耐有机溶剂脂肪酶的筛选、重组表达及其催化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酶(lipase,EC3.1.1.3)是普遍存在于自然界中的酶,它被广泛地运用于精细化工、洗涤、医药、食品、造纸、皮革加工、纺织和饲料工业等领域。从催化特性来看,脂肪酶具有高度的区域选择性和立体异构选择性,且反应不需要辅酶、反应条件温和、副产物少。脂肪酶的另一显著特点是它能在异相系统(即油-水界面)或有机相中作用。在水相中,脂肪酶通常催化水解反应的进行,而在有机相中,它却能催化各种合成反应:如酯化、酯的醇解、酯的氨解和酯的酸解等。然而有机溶剂会使酶变性或使酶活力下降,因此寻找耐有机溶剂的脂肪酶,使其在有机溶剂或含有机溶剂的环境中具有较高的催化活性,已成为脂肪酶研究领域的一个重要方向。本论文从自然界中成功筛选到产耐有机溶剂脂肪酶的菌株,对其产酶条件进行了研究,此外提纯和表征了该酶,并克隆和共表达了该脂肪酶及其折叠酶基因,最后用固定化的重组CS-2脂肪酶催化催化合成了乙酸丁酯。
     论文内容分为五部分。
     第一部分:产耐有机溶剂脂肪酶的菌株的筛选和鉴定。通过富集培养、粗筛和复筛,得到一株产耐有机溶剂脂肪酶的菌株CS-2。其产酶活性为1.63 U/ml,它在25%(v/v)的甲苯中30℃下孵育30 min后残余酶活力达95.7%。菌株CS-2的菌落为圆形、有光泽、乳黄色。菌株形状为杆状,革兰氏阴性,不产芽孢,具夹膜,单端生鞭毛。在25℃、37℃、45℃均能生长。不产脲酶,不产H2S,能利用柠檬酸盐、D-乳糖、D-果糖、D-葡萄糖、甘露醇和甘油,但不能利用D-麦芽糖和蔗糖。能水解明胶、干酪素和吐温-80,但不能水解淀粉。菌株CS-2的16SrDNA基因序列长度为1499bp,在Genbank的序列登录号为GQ254065。根据菌株CS-2的形态特征、生理生化特征和16SrDNA序列分析,菌株CS-2命名为Pseudomonas aeruginosa CS-2。来自Pseudomonas aeruginosa CS-2的粗脂肪酶在有机溶剂中表现出一定的稳定性。
     第二部分:产酶条件的研究。Pseudomonas aeruginosa CS-2发酵24 h后,其生长达到最大,然后缓慢下降。脂肪酶的活性在18 h后快速增加,48 h时产酶活力最高。有机氮源比无机氮源对产脂肪酶更有利,其中蛋白胨和胰蛋白胨为氮源时产脂肪酶最高。阿拉伯胶、吐温-20、吐温-80、聚乙烯醇124能促进脂肪酶的产生,而CTAB和Triton X-100则起相反的作用。培养温度37℃为产脂肪酶的最佳温度,转速200r/min为产脂肪酶的最佳转速,初始pH 7.5为产脂肪酶的最佳pH。
     第三部分:建立了P. aeruginosa CS-2所产胞外脂肪酶的纯化过程,并对纯化的脂肪酶进行表征。经过超滤、有机溶剂沉淀和离子交换层析等步骤,获得了电泳纯的脂肪酶,纯化倍数达到25.5倍,总活力回收率为45.5%。SDS-PAGE和凝胶过滤法测得的该酶的分子量约为33.9 kDa和36 kDa,因此该脂肪酶为单一亚基。该脂肪酶的C端序列为KNASLWDPGRG,与NCBI蛋白质数据库中现有脂肪酶的C端序列无一致性。该酶催化的最适温度为50℃,在40-70℃范围内趋于稳定,能达到最大酶活的80%以上。CS-2脂肪酶热稳定性较高,在80℃处理30min后残余酶活力为62.7%。该酶最适作用pH值为8.0,在pH为7.0-9.0范围内趋于平稳,该酶在较宽的pH(4.0-10.0)范围内稳定性较高,孵育30min后,残留酶活力仍在80%以上,因此它属于碱性脂肪酶。Ca2+对酶有激活作用,其它测定的金属离子对酶则起抑制作用,并且激活或抑制作用强弱与金属离子浓度有关。CTAB、Tween20、Tween80和Triton X-100对CS-2脂肪酶有抑制作用,而阿拉伯胶和聚乙烯醇-124有激活作用。在不同链长的对硝基苯酚酯中,CS-2脂肪酶的最佳底物为对硝基苯酚棕榈酰酯。CS-2脂肪酶在乙腈中活性提高,在DMSO和一些非亲水有机溶剂中具有一定的稳定性。
     在第四部分:CS-2脂肪酶及其折叠酶基因的克隆和表达。CS-2脂肪酶及其折叠酶基因的序列长度为2025bp,其中CS-2脂肪酶基因不含有终止密码子。CS-2脂肪酶及其折叠酶基因在E. coli BL21(DE3)进行共表达,重组的CS-2脂肪酶在细胞中能以具有活性的可溶蛋白形式存在。据我们所知,不含有终止密码子的基因能够在细胞中以活性形式进行表达还未见报道。经亲和层析纯化后的脂肪酶活性为203.8U/mg,其中纯化倍数为10.2,得率为40.9%。亲和层析纯化后的酶在SDS-PAGE中显示两条明显的条带,分子量约为35.7kDa和38.3 kDa。CS-2脂肪酶基因的可溶性表达需要折叠酶基因共表达进行辅助。
     在第五部分:固定化的重组CS-2脂肪酶在正庚烷中催化合成乙酸丁酯。催化的最适反应条件如下:反应时间10h,水分活度0.02,反应温度为55℃,乙酸和正丁醇浓度分别为0.1mol/L和0.2mol/L,在反应8h时加入0.5g 4A分子筛作为吸水剂。在该优化条件下,底物转化率达到了98.2%,并且该固定化酶使用5次,底物转化率仅从98.2%降低到87.4%。因此该固定化酶催化合成乙酸丁酯时表现出较高的催化能力和良好的重复使用性。
Lipase (EC3.1.1.3) is ubiquitous in nature, which is used in a wide range of field such as fine chemical, detergent, pharmaceutical, food, leather processing, paper manufacture, textile, feed industry. In the term of catalytic feature, lipases have shown many advantages:high regiospecificity and stereoselectivity; no requirement of coenzyme; mild reaction condition and little by-product. Another important property of lipases is that they play a catalytic role in heterogeneous system or organic phase. Usually, numerous lipases catalyze the hydrolysis of esters to the corresponding acids and alcohols in water, while in organic phase esterification, transesterification, aminolysis, acidlysis and alcoholysis can be catalyzed by lipases. However, organic solvents often give rise to denature of lipase and decreased activity. Therefore, screening of organic solvent-tolerant lipases with high activity in the presence of organic solvents has become a focus of researches on lipase. In the present paper, a novel strain producing an organic solvent-tolerant lipase was successfully screened, and the fermentation condition was optimized. Furthermore, the lipase was purified and characterized. The lipase and it cognate foldase genes were cloned and co-expressed. Finally, the use of the immobilized recombinant lipase for the synthesis of butyl acetate was attempted.
     The paper was divided into five parts.
     The screening and identification of a strain producing an organic solvent-tolerant lipase were included in the first part. A novel strain producing an organic solvent-tolerant lipase was obtained after enrichment cultivation, initial screening and the second screening. The activity of lipase in the culture was 1.63 U/ml, with the residual activity of 95.7% after incubating at 30℃for 30 min in the presence of benzene (25%v/v).The colony of strain CS-2 was of round shape, bright, milky yellow. Strain CS-2 was rod shaped, Gram negative and it had capsule, single-end flagella and no spore. It can grow at 25℃,37℃and 45℃and can not produce urease and sulfide hydrogen. It can utilize citrate, D-lactose, D-fructose, D-glucose, mannitol and glycerol, but not D-maltose and sucrose. It can hydrolyze gelatin, casein and tween-80, but not starch. The length of 16S rDNA sequence of strain CS-2 was 1499bp, and the sequence data were submitted to Genbank with the accession number GQ254065. According to the morphological trait, biochemical feature and 16S rDNA sequence, strain CS-2 was name after Pseudomonas aeruginosa CS-2. The crude lipase from Pseudomonas aeruginosa CS-2 showed stability in some organic solvents.
     The optimization of fermentation condition was included in the second part. The maximum growth was achieved at 24 h, and then the growth was decreased slowly. Substantial lipase production started at 18 h and reached to maximum at 48 h. Organic nitrogen source was preferred over inorganic nitrogen resource. Peptone and tryptone was determined to be best organic nitrogen source for CS-2 lipase production. Gum arabic, Tween-20, Tween-80 and Polyvinyl alcohol 124 enhanced the lipase production, whereas CTAB and Triton X-100 played a negative role in lipase production. The optimal temperature, rotary shaking speed initial pH for lipase production was 37℃,200r/min and 7.5, respectively.
     The purification and characterization of the extra-cellular lipase secreted by Pseudomonas aeruginosa CS-2 were included in the third part. The purified lipase was obtained by ultra-filtration, acetone precipitation and ion exchange chromatography. CS-2 lipase was purified about 25.5-fold with an overall yield of 45.5%. Molecular mass of the native lipase was about 33.9 kDa and 36 kDa, as determined by SDS-PAGE and size chromatography. Therefore, this suggested the lipase was a monomer. The C terminal of the lipase was KNASLWDPGRG. No protein was identical with the C-terminal sequence of CS-2 lipase using blastp. The temperature optimum of the CS-2 lipase was 50℃, and was stable in a temperature range of 40-70℃with more than 80% of the maximum activity. CS-2 lipase showed good thermostability. It remained 62.7% residual activity after incubated at 80℃for 30min. CS-2 lipase showed an optimum activity at pH 8.0, and was stable over a pH range of 7.0-9.0. It kept over 80% residual activity after incubated in a pH range of 4.0-10.0, which showed the lipase exhibited pH stability. These results confirmed the lipase was an alkaline lipase. Ca2+ increased the lipase activity, while other metal ions inhibited the activity. The activation and inhibition of activity were related to the concentration of metal ions. CTAB, tween 20, tween 80 and triton X-100 inhibited the lipase activity. On the contrary, gum Arabic and polyvinyl alcohol 124 enhanced lipase activity. Among the ester of different fatty acids with longer chain,p-nitrophenyl palmitate was the best substrate as compared to other esters. The lipase was activated in the presence of acetonitrile, and it showed stability in DMSO and some immiscible organic solvents to some extent.
     The clone and expression of the genes of CS-2 lipase and foldase in E.coli were included in the fourth part. The length of CS-2 lipase and foldase gene was 2025bp, and there was no stop codon in the CS-2 lipase gene. The genes of CS-2 lipase and foldase were co-expressed in E. coli BL21 (DE3). The CS-2 lipase was soluble in recombinant cell.To our knowledge, there was no report that a gene without a stop codon can be expressed as an active form. The activity of 203.8 U/mg was achieved after affinity chromatography, in which purification fold was 10.2 and yield rate was 40.9%. The purified enzymes were stained in SDS-PAGE with two bands and their molecular mass was estimated to be 35.7 kDa and 38.3 kDa, respectively. The expression of CS-2 lipase gene in soluble state should be aided by the co-expression of its foldase gene.
     The synthesis of butyl acetate in heptane by the immobilized recombinant CS-2 lipase was included in the fifth part. The optimum reaction condition was on the following:reaction time (10h); water activity (0.02); reaction temperature (55℃); the concentration of acetic acid and n-butanol (0.1mol/L and 0.2mol/L); the addition of 4A molecular sieve (0.5g) at 8h of reaction time. The conversion of 98.2% was achieved in the optimum reaction condition. The conversion of substrate decreased only from 98.2% to 87.4% after five cycles in use of the immobilized lipase.Therefore, the immobilized lipase showed good catalytic capability and repeated use for the synthesis of butyl acetate.
引文
[1]Kilibanov AM, Samokhin GP, Martinek K, Berezin IV. A new approach to preparative enzymatic synthesis, Biotechnol. Bioeng.1977,19(9):1351-1361
    [2]Koskinen AMP, Kilibanov AM. Enzymatic Reactions in Organic Media. Blackie Academic & Professional.1996
    [3]http://www.cnki.net
    [4]http://apps.isiknowledge.com
    [5]Kilibanov AM. Improving enzymes by using them in organic solvents. Nature, 2001,409(6817):241-246
    [6]Bommarius AS, Riebel BR.生物催化—基础与应用.北京:化学出版社.2006
    [7]Kilibanov AM. Why are enzymes less active in organic solvents than in water? Trends Biotechnol.1997,15(3):97-101
    [8]Temino DMRD, Hartmeier W, Ansorge-Schumacher MB. Entrapment of the alcohol dehydrogenase from Lactobacillus kefir in ployvinyl alcohol for the synthesis of chiral hydrophobic alcohols in organic solvents. Enzyme Microb. Technol.2005,36(1):3-9
    [9]Bruns N, Tiller JC. Amphiphilic network as nanoreactor for enzyme in organic solvents. Nano Lett.2005,5(1):45-48
    [10]Lee SH, Choi JI, Han MJ, Choi JH, Lee SY. Display of lipase on the cell surface of Escherichia coli using OprF as an anchor and its application to enantioselective resolution in organic solvent. Biotechnol. Bioeng. 2005,90(2):223-230
    [11]Mine Y, Zhang L, Fukunaga K, Sugimura Y. Enhancement of activity and enantioselectivety by cyclopentyl methyl ether in the transesterification catalyzed by Pseudomonas cepaia lipase co-lyophilized with cyclodextrins. Biotechnol. Lett.2005,27(6):383-388
    [12]O'Brien AM, Smith AT, Fagain CO. Effects of phathalic anhydride modification on horseradish peroxidase stability and activity. Biotechnol. Bioeng.2003,81 (2):233-240
    [13]Song HY, Yao JH, Liu JZ, Zhou SJ, Xiong YH, Ji LN. Effects of phathalic anhydride modification on horseradish peroxidase stability and structure. Enzyme Microb.Technol.2005,36(4):605-611
    [14]Inada Y, Nishimura H, Takahashi K, Yoshimoto T, Saka AR, Saito Y. Ester synthesis catalyzed polyethylene glycol-modified lipase in benzene. Biochem. Biophys. Res. Commun.1984,122(2):845-850
    [15]Lindsay JP, Clark DS, Dordick JS. Combinatorial formulation of biocatalysts preparations for increased activity in organic solvents:salt activation of penicillin amidase.Biotechnol. Bioeng.2004,85(5):553-560
    [16]Roy I, Gupta MN. Non-thermal effects of microwaves on protease catalyzed esterification and transesterication. Tetrahedron.2003,59(15):441-447
    [17]Mine Y, Fukunaga K, Itoh K, Yoshimoto M, Nakao K, Sugimura Y. Enhanced enzyme activity and enantioselectivity of lipase in organic solvents by crown ethers and cyclodextrins. J. Biosci. Bioeng.2003,95(5):441-447
    [18]Mine Y, Fukunaga K, Yoshimoto M, Nakao K, Sugimura Y. Stereochemistry of a diastereoisomeric amphiphile and the species of the lipase influence enzyme activity in the transesterification catalyzed by a lipase co-lyophilizate with the amphiphile in organic media. Biotechnol. Lett.2003,2 5(21):1863-1867
    [19]Fischer M, Pleiss J. The Lipase Engineering Database:a navigation and analysis tool for protein families. Nucleic Acids Research.2003,31 (1):319-321
    [20]Magnusson AO, Rotticci-Mulder JC, Santagostino A, Hult K. Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. Chem. Biochem.2005,6(6):1051-1056
    [21]Suzuki Y, Taguchi S, Hisano T, Toshima K, Matsumura S, Doi Y. Correlation between structure of the lactones and substrate specificity in enzyme-catalyzed polymerization for the synthesis of polymers. Biomacromolecule. 2003,4(3):537-543
    [22]Wong TS, Arnold FH, Schwaneberg U. Laboratory evolution of cytochrome P450 BM-3 monooxygenase for organic cosolvents. Biotechnol. Bioeng.2004,85(3): 351-358
    [23]Fox RJ, Davis SJ, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching C, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW. Improving catalytic function by ProSAR-driven enzyme evolution. Nat. Biotechnol.2007,25(3):338-344
    [24]Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzyme Microb. Technol.2006,39(2):235-251
    [25]Maria PDE, Sinisterra JV, Tsai SW, Alcantara AR. Caricapapaya lipase (CPL): An emerging and versatile biocatalyst. Biotechnol. Advance.2006, (24):493-499
    [26]许建和,孙志浩,宋航.生物催化工程.上海:华东理工大学出版社.2008
    [27]Imamura S, Kitaura S. Purification and characterization of a monoacyl-glycerol lipase from the moderately thermophilic Bacillus sp. H-257. J. Biochem.2000,127(3):419-425
    [28]Kambourova M, Emanuilova E, Dimitrov P. Influence of culture condition on thermostable lipase production by a thermophilic alkalitolerant strain of Bacillus sp. Folia Microbiol.1996,41(2):146-148
    [29]Handelsman T, Shoham Y. Production and characterization of an extracellular thermostable lipase lipase from a thermostable Bacillus sp. J. Gen. Appl. Microbiol.1994, (40):435-443
    [30]Sugihara A, Tani T, Tominaga Y. Purification and characterization of a novel thermostable lipase from Bacillus sp.J. Biochem.1991,109(2):211-216
    [31]Ruiz C, Pastor FI, Diaz P. Isolation of lipid- and polysaccharide-degrading micro-organism from subtropical forest soil and analysis of lipolytic strain Bacillus sp. CR-179. Lett. Appl. Microbiol.2005,40(3):218-227
    [32]Eggert T, Brockmeier U, Droge MJ, Quax WJ, Jaeger KE. Extracellular lipases from Bacillus subtilis:regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiol. Lett.2003,225(2): 319-324
    [33]Rua ML, Schmidt-Dannert C, Wahl S, Prayer A, Schmid RD. Thermophilic lipase of Bacillus thermoleovorans:Large-scale production, purification and properties:aggregation behaviour and its effect on activity. J. Biotechnol. 1997,56(2):89-102
    [34]Lee DW, Koh YS, Kim KJ, Kim BC, Choi HJ, Kim DS. Isolation and characterization of a thermophilic lipase from Bacillus thermocatenulatus ID-1. FEMS Microbiol. Lett.1999,179(2):393-400
    [35]El-Shafei HA, Rezkallah LA. Production, purification and characterization of Bacillus lipase. Microbiol. Res.1997,152(2):199-208
    [36]Sarkar S, Sreekanth B, Kant S, Banerjee R, Bhattacharyya BC. Production and optimization of microbial lipase. Bioprocess Eng.1998,19(11):29-32
    [37]Chartrain M, Katz L, Marcin C, Thien M, Smith S, Fisher E. Purification and characterization of a novel bioconverting lipase from Pseudomonas aeruginosa MB 5001. Enzyme Microb. Technol.1993,15(7):575-580
    [38]Shabtai Y, Daya-Mishne N. Production, purification and properties of a lipase from bacterium (Pseudomonas aeruginosa YS-7) capable of growing in water-restricted environments. Appl. Environ. Microbiol.1992, (58):174-180
    [39]Kojima Y, Yokoe M, Mase T. Purification and characterization of an alkaline from Pseudomonas fluorescens AK102. Biosci. Biotech. Biochem.1994,58(1): 1564-1568
    [40]Nishio T, Chikano T, Kamimura M. Purification and some properties of lipase produced by Pseudomonas fragi 22.39 B. Agric Biol. Chem.1987,51 (1):181-187
    [41]Kar MK, Ray L, Chattopadhyay P. Isolation and identification of alkaline thermostable lipase producing microorganism and some properties of crude enzyme. Ind. J. Exp. Biol.1996,34(6):535-538
    [42]Lopes MFS, Cunha AE, Clemente JJ, Carrondo MJT, Crespo MTB. Influence of environmental factors on lipase production by Lactobacillus plantarum. Appl. Microbiol. Biotechnol.1999,51 (2):249-254
    [43]Oh B, Kim H, Lee J, Kang S, Oh T. Staphylococcus haemolyticus lipase: biochemical properties, substrate specificity and gene cloning. FEMS Microbiol. Lett.1999,179(2):385-392
    [44]Gotz F, Verheji HM, Rosenstein R. Staphylococcal lipases:molecular characterisation, secretion, and processing. Chem. Phys. Lipids.1998,93 (1-2):15-25
    [45]Simons JW, Adams H, Cox RC, Dekker N, Gotz F, Slotboom AJ. The lipase from Staphylococcus aureus. Expression in Escherichia coli, large-scale purification and comparision of substrate specificity to Staphylococcus hyicus lipase. Eur. J. Biochem.1996,242(3):760-769
    [46]Talon R, Dublet N, Montel MC, Cantonnet M. Purification and characterization of extracellular Staphylococcus warneri lipase. Curr. Microbiol.1995,30(1):11-16
    [47]Mosbah H, Sayari A, Mejdoub H, Dhouid H, Gargouri Y. Biochemical and molecular characterization of Staphylococcus xylosus lipase. Biochim. Biophys. Acta.2005,1723(1-3):282-291
    [48]Chahinian H, Vanot G, Ibrik A, Rugani N, Sarda L, Comeau LC. Production of extracellular lipases by Penicillium cyclopium purification and characterization of a partial acylglycerol lipases. Biosci. Biotechnol. Biochem.2000,64(2):215-222
    [49]Ibrik A, Chahinian H, Rugani N, Sarda L, Comeau LC. Biochemical and structural characterization of triacylglycerol lipase from Penicillium cyclopium. Lipids.1998,33(4):377-384
    [50]Sztajer H, Lunsdorf H, Erdman H, Menge U, Schmid R. Purification and properties of Penicillium simplicissimum. Biochim. Biophys. Acta.1992,1124 (3):253-261
    [51]Namboodiri VM, Chattopadhaya R. Purification and biochemical characterization of a novel thermostable lipase from Aspergillus niger. Lipids.2000,35(5):495-502
    [52]Toida J, Arikawa Y, Kondou K, Fukuzawa M, Sekiguchi J. Purification and characterization of a triacylglycerol lipase from Aspergillus oryzae. Biosci. Biotechnol. Biochem.1998,62(4):759-763
    [53]Commenil P, Belingheri L, Sancholle M, Dehorter B. Purification and properties of an extracellular lipase from the fungus Botrytis cinerea. Lipids.1995,30(4):351-356
    [54]Taipa MA, Aires-Barros MR, Cabral JMS.Purification of lipases. J. Biotechnol.1992,26(2-3):111-142
    [55]Mostafa SA, Ali OA. Identity and lipase productivity of a mesophilic actinomycete isolated from Egyptian soil. Zentralbl Bakteriol Naturwiss. 1979,134(4):316-324
    [56]Dharmsthiti S, Ammaranond P. Purification and characterization of lipase from a raw-milk yeast (Trichosporon asteroides). Biotechnol. Appl. Biochem. 1997,26 (Pt2):111-116
    [57]Liu J, Zhang Y, Qiu L, Yang F, Ye L, Xia Y. Kinetic resolution of ketoprofen ester catalysed by lipase from mutant of CBS 5791. J. Ind. Microbiol. Biotechnol.2004,31(11):495-499
    [58]Macedo GA, Lozano MMS, Pastore GM. Enzymatic synthesis of short chain citronellyl esters by a new lipase from Rhizopus sp. Electronic J. Biotechnol.2003,6(1):72-75
    [59]Herrgard S, Gibas CJ, Subramaniam S. Role of Electrostatic network of residues in the enzymatic action of Rhizumucor miehei lipase family. Biochemistry.2000,39(11):2921-2930
    [60]Jacobsen T, Poulsen OM. Comparison of lipases from differernt strains of the fungus Geotrichum candidum. Biochim. Biophys. Acta.1995,1257(2):96-102
    [61]Sidebottom CM, Charton E, Dunn PP, Mycock G, Davis C, Sutton JL. Geotrichum candidum produces several lipases with markedly different substrate specificities. Eur.J. Biochem.1991,202(2):485-491
    [62]Sughihara A, Senoo T, Enoki A, Shimada Y, Nago T, Tominaga Y. Purification and characterization of a lipase from Pichia burtonii. Appl.Microbiol. Biotechnol.1995,43(2):277-281
    [63]Muralidhar RV, Chirumamilla RR, Ramachandran VN, Marchant R, Nigam P. Racemic resolution of RS-baclofen using lipase from Candida cylindracea. Mededelingen.2001,66(3a):227-232
    [64]Snellman EA, Sullivan ER, Colwell RR. Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. FEBSJ.2002, (269): 5771-5779
    [65]Knight K, Carmo M, Pimentel B, Morais MMC, Ledingham WM, Filho JLL. Immobilization of lipase from Fusarium solani FS1. Braz. J. Microbiol.2003, 31(3):219-221
    [66]Rashid N, Shimada Y, Ezaki S, Atomi H, Imanaka T. Low-temperature lipase from psychrotrophic pseudomonas sp. strain KB700A. Appl. Environ. Microbiol.2001, 67(9):4064-4069
    [67]张金伟,曾润颖.南极深海沉积物宏基因组DNA中低温脂肪酶基因的克隆、表达及性质分析.生物化学与生物物理进展.2006,33(12):1207-1214
    [68]Stuer W, Jaeger KE, Winkler UK. Purification of extracellular lipase from Pseudomonas aeruginosa. J. Bacteriol.1986,168(3):1070-1074
    [69]Arpigny JL, Jaeger KE, Bacterial lipolytic enzymes:classification and properties. Biochem. J.1999,343(Ptl):177-183
    [70]Bell PJL, Sunna A, Gibbs MD, Curach NC, Nevalainen H, Bergquist PL. Prospecting for novel lipase genes using PCR. Microbiology.2002,148 (Pt8): 2283-2291
    [71]Kim HK, Jung YJ, Choi WC, Ryu SH, Oh TK, Lee JK. Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiol. Lett.2004,235(2):349-355
    [72]Winkler FK, D'Arey A, Hunzkier W. Structure of human pancreatic lipase. Nature.1990,343(6260):771-774
    [73]Tilbeurgh VH, Sarda L, Verger R, Cambillau C. Structure of the pancreatic lipase-procolipase complex. Nature.1992,359(6391):159-162
    [74]Tilbeurgh VH, Egloff MP, Martinez C, Verger R, Cambillau C. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature.1993,362(6423):814-820
    [75]Balcao VM, Paiva AL, Malcata FX. Bioreactors with immobilized lipase: state of the art. Enzyme Microb. Technol.1996,18(6):392-416
    [76]闫云君,舒正玉,杨江科.细菌脂肪酶的结构和功能研究进展.食品与生物技术学报.2006,25(4):121-126
    [77]Akesson B, Gronowitz S, Herslof B, Michelsen P, Olivecrona T. Stereospecificity of different lipases. Lipids.1983,18(4):313-318
    [78]Ghosh PK, Saxena RK, Gupta R, YadAv RP, Davidson WS. Microbial lipases: production and application. Sci. Prog.1996,79(Pt2):119-157
    [79]Gilbert EJ, Drozd JW, Jones CW. Physiological regulation and optimization of lipase activity in P. aeruginosa EF2. J. Gen. Microbiol.1991,137 (9):2215-2221
    [80]Mahler GF, Kok RG, Cordenons A, Hellingwerf KJ, Nudel BC. Effect of carbon sources on extracellular lipase production and lipA transcription in Acinetobacter calcoaceticus. J. Ind. Microbiol. Biotechnol.2000,24(1):25-30
    [81]Kanwar L, Gogoi BK, Goswani P. Production of a Pseudomonas lipase in n-alkane substrate and its isolation using an improved ammonium sulfate precipitation technique. Bioresource Technol.2002,84(3):207-211
    [82]Dong H, Gao S, Han S, Cao S. Purification and characterization of a Pseudomonas sp. lipase and its properties in non-aqueous media. Biotechnol. Appl. Biochem.1999,30(3):251-256
    [83]Rathi P, Saxena RK, Gupta R. A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem.2001,37(2):187-192
    [84]Sharma R, Soni SK, Vohra RM, Jolly RS, Gupta JK. Production of extracellular alkaline lipase from a Bacillus sp. RSJ1 and its application in ester hydrolysis. Ind. J. Microbiol.2002,42(1):49-54
    [85]Schmidt-Dannert C, Luisa Rua M, Schmid RD. Two novel lipases from the thermophile Bacillus thermocatenulatus:Screening, purification, cloning, overexpression and properties. Methods Enzymol.1997, (284):194-219
    [86]Pabai F, Kermasha S, Morin A. Interesterification of butter fat by partially purified extracellular lipases from Pseudomonas putida, Aspergillus niger and Rhizopus oryzae. World J. Microbiol. Biotechnol.1995,11(6):669-677
    [87]Kok RG, Thor JJV, Roodzant IMN, Brouwer MBW, Egmond MR, Clara BN, Vosman B, Hellingwerf KJ. Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene. Mol.Microbiol.1995,15(5):803-818
    [88]Sharon C, Furugoh S, Yamakido T, Ogawah I, Kato Y. Purification and characterization of a lipase from Pseudomonas aeruginosa KKA-5 and its role in castor oil hydrolysis. Ind.Microbiol. Biotechnol.1998,20(5):304-307
    [89]Vicente MLC, Aires-Barres MR, Cabral JMS. Purification of Chromobacterium viscosum lipases using reverse micelles. Biotechnol Techn.1990, (4):137-142
    [90]Bandmann N, Collet E, Leijen J, Uhlen M, Veide A, Nygren PA. Genetic engineering of the Fusarium solanipisi lipase cutinase for enhanced partitioning in PEG-phosphate aqueous two-phase systems. J. Biotechnol. 2000,79(2):161-172
    [91]Queiroz JA, Garcia FAP, Cabral JMS. Hydrophobic interaction chromatography of Chromobacterium viscosum lipase. J. Chromatogr. A.1995,707(2):137-142
    [92]Bradoo S, Saxena RK, Gupta R. Two acidothermotolerant lipases from new variants of Bacillus spp. World J.Microbiol. Biotechnol.1999,15(1):87-91
    [93]Bompensieri S, Gonzalez R, Kok R, Miranda MV, Nutgeren-Eoodzant I, Hellingwerf KJ, Cascone 0, Nudel BC. Purification of a lipase from Acinetobacter calcoaceticus AAC323-1 by hydrophobic-interaction methods. Biotechnol. Appl.Biochem.1996,23(Pt1):77-81
    [94]Pratuamgdejkul J, Dharmsthiti S. Purification and characterization of lipase form psychrophilic Acinetobacter calcoaceticusLP009. Microbiol. Res. 2000,155(2):95-100
    [95]Hong MC, Chang MC. Purification and characterization of an alkaline lipase from a newly isolated Acinetobacter radioresistens CMC-1. Biotechnol. Lett. 1998,20(11):1027-1029
    [96]Snellman EA, Sullivan ER, Colwell RR. Purification and properties of the extracellular lipase, Lip A, of Acinetobacter sp. RAG-1.Eur. J. Biochem. 2002,269 (23):5771-5779
    [97]Sugihara A, Tani T, Tominaga Y. Purification and characterization of a novel thermostable lipase from Bacillus sp. J. Biochem.1991,109(2):211-216
    [98]Kim EK, Sung MH, Kim HM, Oh TK. Occurrence of thermostable lipase in thermophilic Bacillus sp. strain 398.Biosci. Biotechnol. Biochem.1994,58 (5):961-962
    [99]Dharmsthiti S, Luchai S. Production, purification and characterization of thermophilic lipase from Bacillus sp. THL027. FEMS Microbiol. Lett.1999, 179(2):241-246
    [100]Ghosh PK, Saxena RK, Gupta R, Yadav RP, Davidson WS. Microbial lipases: production and applications. Sci. Prog.1996,79(2):119-157
    [101]Jose J, Kurup GM. Purification and characterization of an extracellular lipase from a newly isolated thermophilic Bacillus pumilus. Ind. J. Exp. Biol.1999,37(12):1213-1217
    [102]Kim MH, Kim HK, Lee JK, Park SY, Oh TK. Thermostable lipase of Bacillus stearothermophilus:high level production, purification, and calcium-dependent thermostability. Biosci. Biotechnol. Biochem.2000,64(2):280-286
    [103]Schmidt-Dannert C, Sztajer H, Stocklein W, Menge U, Schmid RD. Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochim. Biophys. Acta.1994,1214(1):43-53
    [104]Schmidt-Dannert C, Rua ML, Atomi H, Schmid RD. Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. Molecular cloning, nucleotide sequence, purification and some properties. Biochim. Biophys, Acta.1996,1301(1-2): 105-114
    [105]Sharma S, Gupta MN. Alginate as a macroaffinity ligand and an additive for enhanced activity and thermostability of lipases. Biotechnol. Appl. Biochem.2001,33(Pt3):161-165
    [106]Iizumi T, Nakamura K, Fukase T. Purification and characterization of a thermostable lipase from newly isolated Pseudomonas sp. KWI-56. Agric. Biol. Chem.1990,54(5):1253-1258
    [107]Kordel M, Hofmann B, Schaumburg D, Schmid RD. Extracellular lipase of Pseudomonas sp. strain ATCC 21808:purification, characterization, crystallization and preliminary Xray diffraction data. J. Bacteriol. 1991,173(15):4836-4841
    [108]Kim KK, Song HK, Shin DH, Hwang KY, Suh DW. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open confirmation in the absence of bound inhibitor. Structure.1997,5(2): 173-185
    [109]Sharon C, Furugoh S, Yamakido T, Ogawa HI, Kato Y. Purification and characterization of a lipase from Pseudomonas aeruginosa KKA-5 and its role in castor oil hydrolysis. J. Ind. Microbiol. Biotechnol.1998,20(5): 304-307
    [110]Palekar AA, Vasudevan PT, Yan S. Purification of lipase:a review. Biocatal. Biotransform.2000,18(3):177-200
    [111]Terstappen GC, Geerts AJ, Kula MR. The use of detergent based aqueous two-phase systems for the isolation of extracellular proteins: purification of a lipase from Pseudomonas cepacia. Biotechnol. Appl. Biochem.1992,16(3):228-235
    [112]Kojima Y, Yokoe M, Mase T. Purification and characterization of an alkaline lipase from Pseudomonas fluorescens AK 102. Biosci. Biotechnol. Biochem. 1994,58 (9):1564-1568
    [113]Litthauer D, Ginster A, Skein EVE. Pseudomonas luteola lipase:a new member of the 320-residue Pseudomonas lipase family. Enzyme Microb. Technol.2002, 30(2):209-215
    [114]Lin SF, Chiou CM, Yeh CM, Tsai YC. Purification and partial characterization of an alkaline lipase from Pseudomonas pseudoalcaligenes F-111. Appl. Environ. Microbiol.1996,62(3):1093-1095
    [115]Lee SY, Rhee JS. Production and partial purification of a lipase from Pseudomonas putida 3SK. Enzyme Microb. Technol.1993,15(7):617-623
    [116]Abdou AM. Purification and partial characterization of psychrotrophic Serratia marcescens lipase. J. Dairy Sci.2003,86(1):127-132
    [117]Van Kampen MD, Rosenstein R, Gotz F, Egmond MR. Cloning, purification and characterization of Staphylococcus warneri lipase 2. Biochim. Biophys. Acta.2001,1544(1-2):229-241
    [118]Simons JWFA, Adams H, Cox RC, Dekker N, Gotz F, Slotboom AJ, Verheij HM. The lipase from Staphylococcus aureus:expression in Escherichia coli, large-scale purification and comparison of substrate specificity to Staphylococcus hyicus lipase. Eur. J. Biochem.1996,242(3):760-769
    [119]俞勇,李会荣,陈波,曾胤新,任大民.低温脂肪酶产生菌的筛选、鉴定及其部分酶学性质.高技术通讯.2003,13(10):89-93
    [120]Surinenaite B, Bendikiene V, Juodka B, Bachmatova I, Marcinkevichiene L. Characterization and physicochemical properties of a lipase from pseudomonas mendocina 3121-1. Biotechnol. Appl. Biochem.2002,36 (Pt1):47-55
    [121]Godtfredsen SE. Microbial lipases. In:Fogarty WM, Kelly ET (eds) Microbial enzymes and biotechnology, Elsevier, Amsterdam,1990:255-274
    [122]Finkelstein AE, Strawich ES, Sonnino S. Characterization and partial purification of a lipase from Pseudomonas aeruginosa. Biochim. Biophys. Acta.1970,206(3):380-391
    [123]Patkar SA, Bjorkling F. Lipase inhibitors. In:Woolley P, Petersen SB (eds) Lipases—their structure, biochemistry and application. Cambridge University Press, Cambridge,1994:207-224
    [124]Dharmsthiti S, Kuhasuntisuk B. Lipase from Pseudomonas aeruginosa LP602: biochemical properties and application for wastewater treatment. J. Ind. Microbiol.Biotechnol.1998,21(1-2):75-80
    [125]Wang CS, Dashti A, Downs D. Bile salt-activated lipase. In:Doolittle MH, Reue K (eds) Lipase and phospholipaseprotocols. (Methods in molecular biology, vol 109) Humana Press, Totowa, N. J.1999:71-79
    [126]Gargouri Y, Julian R, Sugihara A, Verger R, Sarda L. Inhibition of pancreatic and microbial lipase by proteins.Biochim. Biophys.Acta.1984, 795(2):326-331
    [127]Lolis E, Petsko G. Transition state analogues in protein crystallography probes of the structural source of enzyme catalysis. Annu. Rev. Biochem. 1990,59:597-630
    [128]Ogino H, Miyamoto K, Ishikawa H. Organic-solvent-tolerant bacterium which secretes Organic-solvent-stable lipolytic enzyme. Appl. Environ. Microbiol. 1994,60(10):3884-3886
    [129]Ogino H, Nakagawa S, Shinya K, Muto T, Fujimuran, Yasuda M, Ishikawa H. Purification and characterization of organic solvent-stable lipase from organic-solvent-tolerant Psedomonas aeruginosa LST-03. J. Biosci.Bioeng. 2000,89(5):451-457
    [130]Ogino H, Hiroshima S, Hirose S, Yasuda M, Ishimi K, Ishikawa H. Cloning, expression and characterization of a lipase gene (lip3) from Pseudomonas aeruginosa LST-03. Mol. Genet. Genomics.2004,271(2):189-196
    [131]Ogino H, Mimitsuka T, Muto T, Matsumura M, Yasuda M, Ishimi K, Ishikawa H. Cloning, expression, and characterization of a lipolytic enzyme gene (lip8) from Pseudomonas aeruginosa LST-03. J. Mol. Microbiol. Biotechnol. 2004,7(4):212-223
    [132]Ogino H, Katou Y, Akagi R, Mimitsuka T, Hiroshima S, Gemba Y, Doukyu N, Yasuda M, Ishimi K, Ishikawa H. Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03. Extremophiles.2007,11(6):809-817
    [133]Ito T, Kikuta H, Nagamori E, Honda H, Ogina H, Ishikawa H, Kobayashi T. Lipase production in two-step fed bath culture of organic solvent-tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng.2001,91 (3):245-250
    [134]Mahanta N, Gupta A, Khare SK. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresour. Technol.2008,99 (6): 1729-1735
    [135]Ruchi G, Anshu G, Khare SK. Lipase from solvent tolerant Pseudomonas aeruginosa strain:production optimization by response surface methodology and application. Bioresour. Technol.2008,99(11):4796-4802
    [136]Ruchi G, Anshu G, Khare SK. Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA. Process Biochem.2008, 43(10):1040-1046
    [137]Rahaman RNZRA, Baharum SN, Salleh AB. S5 lipase:an organic solvent tolerant enzyme. J. Microbiol.2006,44(6):583-590.
    [138]Rahaman RNZRA, Baharum SN, Basri M, etal. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. Strain S5. Anal. Biochem.2005,341(2):267-274
    [139]Chin JH, Rahaman RNZRA, Salleh AB. A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase. Biochem. Eng. J.2003,15(2):147-157
    [140]Rahaman RNZRA, Chin JH, Salleh AB. Cloning and expression of a novel lipase gene from Bacillus sphaericus 205y. Mol. Genet. Genomics,2003,269(2):252-260
    [141]Gao L, Xu JH, Li XJ, Liu ZZ. Optimization of Serratia marcescens lipase production for enantioselective hydrolysis of 3-phenylglycidic acid ester. J. Ind. Microbiol. Biotechnol.2004,31 (11):525-530
    [142]Zhao LL, Xu JH, Zhao J, Pan J, Wang ZL. Biochemical properties and potential applications of an organic solvent tolerant lipase isolated from Serratia marcescens ECU1010. Process Biochem.2008,43(6):626-633
    [143]Xu JH, Zhao LL, Zhao J, Pan J, Wang ZL. An organic solvent tolerant lipase from Serratia marcescens ECU1010:Biochemical characterization and practical application. J. Biotechnol.2008,136(Supplement 1):S51
    [144]Long ZD, Xu JH, ZhaoLL, Pan J, Yang S, Hua L. Overexpression of Serratia marcescens lipase in Escherichia coli for efficient bioresolution of racemic ketoprofen. J. Mol. Catal. B:Enzymatic.2007,47(3-4):105-110
    [145]Shabtal Y, Daya-Mishne N. Production, purification, and properties of a lipase from a bacterium (Pseudomonas aeruginosa YS-7) capable of growing in water-restricted environments. Appl. Environ. Microbiol.1992,58 (1):174 180
    [146]Shimada Y, Koga C, Sugihara A, Nagao T, Takada N, Tsunasawa S, Tominaga Y. Purification and characterization of a novel solvent-tolerant lipase from Fusarium heterospotum. J. Ferment. Bioeng.1993,75(5):349-352
    [147]Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N. A cold-adapted lipase of an alaskan psychrotroph, Pseudomonas sp. strain B11-1:gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol.1998, 64(2):486-491
    [148]Sugihara A, Ueshima M, Shimada Y, Tsunasawa S, Tominaga Y. Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. J. Biochem.1992,112 (5):598-603
    [149]Fang YW, Lu ZX, Lu FX, Bie XM, Liu S, Ding ZY, Xu WF. A Newly Isolated Organic Solvent Tolerant Staphylococcus saprophyticus M36 Produced Organic Solvent- Stable Lipase. Current Microbiol.2006,53(6):510-515
    [150]袁红玲,汤鲁宏,许正宏,陶文沂.产有机相催化酯合成活性的脂肪酶菌株的筛选.微生物学通报.2007,34(1):19-22
    [151]Margolin AL, Klibanov AM. Peptide synthesis catalyzed by lipases in anhydrous organic solvents. J. Am. Chem. Soc.1987,109(12):3802-3804
    [152]Kirchener G, Scollar MP, Klibanov AM. Resolution of racemic mixtures via lipase catalysis in organic solvent. J. Am. Chem. Soc.1985,107(24):7072-70 76
    [153]Cao SG, Liu ZB, Feng Y, Ma L,Ding ZT, Cheng YH. Esterification and transesterification with immobilized Lipase in organic solvents. Appl. Biochem. Biotechnol.1992,32(1-3):1-6
    [154]Cao SG, Liu ZB, Ding ZT, Cheng YH. Lipase catalysis in organic solvents. Appl. Biochem.Biotechnol.1992,32(1):7-13
    [155]Xu JH, Kawamoto T, Tanaka A. Efficient kinetic resolution of D, L-menthol by lipase-catalyzed enantioselective esterification with acid anhydride in fed-batch reactor. Appl. Microbiol. Biotechnol.1995,43(4):402-407
    [156]Xu JH, Kawamoto T, Tanaka A. High-performance contionous operation for enantioselective Esterification of menthol by use of acid anhydride and free Lipase in organic solvenet. Appl. Microbiol. Biotechnol.1995,43(6): 639-643
    [157]Duan G, Chen JY. Effect of polar additives on the enzyme enantioselectivity of an esterification reaction in organic solvents. Biotechnol.Lett. 1994,16(11):1065-1068
    [158]Gargouri M, Drouet P, Legoy MD. Synthesis of a novel macrolactone by lipase-catalyzed intra-esterification of hydroxy-fatty acid in organic media. J. Biotechnol.2002,92(3):259-266
    [159]Maugard T, Legoy MD. Enzymatic synthesis of derivatives of vitamin A in organic media. J. Mol. Cata. B:Enzymatic.2000,8(4):275-280
    [160]Degn P, Zimmermann W. Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antarctica. Biotechnol.Bioeng.2001,74(6):483-491
    [161]Nemestothy N, Gubicza L, Feher E, Belafi-Bako K. Biotechnological utilisation of fusel oil, a food industry by-product-A kinetic model on enzymatic esterification of i-amyl alcohol and oleic acid by Candida antarctica lipase B. Food Technol. Biotechnol.2008,46(1):44-50
    [162]Zhao X, Wei D, Song Q, Zhang MJ. Study of ibuprofen glucopyranoside derivative synthesis by Candida antarctica lipase in organic solvent. Prep. Biochem. Biotechnol.2007,37(1):27-38
    [163]Lozano P, Daz M, de Diego T, Iborra JL.Ester synthesis from trimethylammonium alcohols in dry organic media catalyzed by immobilized Candida antarctica lipase B. Biotechnol. Bioeng.2003,82(3):352-358
    [164]Hsieh HJ, Nair GR, Wu WT. Production of ascorbyl palmitate by surfactant-coated lipase in organic media. J. Agric. Food Chem.2006,54(16):5777-5781
    [165]Serri NA, Kamaruddin AH, Long WS. Studies of reaction parameters on synthesis of Citronellyl laurate ester via immobilized Candida rugosa lipase in organic media. Bioprocess Biosyst.Eng.2006,29(4):253-260
    [166]Du W, Zong MH, Guo Y, He J, Zhang YY, Xie ZL, Lou WY. Lipase-catalyzed enantioselective ammonolysis of racemic phenylglycine methyl ester in organic solvent. Sheng Wu Gong Cheng Xue Bao.2002,18(2):242-245
    [167]Du W, Zong M, Guo Y, Liu D. Lipase-catalysed enantioselective ammonolysis of phenylglycine methyl ester in organic solvent. Biotechnol. Appl. Biochem.2003,38 (2):107-110
    [168]Royon D, Daz M, Ellenrieder G., Locatelli S. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour. Technol.2007,98(26):648-653
    [169]Sagiroglu A. Conversion of sunflower oil to biodiesel by alcoholysis using immobilized lipase. Artif. Cells Blood Substit. Immobil. Biotechnol.2008, 36(2):138-149
    [170]de Oliveira D, do Nascimento Filho I, Di Luccio M, Faccio C, Dalla Rosa C, Bender JP, Lipke N, Amroginski C, Dariva C, de Oliveira JV. Kinetics of enzyme-catalyzed alcoholysis of soybean oil in n-hexane. Appl. Biochem. Biotechnol.2005,121(1-3):231-242
    [171]Tsuzuki W. Acidolysis between triolein and short-chain fatty acid by lipase in organic solvents. Biosci. Biotechnol. Biochem.2005,69(7):1256- 1261
    [172]Kojima Y, Sakuradani E, Shimizu S. Acidolysis and glyceride synthesis reactions using fatty acids with two Pseudomonas lipases having different substrate specificities. J. Biosci. Bioeng.2006,102(3):179-183
    [173]Vikbjerg AF, Mu H, Xu X. Lipase-catalyzed acyl exchange of soybean phosphatidylcholine in n-Hexane:a critical evaluation of both acyl incorporation and product recovery. Biotechnol. Prog.2005,21(2):397-404
    [174]Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH. Airborne signals prime plants against insect herbivore attack. Proc. Natl.Acad. Sci. U.S.A.2004, 101:1781-1785
    [175]Heil M, Silva Bueno JC. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc. Natl. Acad. Sci. U. S. A.2007,104:5467-5472
    [176]Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science 2006,311:1113-1116
    [177]Cooley M, Chhabra SR, Williams P. N-Acylhomoserine lactone-mediated quorum sensing:a twist in the tail and a blow for host immunity. Chem. Biol.2008, 15:1141-1147
    [178]Hughes DT,Sperandio V. Inter-kingdom signalling communication between bacteria and their hosts. Nat. Rev. Microbiol.2008,6:111-120
    [179]Durrans TH. Solvents. Eighthth edn. London:Chapman and Hall.1971
    [180]Gandolfi R, Converti A, Pirozzi D, Molinari F. Efficient and selective microbial esterification with dry mycelium of Rhizopus oryzae. J. Biotechnol.2001,92(1):6-21
    [181]金子,林影,黄登峰,苏国栋,韩双艳.展示南极假丝酵母脂肪酶B的毕赤酵母全细胞催化合成短链芳香酯.生物工程学报.2009,25(12):1927-1932
    [182]Salah RB, Ghamghui H, Miled N, Mejdoub H, Gargouri Y. Production of butyl acetate ester by lipase from novel strain of Rhizopus oryzae. J. Biosci. Bioeng.2007,103(4):368-372
    [183]Serdakowsli AL, Dordick JS. Enzyme activation for organic solvents made easy. Trends Biotechnol.2008,26(1):48-54
    [184]Sardessai Y, Bhosle S. Industrial potential of organic solvent tolerant bacteria. Biotechnol. Prog.2004,20(3):655-660
    [185]Inoue A, Horikoshi K. A Pseudomonas thrives in high concentrations in touene. Nature.1989,338(16):264-266
    [186]Sardessai Y, Bhosle S. Organic solvents tolerant bacteria in mangrove ecosystem. Curr. Sci.2002,82(6):622-623
    [187]沈萍,陈向东.微生物实验(第4版).北京:高等教育出版社,2007
    [188]魏群.分子生物学实验指导(第2版).北京:高等教育出版社,2007
    [189]黄秀梨,辛明秀.微生物学实验指导(第2版).北京:高等教育出版社,2008
    [190]Sierra G. A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek.1957,23 (1): 15-22
    [191]Cardenas J, Alvarez E, de Castro-Alvarez MS, Sanchez-Montero JM, Valmaseda M, Elson SW, Sinisterra JV. Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. J. Mol.Catal.B:Enzym. 2001,14(4-6):111-123
    [192]Wang Y, Srivastava KC, Shen GJ, Wang HY. Thermostable alkaline lipase from a newly isolated thermophilic Bacillus strain, A30-1 (ATCC 53841). J. Ferment. Bioeng.1995,79(5):433-438
    [193]Holt JG, Krieg NR, Sneath EK, Sneath HA, Staley JT, Williams ST. Bergey's Maunal of Determinative Bacteriology.9th ed. Baltimore:Williams&Wilkins, 1994
    [194]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001
    [195]Gilbert EJ, Drozd JW Jones CW. Physiological regulation and optimization of lipase activity in Pseudomonas aeruginosa EF2. J. Gen. Microbiol.1991, 137(9):2215-2221
    [196]Rosenau F, Jaeger KE. Bacterial lipases from Pseudomonas:Regulation of gene expression and mechanisms of secretion. Biochimie.2000,82 (11):1023-1032
    [197]Nawani N, Kaur J. Purification, characterization and thermostability of a lipase from a thermophilic Bacillus sp. J33. Mol. Cell Biochem.2000, (1-2): 91-96
    [198]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.1976,72(7):248-254
    [199]Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature.1970,227(15):680-685
    [200]Pleiss J, Fischer M, Schmid RD. Anatomy of lipase binding sites:the scissile fatty acid binding site. Chem. Phys. Lipid.1998,93(1):67-80
    [201]Krishna SH, Karanth NG. Lipase and lipase-catalyzed esterification reactions in nonaqueous media. Catal.Rev.2002,44(4):499-591
    [202]Yomo T, Urabe I, Okada H. No stop codons in the antisense strands of the genes for nylon oligomer degradation. Proc. Natl. Acad.Sci.U.S.A.1992,8 (9):3780-3784
    [203]Monnerjahn C, Techel D, Mohamed SA, Rensing LA. non-stop antisense reading frame in the grp78 gene of Neurospora crassa is homologous to the Achlya klebsiana NAD-gdh gene but is not being transcribed. FEMS Microbiol Lett. 2000,183 (2):307-312
    [204]Keiler KC, Shapiro L, Williams KP. tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes:A two-piece tmRNA functions in Caulobacter. Proc. Natl. Acad. Sci. U. S. A.2002,97 (14):7778-7783
    [205]Dieckelmann M, Johnson LA, Beacham IR. The diversity of lipases from psychrotrophic strains of pseudomonas:A novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. J. Appl. Microbiol.1998,85(3): 527-536
    [206]Alquati C, De Gioia L, Santarossa G, Alberghina L, Fantucci P, Lotti M, The cold-active lipase of Pseudomonas fragi:Heterologous expression, biochemical characterization and molecular modeling. Eur. J. Biochem. 2002,269(13):3321-3328
    [207]Zhang AJ, Gao RJ, Diao NB, Xie GQ, Gao G, Cao SG. Cloning, expression and characterization of an organic solvent tolerant lipase from Pseudomonas fluorescens JCM5963. J. Mol. Catal. B:Enzym.2009,56(2-3):78-84
    [208]Madan B, Mishra P. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Appl.Microbiol. Biotechnol.2009, DOI 10.1007/s00253-009-2131-4
    [209]Kirk RE, Othmer DF. Encyclopedia of chemical technology. New York:M. Howe-Grant,1991.781-812
    [210]Welsh FW, Murray WD, Williams RE. Microbiological and enzymatic production of flavor and fragrance chemicals. Crit. Rev. Biotechnol.1989,9(2):105-169
    [211]潘志友,韩双艳,林影,郑穗平.南极假丝酵母脂肪酶B的酿酒酵母表面展示及其催化己酸乙酯的合成.生物工程学报,2008,24(4):673-678
    [212]徐岩,章克昌,王亚非.微生物脂肪酶在正庚烷中合成短链芳香酯的研究.生物工程学报,1998,14(2):214-219
    [213]曾家豫,周兴辉,张继,唐功,高亚娟.有机介质中酶催化合成己酸乙酯的研究.食品科学,2009,30(6):123-127
    [214]Leitgeb M, Knez Z. The influence of water on the synthesis of n-butyl oleate by immobilized Mucor miehei lipase. J. Am. Oil. Chem. Soc.1990,67(11): 775-778
    [215]Zhao XG, Wei DZ, Song QX, Zhang MJ. Study of ibuprofen glucopyranoside derivative synthesis by Candida antarctica lipase in organic solvent. Prep. Biochem. Biotechnol.2007,37(1):27-38
    [216]Pahu jani S, Shukia SK, Bag BP, Kanwar SS, Gupta R. Application of lipase immobilized on nylon-6 for the synthesis of butyl acetate by transesterification reaction in n-heptane. J.Appl. Polymer Sci.2007,106 (4):2724-2729
    [217]Konthanen H, Tenkanen M, Fagerstrom R, Reinikainen T. Characterisation of steryl esterase activities in commercial lipase preparations. J. Biotechnol. 2004,108(1):51-59
    [218]Mutua LN, Akoh CC. Synthesis of alkyl glycoside fatty acid esters in non-aqueous media by Candida sp. Lipase. J. Am. Oil. Chem. Soc.1993,70 (1):43-46
    [219]Zaks A, Klibanov AM. Enzyme-catalyzed processes in organic solvents. Proc. Natl.Acad. Sci. U. S. A.1985,82(10):3192-3196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700