substituted Hydantoins to D-amino Acids Using Recombinant Escherichia coli Strains.Microbiology, 1998,114:947-954。
    33.杨柳青,何南,张玉彬,手性药物的生物转化,中国新药杂志,2000年,9:12,817-820。
    34. Ogawa J, Shimizu S. Micro, enzyme:New Industrial Applications from Traditional Screening Methods. J Tibtech, 1999,17(1):13-20。
    35. Svirkin YY, Xu J, Gross RA, et al. Enzyme-catalyzed Stereoseletive Ring-opening Polumerization of α-Methyl-β-Propiolactone. Micromolecules, 1996,29:4591-4597。
    36. Sheldon W May. New Applications for Biocatalysts. Current Opinion in Biotechnology, 1997,8:181-186。
    37.林青山,刘超,傅柳松,固定化技术在废水处理中的应用,上海环境科学,2002,10月,19:469-472。
    38.王洪祚,刘世勇,酶和细胞的固定化,化学通报,1997,2期,22-27
    39.宋向阳,余世袁,生物细胞固定化技术及研究进展,科技进展,2000,11期:37-39。
    40. Capiralla Hemachander, Nirajan Bose, Rengarajulu, Puvanakrishnan. Whole Cell Immobilization of Ralstonia pickettii for tipase Production. Process Biochemistry, 2001,36:629-633。
    41. Francesco Maria Veronese, Cristina Mammucari, Franco Schiavon, et al. Pegylated Emzyme Entrapped in Poly(vinyl alcohol)Hydrogel for Biocatalytic Application, Ⅱ Farmaco, 2001,56:541-547。
    42.姜忠义,陈洪钫,生物催化剂的膜固定化,现代化工,1995,5期:11-14.
    
    
    43. Uwe T Bornscheuer and Martina Poh1. Improved Biocatalysts by Directed Evolution and Rational Protein Design. Current Opinion in Chemical Biology, 2001, 5: 137-143.
    44. Collins AM.Maslin C, Davies RJ.Scale-up of a Chiral Resolution Using Cross-Linked Enzyme Crystals. Org Proc Res Dev 1998, 2:400-406.
    45. B. Al-Duri, R. Goddard, J. Bosley. Characterisation of a Novel Support for Biocatalysis in Supercritical Carbon Dioxide. Journal of Molecular Catalysis B:Enzymatic 2001 11:825-834.
    46. Rajni Kaul, Patrick Aldercreutz, Bo Mattiasson. Coimmbilization of Substrate and Biocatalyst:a Method for Bioconversion of Pooly Soluble Substrate in Water Milieu. Biotechnology Bioengineering, 1986:1432-1437.
    47. R. Leon, PFernandes, H. M. Pinheiro, and J. M. S. Cabral. Whole-cell Biocatalysis in Organic Media. Enzyme and Mic-obial Technology, 1998, 23:483-500.
    48. Davison BH, Barton JW, Petersen GR. Nomenclature and methodology for classification If nontraditional biocatalysis. Biotechnology Progress, 1997, 13:512-518.
    49. Gerard A. Sellek, Julian B. Chaudhuri, Biocatalysis in Organic Media Using Emzymes from Extremophiles, Enzyme and Microbial Technology, 1999, 25:471-482.
    50. J. M. S. Cabral, M. R, Aeres-Barros, H, Pinheiro, et al. Biotransformation in Organic Media by Enzymes and Whole Cells, Journal of biotechnology, 1997, 59:133-143.
    51 . Guillermo R.Castro. Enzymatic Activies of Proteases Dissolved in Organic Solvents. Enzyme and Microbial Technology, 1999, 25:689-694.
    52. 宗敏华,刘耘,尹顺义等,反应介质对脂肪酶稳定性的影响,生物化学杂志,1995, Vol 11. No.6. 721-724。
    53. Anne D. Blackwood, Christopher Bucke. Addition of Polar Organic Solvents Can Improve the Product Selectivey of Cyclodextrin Flycosyltransferase Solvent Effects on CGTase.Enzyme and Microbial Technology 2000,27:704-708.
    54. 何汉平,杨立荣,朱自强,有机相酶催化工程中溶剂工程的进展,生物工程进展,1998, Vol18. Nol.10-16。
    55. Zaks A,Klibanov A. Mo Enzymatic Catalysis in Organic Media at 100℃. Science, 1984, Vol 18:1249-1551,
    56. AliraInoue, Koki Horikoshi. A Pseudomonas Thives in High Concentrations of Toluene. Nature, 1989, Vol 338:264-266.
    57. Hermann J. Heipieper, Frans J. Weberm, Jan Sikkema, et al. Mechanisms of Resistance of Whole Cells to Toxic Organic Solvent, Trands in Biotechnology, 1994, Vol 12:409-415.
    58. Jan A. M. de Bont: 1998, Solvent-Tolerance Bacteria in Biocatalysis. Trands in Biotechnology, Vol 16:493-49.
    59. Sikkema. J, deBonr. J. M, and Poolman. B. Interaction of Cyclic Hydtocarbons With Biological Membrane. Juornal of Biology and Chemistry, 1994, Vol 269:8022-8028.
    60. Isken-Sonja, Derks-Antoine, Wolffs-Petra-F-G, de-Bont-Jan-A-W. Effct of Organic Solvents on the Yeild of Solvent-Tolerance Pseudomonas putida S12. Applied and Enviromental Microbilogy, 1999, Vol 65:2631-2635.
    61. Chen. Q, Janssen. D. B, and Witholt. B. Growth on Octane Alters the Membrane Lipid Fatty Acids of pseudomonas oleovoians due to the Induction of alkB and Synthesis of Octanol. Journal of Bacterial, 1995, Vol 177. 6894-6901.
    62. Heipieper. H. J, Diefenbach. R, and Keweloh. H. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas pudida P8 from
    
    substrate toxicity, Applied Environment Microbiology, 1992, Vol 58:1847-1852 .
    63. Weber. F. J, Isken. S. and de Bont. J. A. M. Cis/trans isomerization of fatty acids as a defense mechanism of Pseudomonas putida strains to toxic concentrations of toluene Microbiology, 1994, Vol 140, 2013-2017.
    64. Juan L.Ramos, Estrella Duques, Jose-Juan Rodriguez-Herva, Patricia Codoy, et al. , Mechanisms for solvent tolerance in bacteria. The Journal Of Biological Chemistry, 1997, Vol 272, No. 7:3887-3890.
    65. Isken. S, and de Bont. J. A. M; 1996, Active efflux of toluene in a solvent-resistant bacterium , Journal of Bacteriology, Vol 178: 6056-6058.
    66. 杜伟,宗敏华,凌均建等,反应介质对酶选择性的影响,工业微生物,2000,30,No.2:58-60。
    67. Giacomo Carrea,Gianluca Ottolina and Sergio Riva,Role of solvents in the control of enzyme selectivity in organic media. Tibtech,1995 February 13:63-70.
    68 . Brink,L.E.S. and Tramper,J. Optimization of organic solvent in multiphase biocatalysis. Biotechnology Bioengineering, 1985,27:1258-1269.
    69. Colja Lanne,Sjef Boeren,Kees Vos,et al. Rules for Optimization of Biocatalysis in Organic Solvents. Biotechnology and Bioengineering, 1987,Vol 30,July:81-87.
    70. Bruce L.J,and Daugulis A.J. Solvent selection strategies for extractive biocatalysis. Biotechnology Progress.1991,7:116-124.
    71 . Wang P.Sergeeva M.V,Dordick J.S. Biocatalytic plastics as active and stable material for biotransformation. Nat Biotechnol, 1997,15:789-793.
    72. Yan Liu, Hideki Hama, et al. Production of S-Lactorylglutathione by high activity whole cell biocatalysts prepared by permeabilization of Recombinant Saccharomyces cerevisiae with alcohols. Biotech Bioeng; July 1999, Vol 64, No. 1:54-60.
    73. Sergey A.Piletsky.Susan Alcock and Anthony P.F.Turner. Molecular imprintingrat the edge of the third millemmium. Trends in Biotechnology,2001,Vo119,No.1: 9-12. ,
    74. Peter A.G. Cormack,Klaus Mosbach. Molecular imprinting:recent developments and the road ahead. Reactive and Functional Polymers, 1999,41:115-124.
    75. Kazutoshi Ushio,Kiyoko Inouye,Kaoru Nakamura,et al, Stereochemical control in microbial reduction 4. Effect of cultivation conditions on the reduction of β-keto esters by methylotrophic yeasts. Tetrahedron Letters, 1986,Vo127,No.23:2657-2660.
    76. 白逢彦,酿酒酵母属的分类学研究进展,微生物学通报,2000,27(2) :139-142。
    77 . Martinez de Maranon I,Gervais P,Molin P. Determination of cells water membrane permeability:Unexpectedly high osmotic permeability of Saccharomyces Cerevisiae. Biotechnology Bioengineering, 1997,56:62-70.
    78. Nakamura K,Kawai Y,Ohno A. A novel method to synthesis (L)-p-hydroxyl esters by the reduction with baker's yeast. Tetrahedron Lett, 1990,31:267-270.
    79. Stefano Servi. Baker's yeast as a reagent in Organic Synthesis. Synthesis, 1990,January: 1-25 .
    80. P.Nikolova, O.P.Ward. Production of L-Phenylacetyl Carbinol by Biotransformation: Product and By-Product Formation and Activities of the Key Enzymes in Wild-Type and ADH Isoenzyme Mutants of 5. Cerevisiae. Biotechnology and Bioengineering, 1991,Vol 38:493-498.
    81. Ewa Zymanczyk-Duda,Pawel Kafarski.Barbara Lejczak. Reduction biotransformation of diethyl β-, γ-and δ-oxoalkylphosphonates by cells of Baker' s yeast, Enzyme and Microbial Technology, 2000,26:265-270.
    82. 林耀红、谈锋 林产化学与工业,1999,19(1) :47-54。
    83. Maki-Arvela Paivi, Tiainen Lasse-Pekka. Catalysis Today, 1999 Vol. 18 January Issue 1-4: 57-63 .
    
    
    84. C.S. Youn and O.P. Ward. Studies of the reductive biotransformation of selected carbonyl compounds by whole cells and extracts of Baker's yeast saccharomyces cerevisiae. Biotechnology and Bioengineering, Vol.38, 1991: 1280-1284。
    85. Paola Gramatica and B Maria Ranzi. Stereospecific reduction of geraniol to R-(+)-citronellol by Saccharomyces cerevisiae,Exprimentia, 1982, Vol. 38:775-776。
    86.李浩春,卢佩章,气相色谱法,分析化学丛书,第三卷,第二册,科学出版社,1993年
    87.北京大学化学系仪器分析教学组,仪器分析教程,北京大学出版社,1997年
    88.范秀容,李广武,沈萍,微生物学实验,高等教育出版社,1993年
    89. Griffin D.R, Yang F, Gainer J.L.. Asmmetric reduction of acetophenone with calcium-alginate entrapped baker's yeast in organic solvents. Biotechnol.Prog, 1998,14: 588-593。
    90.李孱,白景华,蔡昭铃等,细菌素发酵培养基的优化及动力学初步分析,生物工程学报,2001,Vol 17,No.2:187-192。
    91. Chwen-Jen Shieh and Yu-Fu Lai. Application of response Surface Methodology to the Study of Methyl Glucoside Polyester Synthesis Parameters in a Solvent-Free System. J. Agric. Food. Chem.,2000,48:1124-1128。
    92.汪仁官,陈荣昭,实验设计与分析,中国统计出版社,1998年。
    93. I.M. Lima, H.S. Guraya and E.T. Champagne. Improved Peanut Flour for a reduced-fat peanut butter product, Journal of food science, 2000, No. 5, Vol. 65:854-861。
    94.赠胤新,产菊糖酶固定化细胞包埋剂的筛选,食品科学,1998,19:20-22。
    95.田小光,彭万霖,于得水等,海藻酸铝固定化酵母生产高浓度酒精的研究,微生物学通报,1995,22:282-284。
    96.微生物学教程,周德庆,高等教育出版社,1995年
    97.杨启瑞等,固定化啤酒酵母强化技术的研究,工业微生物 1993 23(1):24-26。
    98.诸葛健,王正祥编著,工业微生物实验技术手册,中国轻工业出版社,1994年6月。
    99. Akihiko Kondo, Yan Liu, Motoyuki Furuta, et al. Preparation of high activity whole cell biocatalyst by permeabilization of recombinant flocculent yeast with alcohol. Enzyme and Microbial Technology, 2000,27:806-811。
    100.朱彤波,陈军,张益棻,提高三角酵母细胞DAO表观活力的透性化研究,生物工程学报,2001,17:73-77。
    101. Yuli L Khmelnitsky and Joseph Rich.Biocatalysis in nonaqueous solvents. Current Opinion in Chemical Biology, 1999,3:47-53。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700