有机相生物催化酯转换合成没食子酸丙酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非水相生物催化是工业生物催化的一个重要方向,提高非水相生物催化效率是生物催化技术目前面临的重要挑战之一。没食子酸丙酯是一种优良的抗氧化剂和重要的医药中间体。本文研究以单宁酶为催化剂,以单宁酸和正丙醇为底物,在有机溶剂中一步酯转换合成没食子酸丙酯的生物催化过程。
     由于酶在水相构象可调、在非水相构象相对刚性,印迹技术可以用于非水相催化中生物酶的超激活。为提高酶的有机相酯转换催化性能,综合应用酶蛋白印迹、抗冻保护和固定化技术,结果显示pH调节、底物印迹和界面激活能显著提高单宁酶的活性,其酯转换催化性能较对照提高了123倍;固定化印迹酶可显著降低由印迹导致的酶团聚,提高印迹酶的表观活力,将印迹酶的表观活力提高了近一倍,底物转化率达到了40%;组合使用TritonX-100、甘露糖和镁离子降低了冻干对酶活性的损失,将酶的底物转化率提高到49%。本研究不仅拓宽了印迹技术的应用范围,也为生物酶的修饰改造提供了参照。
     热稳定性分析发现印迹酶Ed为85.54kJ mol-1,半衰期为1710h,明显高于已有报道;热力学分析结果显示在40-60℃内,酶催化酯转换合成没食子酸丙酯的一步催化反应的AG和△Hd分别为97.1~98.4kJmol-1和82.77~82.94kJmmol-1,均低于单宁酶水解、酯化两步反应自由能叠加,表明一步酯转换效率优于两步反应;该一步反应△S为-0.047~-0.045kJ mol-1K-1,显示该反应为非自发过程:反应动力学研究显示40℃时,其Km值为0.054mM,低于文献报道的单宁酸酶解反应的Km值,表明印迹提高了单宁酶的底物亲和力,进而提升了酶的催化性能。
     为进一步提高酶促酯转换反应的效率,对有机相生物催化反应体系进行了优化。结果显示有机溶剂的极性对反应影响显著,极性低有利于酶促酯转换反应,体系中的水份和正丙醇含量也显著影响反应;采用半连续催化将使催化效率提高约2.5倍,底物转化效率提高到75%。表明有机相生物催化过程中,反应过程控制可以有效提高酶的催化效率,为工程放大提供了依据。
     采用菌丝体直接催化可降低酶分离纯化成本。本研究以黑曲霉菌丝体为催化剂催化单宁酸到没食子酸丙酯的酯转换一步合成,通过反应体系优化和催化方式优化底物转化率也达到43%,说明菌丝体为催化剂用于有机相催化也是可行的。
     论文研究结果将为农、林业废弃物到没食子酸丙酯绿色生物合成提供技术支撑;所采用的酶印迹强化措施对非水相酶生物催化有普适意义,为有机相生物合成化学品提供了可借鉴的技术手段。
Biocatalysis in anhydrous medium is an important subdivision of industrial biocatalysis. Presently, to improve biocatalytic efficiency of enzyme is one of key challenges in biocatalytic technology. Propyl gallate (PG) is an excellent antioxidant and is also considered as important pharmaceutical intermediates. In this paper, the study on biocatalytic process in which tannase catalyzed the direct synthesis PG from tannic acid and propanol by transesterification was carried out.
     In view of the flexibility of enzymatic conformation in aqueous phase and its rigidity in organic medium, imprinting technique is competent to hyper-activate enzyme in anhydrous phase. Imprinting, cryogenic protection, and immobilization techniques were complexly applied to improve the transesterification-catalyzing performance of tannase in organic media. The results showed that such treatments as pH tunning, substrate imprinting, and interfacial imprinting all hyper activate tannase and improve its biocatalytic performance by123folds relative to the original control. Furthermore, immobilizing the imprinted tannase remarkably relieves its aggregation caused by the imprinting, and thus the immobilization increases the apparent activity of the imprinted enzyme and makes its conversion rate of substrate (CR) reach40%. On the other hand, combinational application of Triton X-100, mannose, and magnesium ions reduces the damage of enzyme activity resulted from lyophilization in the protocol of imprinting and promotes its CR up to49%. Not only does the study broaden the application fields of imprinting technique but also presents a reference for modification of enzyme in the future.
     The analysis on thermostability of the imprinted tannase found that its activation energy of irreversible thermal inactivation (Ed) and half-time are85.54kJ mol-1and1710h, respectively, which are more than the previous reports. The thermodynamic analysis of the imprinted tannase indicated that the free energy of Gibbs (ΔG) and enthalpy (ΔH) in enzyme-catalyzing transesterification at40-60℃are97.1~98.4kJ mol-1and82.77~82.94kJ mol-1, respectively, which are lower than the free energy stack from hydrolysis and esterification both catalyzed by tannase. This reveals the biocatalytic efficiency of transesterification (direct synthesis) is higher than that of the two-step biocatalysis composed of hydrolysis and esterification. Entropy of activation of denaturation (ΔS) in the direct synthesis is-0.047~-0.045kJmol-1K-1at40-60℃. It indicates that the reaction cannot run spontaneously. The kinetic analysis of the imprinted tannase showed the Km at40℃is0.054mM, which is less than that in tannic acid-hydrolyzing reaction by tannase. It is inferred that the imprinting enhances the biocatalytic performance of enzyme by improving its affinity to substrate.
     The organic reaction system was optimized further to increase the biocatalytic efficiency of the imprinted tannase. The results showed that the polarity of organic solvent has a significant effect on its biocatalytic efficiency. The organic solvent with a lower polarity, in particular, is more suitable for transesterification. Otherwise, water and propanol contents in the reaction mixture also affect the efficicency. The study on the reaction mode showed that semicontinuous catalysis gives rise to the biocatalytic efficiency2.5-fold increment and achieves a CR of75%. It manifests that to control the process of the enzyme-catalyzed transesterification in organic media is capable of improving its catalytic efficiency. The resultant data can be used as the base for PG production in commercial scale.
     Direct utilization of mycelium as a biocatalyst instead of pure enzyme avails in diminishing the cost in separation and purification of enzyme. In this study, Aspergillus niger mycelium was applied to catalyze the transesterification from tannic acid to PG. The CR of43%was obtained through optimizations of the reaction system and mode. Consequently, it is concluded that mycelium catalyzing the transesterification in organic media is feasible.
     The conclusion in this paper will provide a technical support to ecofriendly synthesize PG with agriculture and forestry residues as raw materials. Moreover, such strengthened measures as imprinting and cryogenic protection not only is widespreadly suitable to biocatalysis in organic media, but also gives a experience means to biosynthesize a few chemicals in organic media.
引文
王征.2009.微乳凝胶固定化单宁酶催化没食子酸酯的合成[J].林产化学与工业,29:1-5.
    王征,卢向阳,罗泽民,等.2004.反胶束中单宁酶催化没食子酸烷基酯的生物合成[J].生物加工过程,2:26-30.
    王贵武,陈茜文,谷文众.2010.单宁酸制备没食子酸丙酯的工艺研究[J].中南林业科技大学学报,30:137-140.
    董斌,宋锡瑾,王杰.2006.脂肪酶生物印迹研究进展[J].中国生物工程杂志,26:78-82.
    Affleck R, Xu ZF, Suzawa V, et al.1992. Enzymatic catalysis and dynamics in low-water environments[J]. Proceedings of the National Academy of Sciences,89:1100-1104.
    Aguilar CN, Rodriguez R, Gutierrez-Sanchez G, et al.2007. Microbial tannases:advances and perspectives[J]. Applied Microbiology and Biotechnology,76:47-59.
    Akerman C O, Hagstrom A EV, Mollaahmad M A, et al.2011. Biolubricant synthesis using immobilised lipase:P rocess opt imisation of t rimethylolpropane ol eate production[J]. Process Biochemistry,46:2225-2231.
    Alexander C, Andersson HS, Andersson LI, et al.2006. Molecular imprinting science and technology:a survey of the literature for the years up to and including 2003[J]. Journal of Molecular Recognition,19:106-180.
    Altreuter D H,D ordick J S, C lark D S.2002. Nonaqueous bi ocatalytic s ynthesis of ne w cytotoxic doxor ubicin de rivatives:e xploitingun expected differences i n the regioselectivity of salt-activated and solubilized subtilisin[J]. Journal of the American Chemical Society,124:1871-1876.
    Anthonsen T, S jursens B.2000 Importance of w ater a ctivity f or enzyme c atalysis in nonaqueous organic systems[M], Birkhauser Verlag, Basel.
    Anwar Y, A rtika I, D anuri H.2010. F ractionation a nd c haracterization of t annin a cyl hydrolase from Aspergillus niger[J]. Hayati Journal of Biosciences,16:95-99.
    Apfel RE.1997. Sonic effervescence:A tutorial on acoustic cavitation[J]. The Journal of the Acoustical Society of America,101:1227-1237.
    Bansal V, Delgado Y, Legault M, et al.2012. Low operational stability of enzymes in dry organic solvents:cha nges in the active s ite m ight affect cat alysis[J]. Molecules,17: 1870-1882.
    Battestin V, Macedo GA.2007. Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii[J]. Electronic Journal of Biotechnology,10: 191-199.
    Bell G, Janssen AEM, Halling PJ.1997. Water activity fails to predict critical hydration level for enzyme activity in polar organic solvents:interconversion of water concentrations and activities[J]. Enzyme and Microbial Technology,20:471-477.
    Belmares R, Contreras-Esquivel J, Rodr guez-Herrera R, et al.2004. Microbial production of tannase:an enzyme with potential use in food industry [J]. L ebensmittel-Wissenschaft Und-Technologie-Food Science and Technology,37:857-864.
    Beniwal V, C hhokar V.2010. S tatistical opt imization of c ulture c onditions for t annase production by Aspergillus awamori MTCC 9299 un der s ubmerged fermentation[J]. Asian Journal of Biotechnology,2:46-52.
    Bhatti HN, Rashid MH, Nawaz R, et al.2007. Effect of a niline c oupling o n ki netic a nd thermodynamic properties of Fusarium solani glucoamylase[J]. Applied Biochemistry and Biotechnology,73:1290-1298.
    Boadi D, Neufeld R.2001. Encapsulation of tannase for the hydrolysis of tea tannins[J]. Enzyme and Microbial Technology,28:590-595.
    Bracey E,S tenning R A, Brooker B E.1998. Relating them icrostructure of enzyme dispersions i n or ganic s olvents t o t heir ki netic be havior[J]. Enzyme a nd M icrobial Technology,22:147-151.
    Broos J, Visser A JWG, Engbersen JFJ, et al.1995. Flexibility of enzymes suspended in organic s olvents pr obed by t ime-resolved fluorescence ani sotropy. Evidence t hat enzyme act ivity and enantioselectivity ar e di rectly related to enzyme f lexibility[J]. Journal of the American Chemical Society,117:12657-12663.
    Cantarelli C, Brenna O, Giovanelli G, et al.1989. Beverage stabilization through enzymatic removal of phenolics[J]. Food Biotechnology,3:203-213.
    Cao X, Yang J, Shu L, et al.2009. Improving esterification activity of Burkholderia cepacia lipase encapsulated in silica by bioimprinting with substrate analogues[J]. Process Biochemistry,44:177-182.
    Carpenter JF, Hand SC, Crowe JH, et al.1989.Cryogenic protectant for proteins.4,806,343[P]
    Chavez-Gonzalez M, Rodriguez-Duran LV, Balagurusamy N, et al.2011. Biotechnological advances and challenges of tannase:an overview[J]. Food and Bioprocess Technology, 5:445-459.
    Chandini S K, R ao LJ, G owthaman MK, et al.2011. E nzymatic t reatment t o i mprove t he quality of black tea extracts[J]. Food Chemistry,127:1039-1045.
    Chhokar V, Sangwan M, Beniwal V, et al.2010. Effect of additives on the activity of tannase from Aspergillus awamori MTCC9299[J]. B iotechnology a nd B ioengineering,160: 2256-2264.
    Choi YS, Yoo YJ.2012. A hydrophilic and hydrophobic organic solvent mixture enhances enzyme stability in organic media[J]. Biotechnology Letters, (in press).
    Chowdary G V, Prapulla S G.2002. T he influence of w ater a ctivity on t he lipase c atalyzed synthesis of butyl butyrate by transesterification[J]. Process Biochemistry,38:393-397.
    Chung KT, Wong TY, Wei CI, et al.1998. Tannins and human health:a review[J]. Critical Reviews in Food Science and Nutrition,38:421-464.
    Cleland WW.1963. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. Ⅰ. Nomenclature and rate equations[J]. Biochimica Et Biophysica Acta,67: 104-137.
    Costa A, Ribeiro W, Kato E, et al.2008. Production of tannase by Aspergillus tamarii in submerged cultures[J]. Brazilian Archives of Biology and Technology,51:399-404.
    Curiel JA, Betancor L, de las Rivas B, et al.2010. Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of tannase from Lactobacillus plantarum[J]. Journal of Agricultural and Food Chemistry,58:6403-6409.
    Debulis K, Klibanov A M.1993. Dramatic e nhancement of e nzymatic a ctivity i n organic solvents by lyoprotectants[J]. Biotechnology and Bioengineering,41:566-571.
    Dolatabadi JEN, Kashanian S.2010. A review on DNA interaction with synthetic phenolic food additives[J]. Food Research International,43:1223-1230.
    Doukyu N, Ogino H.2010. Organic solvent-tolerant enzymes[J]. Biochemical Engineering Journal,48:270-282.
    Dunn R O.2005. Effect of a ntioxidants on t he oxi dative s tability of methyl s oyate (biodiesel)[J]. Fuel Processing Technology,86:1071-1085.
    Eler GJ, Peralta RM, Bracht A.2009. The action of n-propyl gallate on gluconeogenesis and oxygen uptake in the rat liver[J]. Chemico-Biological Interactions,181:390-399.
    Ema T.2004. R ational s trategies f or hi ghly e nantioselective 1 ipase-catalyzed ki netic resolutions of v ery bul ky chiral c ompounds:s ubstrate de sign a nd high-temperature biocatalysis[J]. Tetrahedron-Asymmetry,15:2765-2770.
    Enemuor S C, Odibo F JC.2009. Culture c onditions f or t he pr oduction of a t annase of Aspergillus tamarii IMI388810 (B)[J]. African Journal of Biotechnology,8:2554-2557.
    Eyring H, S team A E.1939. T he a pplication of t he t heory of a bsolute r eacton rates t o proteins[J]. Chemical reviews,24:253-270.
    Fernandez-Lorente G, Bolivar JM, Rocha-Martin J, et al.2011. Synthesis of propyl gallate by transesterification of tannic acid in aqueous media catalysed by immobilised derivatives of tannase from Lactobacillus plantarum[J]. Food Chemistry,128:214-217.
    Fernandez-Lorente G, Palomo JM, Cabrera Z, et al.2007. Improved catalytic properties of immobilized lipases by the presence of very 1 ow c oncentrations of de tergents in the reaction medium[J]. Biotechnology and Bioengineering,97:242-250.
    Fishman A, Cogan U.2003. B io-imprinting of lipases with fatty acids[J]. J ournal of Molecular Catalysis B-Enzymatic,22:193-202.
    Fitzpatrick PA, Klibanov AM.1991. How can the solvent affect enzyme enantioselectivity[J]. Journal of the American Chemical Society,113:3166-3171.
    Foresti M L, A limenti G A, Ferreira M L.2005.Interfacial a ctivation a nd bi oimprinting of Candida rugosa Iipase immobilized on polypropylene:effect on the enzymatic activity in s olvent-free et hyl ol eate s ynthesis[J]. Enzyme and Microbial Technology,36: 338-349.
    Furukawa S, Ono T, Ijima H, et al.2001. Enhancement of activity of sol-gel immobilized lipase i n or ganic media by pr etreatment w ith s ubstrate a nalogues[J]. Journal of Molecular Catalysis B:Enzymatic,15:65-70.
    Gaathon A, Gross Z, Rozhanski M.1989. Propyl gallate:enzymatic synthesis in a reverse micelle system[J]. Journal of Molecular Catalysis B-Enzymatic,11:604-609.
    Gonzalez-Navarro H, Braco L.1997.Improving lipase a ctivity i n s olvent-free media by interfacial activation-based molecular bioimprinting[J]. Journal of Molecular Catalysis B:Enzymatic,3:111-119.
    Gonzalez-N avarro H, Braco L.1998. Lipase-enhanced activity in flavour ester reactions by t rapping e nzyme c onformers i n t he pr esence of i nterfaces[J]. Biotechnology a nd Bioengineering,59:122-127.
    Graber M, Bousquet-Dubouch MP, Lamare S, et al.2003. Alcoholysis catalyzed by Candida antarctica lipase B in a gas/solid system:e ffects of water on kinetic pa rameters[J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,1648:24-32.
    Graber M, Irague R, Rosenfeld E, et al.2007. Solvent as a competitive inhibitor for Candida antarctica lipase B[J]. Biochimica et B iophysica A eta (BBA)-Proteins & Proteomics, 1774:1052-1057.
    Guinn R M, S kerker P S, Kavanaugh P, et al.1991. Activity a nd f lexibility of alcohol dehydrogenase in organic solvents[J]. Biotechnology and Bioengineering,37:303-308.
    Gupta MN.1992. Enzyme function in organic solvents[J]. European Journal of Biochemistry, 203:25-32.
    Gupta MN, Roy I.2004. E nzymes in organic media. Forms, functions and applications[J]. European Journal of Biochemistry,271:2575-2583.
    Hailing P.2002 E nzyme c atalysis i n o rganic s ynthesis:A c omprehensive ha ndbook[M], Wiley.
    Hama S, Yoshida A, Nakashima K, et al.2010. Surfactant-modified yeast whole-cell biocatalyst di splaying 1 ipase on c ell s urface f or e nzymatic pr oduction of s tructured lipids in organic media[J]. Applied Microbiology and Biotechnology,87:537-543.
    Han YH, Moon H J, You B R, et al.2010. Propyl gallate inhibits the growth of endothelial cells, especially cal f pul monary ar terial endot helial cel ls v ia cas pase-independent apoptosis[J]. International Journal of Molecular Medicine,25:937-944.
    Hartsough DS, Merz KM.1992. Protein flexibility in aqueous and nonaqueous solutions[J]. Journal of the American Chemical Society,114:10113-10116.
    Hillberg A, Tabrizian M.2008. B iomolecule i mprinting:de velopments i n m imicking dynamic natural recognition systems[J]. ITBM-RBM,29:89-104.
    Hota SK, Dutta JR, Banerjee R.2007. Immobilization of tannase from Rhizopus oryzae and its efficiency to produce gallic acid from tannin rich agro-residues[J]. Indian Journal of Biotechnology,6:200-204.
    Hsu WT, Clark DS.2001. Variations in the enantioselectivity of sahctivated subt ilisin induced by lyophilization[J]. Biotechnology and Bioengineering,73:231-237.
    Iyer PV, Ananthanarayan L.2008. Enzyme stability and stabilization-Aqueous a nd non-aqueous environment[J]. Process Biochemistry,43:1019-1032.
    Javed M R, R ashid M H, N adeem H, et al.2009. C atalytic a nd thermodynamic characterization of endoglucanase (CMCase) from Aspergillus oryzae cmc-1[J]. Applied Biochemistry and Biotechnology,157:483-497.
    Jiang X, Tian W, Z hao C, et al.2007. A nov el s ol-gel-material pr epared by a s urface imprinting technique for the selective solid-phase extraction of bisphenol A[J]. Talanta, 72:119-125.
    Jin X, Liu B, Ni Z, et al.2011. A novel control of enzymatic enantioselectivity through the racemic t emperature i nfluenced byr eaction media[J]. Enzyme and Microbial Technology,48:454-457.
    Kahveci D, Xu X.2011. Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil[J]. Biotechnology Letters,33:2065-2071.
    Kamiya N, Kasagi H, I noue M, et al.1999. E nantioselective r ecognition mechanis of secondary alcohol by surfactant-coated lipases in nonaqueous media[J]. Biotechnology and Bioengineering,65:227-232.
    KarB, Banerjee R, Bhattacharyya B C.2002. Optimization of physicochemical parameters for ga llic a cid pr oduction bye volutionary ope ration-factorial de sign t echnique[J]. Process Biochemistry,37:1395-1401.
    Kasieczka-Burnecka M, Kuc K, Kalinowska H, et al.2007. Purification and characterization of two c old-adapted extracellular tannin acy 1 h ydrolases f rom an Antarctic s train Verticillium sp. P9[J]. Applied Biochemistry and Biotechnology,77:77-89.
    Kim J, Clark DS, Dordick JS.2000. Intrinsic effects of solvent polarity on enzymic activation energies[J]. Biotechnology and Bioengineering,67:112-116.
    King E L, A ltman C.1956. As chematic m ethodo fde riving ther ate 1 aws for enzyme-catalyzed reactions[J]. Journal of Physical Chemistry,60:1375-1378.
    Klibanov A, Zaks A.1984. Enzymatic catalysis in organic media at 100℃[J]. Science,224: 1249-1251.
    Klibanov AM.1995. What Is remembered and why?[J]. Nature,374:596.
    Klibanov A M.1997. Why are e nzymes less active in or ganic solvents t han i n w ater?[J]. TRENDS in Biotechnology,15:97-101.
    Klibanov AM.2001. Improving enzymes by using them in organic solvents[J]. Nature,409: 241-246.
    Laane C, Boeren S, Vos K, et al.1986. Rules for optimization of biocatalysis in organic solvents[J]. Biotechnology and Bioengineering,30:81-87.
    Lane R W, Y amakoshi J, K ikuchi M, et al.1997. S afety e valuation of t annase e nzyme preparation derived from Aspergillus oryzae[J]. F ood and Chemical Toxicology,35: 207-212.
    Lara P V, Park EY.2004. Potential application of waste activated bleaching earth on the production of fatty acid alkyl esters using Candida cylindracea lipase in organic solvent system[J]. Enzyme and Microbial Technology,34:270-277.
    Lee D, Choi YK, K im M J.2000. Enhancing t he e nantioselectivity of 1 ipase i n transesterification by s ubstrate m atching:A n enzyme m emory ba sed approach[J]. Organic Letters,2:2553-2555.
    Lekha PK, Lonsane BK.1997. Production and application of tannin acyl hydrolase:state of the art[J]. Advances in Applied Microbiology,44:215-260.
    Li L, DuW,Liu D, et al.2006. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium[J]. Journal of Molecular Catalysis B-Enzymatic,43:58-62.
    Lin G, Lin WY.1998. Microwave-promoted lipase-catalyzed reactions[J]. Tetrahedron letters, 39:4333-4336.
    Lin G, Liu HC.1995. Ultrasound-promoted lipase-catalyzed reactions[J]. Tetrahedron letters, 36:6067-6068.
    Lindsay JP, Clark DS, Dordick JS.2004. Combinatorial formulation of biocatalyst preparations for i ncreased activity i n organic s olvents:s alt act ivation of pe nicillin amidase[J]. Biotechnology and Bioengineering,85:553-560.
    Liu T, L iu Y, Wang XF, et al.2011. I mproving c atalytic pe rformance of Burkholderia cepacia lipase i mmobilized on m acroporous r esin NKA[J]. Journal of M olecular Catalysis B-Enzymatic,71:45-50.
    Liu Y, Zhang X, Tan H, et al.2010. Effect of pretreatment by different organic solvents on esterification activity and conformation of immobilized Pseudomonas cepacia lipase[J]. Process Biochemistry,45:1176-1180.
    Lokeswari N, R aju K J.2007. Tannase pr oduction by Aspergillus niger[J]. E-Journal of Chemistry,4:192-198.
    Lousa D, Baptista AM, Soares CM.2012. Analyzing the molecular basis of enzyme stability in ethanol/water mixtures using molecular dynamics simulations[J]. Journal of Chemical Information and Modeling,52:465-473.
    Muller R, Andersson LI, Mosbach K.1993. M olecularly imprinted polymers facilitating a β-elin ination reaction [J]. D ie M akrom olekulare Chem ie, Rapid Com m unications,14: 637-641.
    Mahapatra K, Nanda RK, Bag SS, et al.2005. Purification, characterization and some studies on s econdary s tructure of t annase f rom Aspergillus awamori nakazawa[J]. Process Biochemistry,40:3251-3254.
    Marco M G, Rodriguez LV, R amos E L, et al.2009. A novel t annase from t he X erophilic Fungus Aspergillus niger GH1[J]. Journal of M icrobiology a nd Biotechnology,19: 987-996.
    Mason TJ.1997. Ultrasound in synthetic organic chemistry[J]. Chemical Society Reviews,26: 443-451.
    Mingarro I, Abad C, Braco L.1995. Interfacial activation-based molecular bioimprinting of lipolytic e nzymes[J]. P roceedings of t he National Academy of Sciences U SA,92: 3308-3312.
    Mingarro I, Gonzalez-Navarro H, Braco L.1996. Trapping of different lipase conformers in water-restricted environments[J]. Biochemistry,35:9935-9944.
    Mohapatra PKD, Pati BR, Mondal KC.2009. Effect of amino acids on tannase biosynthesis by Bacillus licheniformis KBR6[J]. Journal of Microbiology, Immunology and Infection, 42:172-175.
    Morgan J A, Clark D S.2004. S alt activation of nonhydrolase enzym es for use in organic solvents[J]. Biotechnology and Bioengineering,85:456-459.
    Mosbach K.2001. Toward the next generation of molecular imprinting with emphasis on the formation, by direct molding, of compounds with biological activity (biomimetics)[J]. Analytica Chimica Acta,435:3-8.
    Mueller-Harvey 1.2001. Analysis of h ydrolysable t annins[J]. Animal F eed Science an d Technology,91:3-20.
    Noel Robledo S, Alicia Zon M, Daniel Ceballos C, et al.2011. Qualitative and quantitative electroanalysis of synthetic phenolic antioxidant mixtures in edible oils based on t heir acid-base properties[J]. Food Chemistry,127:1361-1369.
    Noureddini H, Gao X, Philkana RS.2005. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil[J]. Bioresource Technology,96:769-777.
    Ornstein R L, Y a-Jun Z.1996. A m olecular dy namics s tudy of t he e ffect of c arbon tetrachloride on enzyme structure and dynamics:subtilisin[J]. Protein Engineering,9: 485-492.
    Pan S, Liu X, X ie Y, et al.2010. Esterification activity and conformation studies of Burkholderia cepacia lipase i n c onventional or ganic s olvents, i onic 1 iquids a nd t heir co-solvent mixture media[J]. Bioresource Technology,101:9822-9824.
    Park WH, Han YH, Moon HJ, et al.2010. Propyl gallate inhibits the growth of HeLa cells via cas pase-dependent a poptosis a s w ell a s a G 1 ph ase ar rest of t he cel 1 c ycle[J]. Oncology Reports,23:1153-1158.
    Parker MC, Besson T, Lamare S, et al.1996. Microwave radiation can increase the rate of enzyme-catalysed reactions in organic media[J]. Tetrahedron letters,37:8383-8386.
    Piletsky S, Piletskaya E, Yano K, et al.1996. A biomimetic receptor system for sialic acid based on molecular imprinting[J]. Polymer-Plastics Technology and Engineering,29: 157-170.
    Rahman RN, Salleh AB, Basri M, et al.2011. Role o f a lpha-helical s tructure in organic solvent-activated homodimer of elastase strain K[J]. International Journal of Molecular Sciences,12:5797-5814.
    Ramos E L, Mata-Gomez M A, R odriguez-Duran LV, et al.2011. C atalytic and thermodynamic properties of a tannase produced by Aspergillus niger GH1 grown on polyurethane foam[J]. Applied Biochemistry and Biotechnology,165:1141-1151.
    Rout S, Banerjee R.2006. Production of tannase under mSSF and its application in fruit juice debittering[J]. Indian Journal of Biotechnology,5:346-350.
    Roy I, G upta M N.2003. N on-thermal e ffects of microwaves on protease-catalyzed esterification and transesterification[J]. Tetrahedron,59:5431-5436.
    Ru M T, Hirokane S Y, L o AS, et al.2000. On the salt-induced activation of lyophilized enzymes in organic solvents:effect of salt kosmotropicity on enzyme activity[J]. Journal of the American Chemical Society,122:1565-1571.
    Ru MT, Wu KC, Lindsay JP, et al.2001. Towards more active biocatalysts in organic media: Increasing the activity of salt-activated enzym es[J]. B iotechnology and Bioengineering, 75:187-196.
    Russel A, Klibanov A.1988. Inhibitor-induced enzyme activation i n or ganic solvents[J]. Journal of Biological Chemistry,263:11624-11626.
    Sabu A, Kiran GS, Pandey A.2005. Purification and characterization of tannin acyl hydrolase from Aspergillus niger ATCC 16 620[J]. F ood T echnology a nd Biotechnology,43: 133-138.
    Sarin A, Singh NP, Sarin R, et al.2010. Natural and synthetic antioxidants:Influence on the oxidative s tability of bi odiesel s ynthesized from n on-edible oil[J]. E nergy,35: 4645-4648.
    Selwal MK, Yadav A, Selwal KK, et al.2010. Optimization of cultural conditions for tannase production by Pseudomonas aeruginosa ⅢB 8914 un der s ubmerged f ermentation[J]. World Journal of Microbiology & Biotechnology,26:599-605.
    Serdakowski AL, Dordick JS.2008. Enzyme activation for organic solvents made easy[J]. TRENDS in Biotechnology,26:48-54.
    Sergeyeva TA, Piletsky SA, Piletska EV, et al.2003. In situ formation of porous molecularly imprinted polymer membranes[J]. Macromolecules,36:7352-7357.
    Shah S, Gupta MN.2007. Lipase c atalyzed preparation of bi odiesel from Jatropha oil in a solvent free system[J]. Process Biochemistry,42:409-414.
    Shah S, S harma S, G upta M N.2004. Biodiesel pr eparation by 1 ipase-catalyzed transesterification of Jatropha oil[J]. Energy & Fuels,18:154-159.
    Shahidi F.2000. Antioxidants in food and food antioxidants[J]. Nahrung,44:158-163.
    Sharma S, Bhat TK, Dawra RK.1999. Isolation, purification and properties of tannase from Aspergillus niger van Tieghem[J]. World Journal of Microbiology & Biotechnology,15: 673-677.
    Sharma S, B hat TK, G upta M N.2002. B ioaffinity i mmobilization of t annase from Aspergillus niger on concanavalin A-Sepharose CL-4B[J]. Biotechnology and Applied Biochemistry,35:165-169.
    Sharma S, Gupta MN.2003. S ynthesis of a ntioxidant pr opyl ga llate us ing t annase from Aspergillus niger van T eighem i n nona queous m edia[J]. Bioorganic & M edicinal Chemistry Letters,13:395-397.
    Singh M, S ingh RS, Banerjee U C.2010. Enantioselective transesterification of racemic phenyl e thanol a nd i ts d erivatives i n or ganic s olvent a nd i onic 1 iquid us ing Pseudomonas aeruginosa lipase[J]. Process Biochemistry,45:25-29.
    Singh RS, Saini GK, K ennedy J F.2010. Covalent i mmobilization a nd t hermodynamic characterization of pul lulanase f or t he hy drolysis of pul lulan i n ba tch s ystem[J]. Carbohydrate Polymers,81:252-259.
    Slade CJ, Vulfson EN.1998. Induction of catalytic activity in proteins by lyophilization in the presence of a transition state analogue[J]. Biotechnology and B ioengineering,57: 211-215.
    Soumanou MM, Bornscheuer UT.2003. Improvement in lipase-catalyzed synthesis of fatty acid m ethyl e sters f rom s unflower oil[J]. E nzyme a nd M icrobial T echnology,33: 97-103.
    Srivastava A, K ar R.2009. Characterization a nd a pplication of t annase pr oduced b y Aspergillus Niger Itcc 6514.07 on Pomegranate Rind[J].B razilian J ournal of Microbiology,40:782-789.
    Stahl M, Jeppssonwistrand U, M ansson M O, et al.1991.Induceds tereoselectivity and substrate se lectivity of bi o-imprinted A lpha-Chymotrypsin i n a nhydrous or ganic media[J]. Journal of the American Chemical Society,113:9366-9368.
    Stark B, Pabst G, Prassl R.2010. Long-term stability of sterically stabilized liposomesby freezing and freeze-drying:Effects of cryoprotectants on structure[J]. European j ournal of pharmaceutical sciences:official journal of the European Federation for Pharmaceutical Sciences,41:546-555.
    Su EZ, Xia T, Gao LP, et al.2010. Immobilization and characterization of tannase and its haze-removing[J]. Food Science and Technology International,15:545-552.
    Su EZ, Xu WQ, Gao KL, et al.2007. Lipase-catalyzed in situ reactive extraction of oilseeds with s hort-chained alkyl acet ates for fatty aci d esters pr oduction[J]. Journal of Molecular Catalysis B-Enzymatic,48:28-32.
    Teke AB, S ezginturk M K, T eke M, et al.2007. A bio-imprinted a scorbate oxi dase biosensor[J]. International Journal of Environmental Analytical Chemistry,87:723-729.
    Teke M, S ezginturk M K, Dinckaya E, et al.2008. A bi o-imprinted ur ease bi osensor: Improved thermal and operational stabilities[J]. Talanta,74:661-665.
    Terradas F, Testonhenry M, Fitzpatrick PA, et al.1993. M arked dependence of enzyme prochiral selectivity on the solvent[J]. Journal of the American Chemical Society,115: 390-396.
    Thakar A, M adamwar D.2005. Enhanced e thyl but yrate pr oduction by s urfactant c oated lipase immobilized on silica[J]. Process Biochemistry,40:3263-3266.
    Toba S, Hartsough DS, Merz Jr K M.1996. Solvation and dynamics of chymotrypsin in hexane[J]. Journal of the American Chemical Society,118:6490-6498.
    Vossenberg P, Beeftink HH, Nuijens T, et al.2012. Performance of Alcalase formulations in near dry organic media:Effect of enzyme hydration on dipeptide synthesis[J]. Journal of Molecular Catalysis B:Enzymatic,78:24-31.
    Vulfson EN, Halling PJ, Holland HL.2001 Enzymes in nonaqueous solvents:methods and protocols[M], Humana Pr Inc, New Jersey.
    Watanabe K, Yoshida T, Ueji S.2004. The role of conformational flexibility of enzymes in the discrimination between amino acid and ester substrates for the subtilisin-catalyzed reaction in organic solvents[J]. Bioorganic chemistry,32:504-515.
    Wedberg R, Abildskov J, Peters GH.2012. Protein dynamics in organic media at varying water a ctiviry s tudied by molecular dy namics simulation[J]. The Journal of Physical Chemistry B,116:2575-2585.
    Weetall HH.1985. Enzymatic synthesis of gallic acid esters[J]. Applied Biochemistry and Biotechnology,11:25-28.
    Willner I, Liondagan M, Rubin S, et al.1994. Photoregulation of alpha-chymotrypsin activity in or ganic m edia-effects of bi oimprinting[J]. Photochemistry a nd P hotobiology,59: 491-496.
    Wu J C, Song B D, X ing AH, et al.2002. Esterification reactions cat alyzed by surfactant-coated Candida rugosa lipase in organic solvents[J]. Process Biochemistry, 37:1229-1233.
    Wullf G.1986. Polymeric reagents and catalysts[C]. In:ACS Symposium Ser. ACS Publications, Washington,186-230.
    Xu CJ, Chen XQ.2011. Molecular property-affinity relationship of the interaction between dietary polyphenols and bovine milk proteins[J]. Food & Function,2:368-375.
    Xu K, Klibanov A M.1996. pH c ontrol of the catalytic a ctivity of cross-linked enzyme crystals i n or ganic s olvents[J]. Journal of t he American C hemical S ociety,118: 9815-9819.
    Yang JK, Liu LY, Cao XW.2010. Combination of bioimprinting and silane precursor alkyls improved t he a ctivity of s ol-gel-encapsulated lipase[J]. Enzyme and Microbial Technology,46:257-261.
    Yang Z, Z acherl D, R ussell A J.1993. pH-dependence of s ubtilisin di spersed i n organic solvents[J]. Journal of the American Chemical Society,115:12251-12257.
    Yilmaz E.2002.Improving t he a pplication of m icrobial lipase by bi o-imprinting at substrate-interfaces[J]. World Journal of Microbiology & Biotechnology,18:37-40.
    Yilmaz E.2003. O rlistat-induccd m olecular bi o-imprinting of m icrobial lipase[J]. World Journal of Microbiology & Biotechnology,19:161-165.
    Yu XW.2004. Enzymatic s ynthesis of ga llic a cid e sters us ing m icroencapsulated t annase: effect of organic s olvents a nd enzyme specificity [J]. J ournal of M olecular Catalysis B-Enzymatic,30:69-73.
    Yu X W, L i Y Q.2006. K inetics a nd t hermodynamics of s ynthesis of pr opyl ga Hate b y mycelium-bound t annase f rom Aspergillus niger in organic solvent[J]. J ournal of Molecular Catalysis B-Enzymatic,40:44-50.
    Yu X W, Li Y Q, Z hou S M, et al.2007. Synthesis of propyl gallate b y mycelium-bound tannase from Aspergillus niger in organic solvent[J]. World Journal of Microbiology & Biotechnology,23:1091-1098.
    Yuri L. Khmelnitsky, Stephanie H. Welch, Douglas S. Clark, et al.1994. Salts dramatically enhance activity of enzymes suspended in organic solvents[J]. Journal of the American Chemical Society,116:2647-2648.
    Zaks A, K libanov A M.1985. E nzyme-catalyzed processes i nor ganic s olvents[J]. Proceedings of the National Academy of Sciences,82:3192-3196.
    Zaks A, Klibanov AM.1988. The effect of water on enzyme action in organic media[J]. Journal of Biological Chemistry,263:8017-8021.
    Zhang H, Ye L, Mosbach K.2006. Non-covalent molecular imprinting with emphasis on its application in separation and drug development[J]. Journal of Molecular Recognition, 19:248-259.
    Zhu L, Yang W, Meng YY, et al.2012. Effects of organic solvent and crystal water on gamma-Chymotrypsin in acetonitrile media:O bservations from molecular d ynamics simulation a nd D FTc alculation[J]. T he Journal of P hysical C hemistry B,116: 3292-3304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700