全细胞脂肪酶生物催化剂的构建及其在生物转化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色化工的兴起为高效率、低能耗、低排放生产化工产品提供了充分保障。生物转化是绿色化工的重要组成部分,脂肪酶由于其催化反应及底物类型多样而在生物转化中扮演了重要角色。目前应用的脂肪酶主要是游离型脂肪酶或基质固定化脂肪酶。近年来,全细胞生物催化剂做为降低酶催化剂成本的最有前景的方法之一,引起研究工作者的重视。酵母展示表达系统构建的全细胞脂肪酶生物催化剂由于使酶分子成为细胞壁的一部分并且展示在细胞表面,故不仅在活性和稳定性方面显著高于游离酶和基质固定化酶,且大大降低了生产成本,可多次重复利用,为脂肪酶的高效生物转化研究及应用提供了有效的途径。
     本论文根据酵母密码子偏爱性优化设计脂肪酶ROL和CALB两个基因,利用酿酒酵母和毕赤酵母表面展示表达系统,用连接肽将脂肪酶与酵母细胞壁成分α凝集素连接,成功构建了4个重组酵母全细胞脂肪酶生物催化剂。以酿酒酵母表面展示表达ROL的全细胞脂肪酶生物催化剂为例,研究其酶学性质、水相油脂水解应用、非水相生物柴油合成应用及分子印迹法的影响等方面展开研究工作,并得出以下主要结论:
     1,三丁酸甘油酯平板水解圈法鉴定阳性克隆及液体培养基发酵上清液测定无脂肪酶活性,证明了酿酒酵母表面展示表达ROL的全细胞脂肪酶生物催化剂构建成功。据我们所知,这是首次报道α凝集素酿酒酵母展示表达系统与密码子优化技术结合,从而获得了高酶活的全细胞脂肪酶生物催化剂。其水解酶活为25±0.89U/g干细胞,最适温度40℃,最适pH7.0,酯化酶活为5.12U/g干细胞。
     2,以水解三丁酸甘油酯为例,研究了全细胞脂肪酶生物催化剂的水解应用。证实全细胞脂肪酶生物催化剂在水相中有很强的水解能力,144小时丁酸的转化率达到96.91%。未来将可以尝试应用于各种有酯键结构的底物水解。
     3,首次报道将分子印迹技术和全细胞脂肪酶生物催化剂结合,显著提高了全细胞脂肪酶生物催化剂在有机相中的催化活性和热稳定性。在有机相油酸甲酯的生物转化反应中,分子印迹法制备的全细胞脂肪酶生物催化剂转化率为96.30%,是非分子印迹组的2倍(50.32%)。分子印迹技术使脂肪酶的催化活性中心在有机相中保持活化状态,极大提高了催化效率。而在水相中,分子印迹法制备全细胞脂肪酶生物催化剂对其水解活性和热稳定性提高不显著。
     4,分子印迹法制备的全细胞脂肪酶生物催化剂成功应用于生物柴油的生物转化试验,在有机相中大豆油转化成生物柴油,转化率为77.71%,是非分子印迹组的5倍(15.46%)。进一步证明了分子印迹技术在有机相中可显著提高全细胞脂肪酶生物催化剂的酯化效率。分子印迹全细胞脂肪酶生物催化剂于60℃反应27小时,生物柴油的转化率高达95.45+2.73%,且参与反应的酵母细胞仍然活着,具有耐高温和耐有机溶剂的特性,这些特性对全细胞生物催化剂合成生物柴油的工业化生产有重要的积极意义。
     以上的结果表明分子印迹技术与酵母表面展示技术结合制备的全细胞生物催化剂,在有机相催化反应中具有更高的活性和稳定性,为将来的工业化生物转化应用奠定了基础。
The development of green chemistry encourages the design of products and processes that minimize the use and generation of hazardous substances with high efficiency, low energy consumption and low emission. Bioconversion, also known as biotransformation refers to the use of microorganisms or enzymes to carry out a chemical reaction, is an important part of green chemistry. Lipases perform essential roles in bioconversion, because of their various catalytic reactions and substrates. Currently, the main types of lipase applied in the industry are free and immobilized enzymes. Whole-cell biocatalyst is a novel immobilization technology to improve cost efficiency of enzymes, has caused the attention of researchers. Yeast surface display technique has been often utilized to construct whole-cell biocatalysts, making enzymes displayed on the cell surface by gene modification, with better performance in enzyme activity, stability, cost and recycle.
     Here, based on the yeast surface display system with a-agglutinin as the anchor,4recombinant yeast whole-cell biocatalysts have been successfully constructed, displaying codon optimized ROL and CALB, respectively. One of them, ROL-displayed S.cerevisiae, was chosen as a whole-cell biocatalyst to study in this paper. Enzyme activities and properties, oil hydrolysis in aqueous phase, biodiesel synthesis in non aqueous phase, and influence of bioimprinting have been studied. The main results are summarized as follows.
     The results of halo assay by tributyrin plate medium and no detection of lipase activity in supernatant of liquid medium have indicated that the yeast whole-cell ROL biocatalyst was constructed successfully. To our knowledge, this was the first attempt to combine the techniques of yeast surface display with a-agglutinin as the anchor and codon optimization for whole-cell biocatalyst construction. Consequently, the hydrolysis activity was25±0.89U/g dried cells, the esterification activity was5.12U/g dried cells and the optimum pH and temperature was pH7.0and40℃.
     The application of the whole-cell biocatalyst in aqueous phase was studied in the test of tributyrin hydrolysis. The conversion of butyric acid reached96.91%after144h. The whole-cell biocatalyst could be applied in hydrolysis of various substrates with ester bond in the future.
     Then, the bioimprinting technique was applied to whole-cell biocatalyst to improve the activity and thermostability in organic phase for the first time. Bioimprinting of lipases with fatty acid was shown to be a feasible and effective method for obtaining highly active enzymes in organic solvents. The whole-cell biocatalyst was bioimprinted with oleic acid, gaining2-fold (96.30%to50.32%) increase in the bioconversion of oleic acid methyl ester. However, the influence of bioimprinting on activity and thermostability of the whole-cell biocatalyst in aqueous phase was not obvious.
     Furthermore, the bioimprinted whole-cell lipase biocatalyst was applied to biodiesel bioconversion, gaining5-fold (77.71%to15.46%) increase in the alcoholysis of soybean oil to biodiesel. Moreover, the conversion of biodiesel was up to95.45℃2.73%after a27h reaction at60℃. Surprisingly, the yeast cells were still alive after the reaction, showing outstanding thermostability and tolerance of organic solvent.
     These results indicate that the combination of bioimprinting with yeast surface display technique to prepare whole-cell biocatalyst has been prove to be a powerful strategy for obtaining an even more active and stable biocatalyst preparation for industrial bioconversion.
引文
Adamczak M and Bednarski W. Enhanced Activity of Intracellular Lipases From Rhizomucor Miehei and Yarrowia Lipolytica by Immobilization On Biomass Support Particles. PROCESS BIOCHEMISTRY.2004,39:1347-1361.
    Adamczak M, Bornscheuer U T and Bednarski W. The Application of Biotechnological Methods for the Synthesis of Biodiesel. EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY. 2009,111:800-813.
    Andersson S and Kurland C G. Codon Preferences in Free-Living Microorganisms. MICROBIOLOGICAL REVIEWS.1990,54:198-210.
    Arai S, Nakashima K, Tanino T, Ogino C, Kondo A and Fukuda H. Production of Biodiesel Fuel From Soybean Oil Catalyzed by Fungus Whole-Cell Biocatalysts in Ionic Liquids. ENZYME AND MICROBIAL TECHNOLOGY.2010,46:51-55.
    Balcao V M, Paiva A L and Malcata F X. Bioreactors with Immobilized Lipases:State of the Art. ENZYME AND MICROBIAL TECHNOLOGY.1996,18:392-416.
    Ban K, Kaieda M, Matsumoto T, Kondo A and Fukuda H. Whole Cell Biocatalyst for Biodiesel Fuel Production Utilizing Rhizopus Oryzae Cells Immobilized within Biomass Support Particles. BIOCHEMICAL ENGINEERING JOURNAL.2001,8:39-43.
    Beer H D, Wohlfahrt G, Schmid R D and Mccarthy J. The Folding and Activity of the Extracellular Lipase of Rhizopus Oryzae are Modulated by a Prosequence. BIOCHEMICAL JOURNAL.1996,319: 351-359.
    Brady L, Brzozowski A M, Derewenda Z S, Dodson E, Dodson G, Tolley S, Turkenburg J P, Christiansen L, Hugejensen B, Norskov L, Thim L and Menge U. A Serine Protease Triad Forms the Catalytic Center of a Triacylglycerol Lipase. NATURE.1990,343:767-770.
    Bucarey S A, Noriega J, Reyes P, Tapia C, Saenz L, Zuniga A and Tobar J A. The Optimized Capsid Gene of Porcine Circovirus Type 2 Expressed in Yeast Forms Virus-Like Particles and Elicits Antibody Responses in Mice Fed with Recombinant Yeast Extracts. VACCINE.2009,27:5781-5790.
    Burkert J, Maugeri F and Rodrigues M I. Optimization of Extracellular Lipase Production by Geotrichum Sp Using Factorial Design. BIORESOURCE TECHNOLOGY.2004,91:77-84.
    Caballero V, Bautista F M, Campelo J M, Luna D, Marinas J M, Romero A A, Hidalgo J M, Luque R, Macario A and Giordano G. Sustainable Preparation of a Novel Glycerol-Free Biofuel by Using Pig Pancreatic Lipase:Partial 1,3-Regiospecific Alcoholysis of Sunflower Oil. PROCESS BIOCHEMISTRY. 2009,44:334-342.
    Cao L Q. Immobilised Enzymes:Science Or Art? CURRENT OPINION IN CHEMICAL BIOLOGY. 2005,9:217-226.
    Chahinian H, Nini L, Boitard E, Dubes J P, Sarda L and Comeau L C. Kinetic Properties of Penicillium Cyclopium Lipases Studied with Vinyl Esters. LIPIDS.2000,35:919-925.
    Chen J P and Mcgill S D. Enzymatic-Hydrolysis of Triglycerides by Rhizopus-Delemar Immobilized On Biomass Support Particles. FOOD BIOTECHNOLOGY.1992,6:1-18.
    Colla L M, Rizzardi J, Pinto M H, Reinehr C O, Bertolin T E and Vieira Costa J A. Simultaneous Production of Lipases and Biosurfactants by Submerged and Solid-State Bioprocesses. BIORESOURCE TECHNOLOGY.2010,101:8308-8314.
    Das S, Roymondal U and Sahoo S. Analyzing Gene Expression From Relative Codon Usage Bias in Yeast Genome:A Statistical Significance and Biological Relevance. GENE.2009,443:121-131.
    de Oliveira P C, Alves G M and de Castro H F. Immobilisation Studies and Catalytic Properties of Microbial Lipase Onto Styrene-Divinylbenzene Copolymer. BIOCHEMICAL ENGINEERING JOURNAL.2000,5:63-71.
    Derewenda U, Swenson L, Wei Y Y, Green R, Kobos P M, Joerger R, Haas M J and Derewenda Z S. Conformational Lability of Lipases Observed in the Absence of an Oil-Water Interface-Crystallographic Studies of Enzymes From the Fungi Humicola-Lanuginosa and Rhizopus-Delemar. JOURNAL OFLIPID RESEARCH.1994,35:524-534.
    Di Lorenzo M, Hidalgo A, Haas M and Bornscheuer U T. Heterologous Production of Functional Forms of Rhizopus Oiyzae Lipase in Escherichia Coli. APPL ENVIRON MICROBIOL.2005,71: 8974-7.
    Du W, Xu Y Y, Liu D H and Li Z B. Study On Acyl Migration in Immobilized Lipozyme T1-Catalyzed Transesterification of Soybean Oil for Biodiesel Production. JOURNAL OF MOLECULAR CATALYSISB-ENZYMATIC.2005,37:68-71.
    Duncombe W G. Colorimetric Micro-Determination of Long-Chain Fatty Acids. BIOCHEMICAL JOURNAL.1963,88:7.
    Elibol M and Ozer D. Influence of Oxygen Transfer On Lipase Production by Rhizopus Arrhizus. PROCESS BIOCHEMISTRY.2000,36:325-329.
    Fernandez-Lorente G, Betancor L, Carrascosa A V and Guisan J M. Release of Omega-3 Fatty Acids by the Hydrolysis of Fish Oil Catalyzed by Lipases Immobilized On Hydrophobic Supports. JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY.2011,88:1173-1178.
    Fishman A and Cogan U. Bio-Imprinting of Lipases with Fatty Acids. JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC.2003,22:193-202.
    Foresti M L, Alimenti G A and Ferreira M L. Interfacial Activation and Bioimprinting of Candida Rugosa Lipase Immobilized On Polypropylene:Effect On the Enzymatic Activity in Solvent-Free Ethyl Oleate Synthesis. ENZYME AND MICROBIAL TECHNOLOGY.2005,36:338-349.
    Fukuda H, Hama S, Tamalampudi S and Noda H. Whole-Cell Biocatalysts for Biodiesel Fuel Production. TRENDS BIOTECHNOL.2008,26:668-73.
    Fukuda H, Kondo A and Noda H. Biodiesel Fuel Production by Transesterification of Oils. JOURNAL OF BIOSCIENCE AND BIOENGINEERING.2001,92:405-416.
    Furukawa S, Ono T, Ijima H and Kawakami K. Enhancement of Activity of Sol-Gel Immobilized Lipase in Organic Media by Pretreatment with Substrate Analogues. JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC.2001,15:65-70.
    Furukawa S, Ono T, Ijima H, Kawakami K. Effect Of Imprinting Sol-Gel Immobilized Lipase With Chiral Template Substrates In Esterification Of (R)-(+)- And (S)-(-)-Glycidol. JOURNAL OF MOLECULAR CATALYSISB:ENZYMATIC.2002,17:23-28.
    Ghamgui H, Karra-Chaabouni M and Gargouri Y.1-Butyl Oleate Synthesis by Immobilized Lipase From Rhizopus Oryzae:A Comparative Study Between N-Hexane and Solvent-Free System. ENZYME AND MICROBIAL TECHNOLOGY.2004,35:355-363.
    Goncalves K M, Sutili F K, Leite S G F, de Souza R O M A and Ramos Leal I C. Palm Oil Hydrolysis Catalyzed by Lipases Under Ultrasound Irradiation - The Use of Experimental Design as a Tool for Variables Evaluation. ULTRASONICS SONOCHEMISTRY.2012,19:232-236.
    Gonzalez-Navarro H and Brace L. Improving Lipase Activity In Solvent-Free Media By Interfacial Activation-Based Molecular Bioimprinting. JOURNAL OF MOLECULAR CATALYSIS B: ENZYMATIC.1997,3:111-119.
    Gonzalez-Navarro H and Braco L. Lipase-Enhanced Activity in Flavour Ester Reactions by Trapping Enzyme Conformers in the Presence of Interfaces. BIOTECHNOLOGY AND BIOENGINEERING.1998,59:122-127.
    Guo Q, Zhang W, Ma L, Chen Q, Chen J, Zhang H, Ruan H and He G. A Food-Grade Industrial Arming Yeast Expressing Beta-1,3-1,4-Glucanase with Enhanced Thermal Stability. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B.2010,11:41-51.
    Gutsche I, Essen L O and Baumeister W. Group Ii Chaperonins:New Tric(K)S and Turns of a Protein Folding Machine. J MOL BIOL.1999,293:295-312.
    Haas M J, Allen J and Berka T R. Cloning, Expression and Characterization of a Cdna Encoding a Lipase From Rhizopus Delemar. GENE.1991,109:107-13.
    Hama S, Tamalampudi S, Fukumizu T, Miura K, Yamaji H, Kondo A and Fukuda H. Lipase Localization in Rhizopus Oryzae Cells Immobilized within Biomass Support Particles for Use as Whole-Cell Biocatalysts in Biodiesel-Fuel Production. J BIOSCI BIOENG.2006,101:328-33.
    Hama S, Tamalampudi S, Fukumizu T, Miura K, Yamaji H, Kondo A and Fukuda H. Lipase Localization in Rhizopus Oryzae Cells Immobilized within Biomass Support Particles for Use as Whole-Cell Biocatalysts in Biodiesel-Fuel Production. J BIOSCI BIOENG.2006,101:328-33.
    Hama S, Yoshida A, Nakashima K, Noda H, Fukuda H and Kondo A. Surfactant-Modified Yeast Whole-Cell Biocatalyst Displaying Lipase On Cell Surface for Enzymatic Production of Structured Lipids in Organic Media. APPL MICROBIOL BIOTECHNOL.2010,87:537-43.
    Hasan F, Shah A A and Hameed A. Industrial Applications of Microbial Lipases. ENZYME AND MICROBIAL TECHNOLOGY.2006,39:235-251.
    Ikemura T. Codon Usage and Transfer-Rna Content in Unicellular and Multicellular Organisms. MOLECULAR BIOLOGY AND EVOLUTION.1985,2:13-34.
    Jaeger K E, Dijkstra B W and Reetz M T. Bacterial Biocatalysts:Molecular Biology, Three-Dimensional Structures, and Biotechnological Applications of Lipases. ANNUAL REVIEW OF MICROBIOLOGY.1999,53:315-351.
    Jegannathan K R, Abang S, Poncelet D, Chan E S and Ravindra P. Production of Biodiesel Using Immobilized Lipasea Critical Review. CRITICAL REVIEWS IN BIOTECHNOLOGY.2008,28: 253-264.
    Jiang Z, Gao B, Ren R, Tao X, Ma Y and Wei D. Efficient Display of Active Lipase Lipb52 with a Pichia Pastoris Cell Surface Display System and Comparison with the Lipb52 Displayed On Saccharomyces Cerevisiae Cell Surface. BMC BIOTECHNOLOGY.2008,8:4.
    Jiang Z, Song H, Gupta N, Ma L and Wu Z. Cell Surface Display of Functionally Active Lipases From Yarrowia Lipolytica in Pichia Pastoris. PROTEIN EXPRESSION AND PURIFICATION.2007, 56:35-39.
    Kahveci D and Xu X. Repeated Hydrolysis Process is Effective for Enrichment of Omega 3 Polyunsaturated Fatty Acids in Salmon Oil by Candida Rugosa Lipase. FOOD CHEMISTRY.2011,129: 1552-1558.
    Kaieda M, Samukawa T, Matsumoto T, Ban K, Kondo A, Shimada Y, Noda H, Nomoto F, Ohtsuka K, Izumoto E and Fukuda H. Biodiesel Fuel Production From Plant Oil Catalyzed by Rhizopus Oryzae Lipase in a Water-Containing System without an Organic Solvent. JOURNAL OF BIOSCIENCE AND BIOENGINEERING.1999,88:627-631.
    Kamini N R, Fujii T, Kurosu T and Iefuji H. Production, Purification and Characterization of an Extracellular Lipase From the Yeast, Cryptococcus Sp S-2. PROCESS BIOCHEMISTRY.2000,36: 317-324.
    Kamiya N, Goto M. Preparation of Surfactant-Coated Lipases Utilizing the Molecular Imprinting Technique. JOURNAL OF FERMENTATION AND BIOENGINEERING.1998,85(2):237-239.
    Kato M, Fuchimoto J, Tanino T, Kondo A, Fukuda H and Ueda M. Preparation of a Whole-Cell Biocatalyst of Mutated Candida Antaretica Lipase B (Mcalb) by a Yeast Molecular Display System and its Practical Properties. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY.2007,75:549-555.
    Kempka A P, Lipke N L, Pinheiro T D L F, Menoncin S, Treichel H, Freire D M G, Di Luccio M and de Oliveira D. Response Surface Method to Optimize the Production and Characterization of Lipase From Penicillium Verrucosum in Solid-State Fermentation. BIOPROCESS AND BIOSYSTEMS ENGINEERING.2008,31:119-125.
    Kirchner G, Scollar M P and Klibanov A M. Resolution of Racemic Mixtures Via Lipase Catalysis in Organic-Solvents. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY.1985,107:7072-7076.
    Klibanov A M. Improving Enzymes by Using them in Organic Solvents. NATURE.2001,409: 241-246.
    Kohno M, Enatsu M, Yoshiizumi M and Kugimiya W. High-Level Expression of Rhizopus Niveus Lipase in the Yeast Saccharomyces Cerevisiae and Structural Properties of the Expressed Enzyme. PROTEIN EXPRESSION AND PURIFICATION.1999,15:327-335.
    Kondo A and Ueda M. Yeast Cell-Surface Display - Applications of Molecular Display. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY.2004,64:28-40.
    Kurland C G. Codon Bias and Gene-Expression. FEBS LETTERS.1991,285:165-169.
    Kwon C H, Shin D Y, Lee J H, Kim S W and Kang J W. Molecular Modeling and its Experimental Verification for the Catalytic Mechanism of Candida Antarctica Lipase B. JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY.2007,17:1098-1105.
    Lee D H, Kim J M, Shin H Y, Kang S W and Kim S W. Biodiesel Production Using a Mixture of Immobilized Rhizopus Oryzae and Candida Rugosa Lipases. BIOTECHNOLOGY AND BIOPROCESS ENGINEERING.2006,11:522-525.
    Li W, Du W, Liu D H. Rhizopus Oryzae IFO 4697 Whole Cell Catalyzed Methanolysis Of Crude And Acidified Rapeseed Oils For Biodiesel Production In Tert-Butanol System. PROCESS BIOCHEMISTRY.2007,42:1481-1485.
    Li W, Li R, Li Q, Du W and Liu D. Acyl Migration and Kinetics Study of 1(3)-Positional Specific Lipase of Rhizopus Oryzae-Catalyzed Methanolysis of Triglyceride for Biodiesel Production. PROCESS BIOCHEMISTRY.2010,45:1888-1893.
    Lithwick G and Margalit H. Hierarchy of Sequence-Dependent Features Associated with Prokaryotic Translation. GENOME RESEARCH.2003,13:2665-2673.
    Liu Y, Kondo A, Ohkawa H, Shiota N and Fukuda H. Bioconversion Using Immobilized Recombinant Flocculent Yeast Cells Carrying a Fused Enzyme Gene in an 'Intelligent' Bioreactor. BIOCHEMICAL ENGINEERING JOURNAL.1998,2:229-235.
    Longhi S, Czjzek M, Lamzin V, Nicolas A and Cambillau C. Atomic Resolution (1.0 Angstrom) Crystal Structure of Fusarium Solani Cutinase:Stereochemical Analysis. JOURNAL OF MOLECULAR BIOLOGY.1997,268:779-799.
    Ma F R and Hanna M A. Biodiesel Production:A Review. BIORESOURCE TECHNOLOGY.1999, 70:1-15.
    Mateo C, Palomo J M, Fernandez-Lorente G, Guisan J M and Fernandez-Lafuente R. Improvement of Enzyme Activity, Stability and Selectivity Via Immobilization Techniques. ENZYME AND MICROBIAL TECHNOLOGY.2007,40:1451-1463.
    Matsumoto T, Fukuda H, Ueda M, Tanaka A and Kondo A. Construction of Yeast Strains with High Cell Surface Lipase Activity by Using Novel Display Systems Based On the Flo1P Flocculation Functional Domain. APPL ENVIRON MICROBIOL.2002,68:4517-22.
    Mestri S D and Pai J S. Effect of Moisture On Lipase-Catalyzed Esterification of Geraniol of Palmarosa Oil in Nonaqueous System. BIOTECHNOLOGY LETTERS.1995,17:459-462.
    Mingarro I, Abad C and Braco L. Interfacial Activation-Based Molecular Bioimprinting of Lipolytic Enzymes. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA.1995,92:3308-3312.
    Minning S, Serrano A, Ferrer P, Sola C., Schmid R D and Valero F. Optimization of the High-Level Production of Rhizopus Oryzae Lipase in Pichia Pastoris. JOURNAL OF BIOTECHNOLOGY.2001,86: 59-70.
    Noma A, Okabe H and Kita M. New Colorimetric Microdetermination of Free Fatty-Acids in Serum. CLINICA CHIMICA ACTA.1973,43:317-320.
    Oda M, Kaieda M, Hama S, Yamaji H, Kondo A, Izumoto E and Fukuda H. Facilitatory Effect of Immobilized Lipase-Producing Rhizopus Oryzae Cells On Acyl Migration in Biodiesel-Fuel Production. BIOCHEMICAL ENGINEERING JOURNAL.2005,23:45-51.
    Okahata Y, Hatano A, Ijiro K. Enhancing Enantioselectivity Of A Lipid-Coated Lipase Via Imprinting Methods For Esterification In Organic-Solvents. TETRAHEDRON:ASYMMETRY,1995, 6(6):1311-1322.
    Ozyilmaz G. The Effect of Spacer Arm On Hydrolytic and Synthetic Activity of Candida Rugosa Lipase Immobilized On Silica Gel. JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC.2009, 56:231-236.
    Pereira E B, Zanin G M and Castro H F. Immobilization and Catalytic Properties of Lipase On Chitosan for Hydrolysis and Esterification Reactions. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING.2003,20:343-355.
    Prim N, Blanco A, Martinez J, Pastor F and Diaz P. Esta, a Gene Coding for a Cell-Bound Esterase From Paenibacillus Sp Bp-23, is a New Member of the Bacterial Subclass of Type B Carboxylesterases. RESEARCH IN MICROBIOLOGY.2000,151:303-312.
    Proshkin S, Rahmouni A R, Mironov A and Nudler E. Cooperation Between Translating Ribosomes and Rna Polymerase in Transcription Elongation. SCIENCE.2010,328:504-508.
    Ranganathan S V, Narasimhan S L and Muthukumar K. An Overview of Enzymatic Production of Biodiesel. BIORESOURCE TECHNOLOGY.2008,99:3975-3981.
    Roberto D V, Damianni S, Maria da G N, Valdir S (2005), Carboxymethylcellulose and poly(vinyl alcohol) used as a film support for lipases immobilization. PROCESS BIOCHEMISTRY.2005,40: 2677-2682
    Romero M D, Calvo L, Alba C and Daneshfar A. A Kinetic Study of Isoamyl Acetate Synthesis by Immobilized Lipase-Catalyzed Acetylation in N-Hexane. JOURNAL OF BIOTECHNOLOGY.2007, 127:269-277.
    Russell A J and Klibanov A M. Inhibitor-Induced Enzyme Activation in Organic-Solvents. JOURNAL OF BIOLOGICAL CHEMISTRY.1988,263:11624-11626.
    Sandoval G and Marty A. Screening Methods for Synthetic Activity of Lipases. ENZYME AND MICROBIAL TECHNOLOGY.2007,40:390-393.
    Santos J C, Mijone P D, Nunes G F M, Perez V H and de Castro H F. Covalent Attachment of Candida Rugosa Lipase On Chemically Modified Hybrid Matrix of Polysiloxane-Polyvinyl Alcohol with Different Activating Compounds. COLLOIDS AND SURFACES B-BIOINTERFACES.2008,61: 229-236.
    Sharma R, Chisti Y and Banerjee U C. Production, Purification, Characterization, and Applications of Lipases. BIOTECHNOLOGY ADVANCES.2001,19:627-662.
    Shibamoto H, Matsumoto T, Fukuda H and Kondo A. Molecular Engineering of Rhizopus Oryzae Lipase Using a Combinatorial Protein Library Constructed On the Yeast Cell Surface. JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC.2004,28:235-239.
    Shimada Y, Watanabe Y, Sugihara A and Tominaga Y. Enzymatic Alcoholysis for Biodiesel Fuel Production and Application of the Reaction to Oil Processing. JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC.2002,17:133-142.
    Shiraga S, Kawakami M and Ueda M. Construction of Combinatorial Library of Starch-Binding Domain of Rhizopus Oryzae Glucoamylase and Screening of Clones with Enhanced Activity by Yeast Display Method. JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC.2004,28:229-234.
    Shiraga S, Kawakami M, Ishiguro M and Ueda M. Enhanced Reactivity of Rhizopus Oryzae Lipase Displayed On Yeast Cell Surfaces in Organic Solvents:Potential as a Whole-Cell Biocatalyst in Organic Solvents. APPL ENVIRON MICROBIOL.2005,71:4335-4338.
    Shiraga S, Ueda M, Takahashi S and Tanaka A. Construction of the Combinatorial Library of Rhizopus Oryzae Lipase Mutated in the Lid Domain by Displaying On Yeast Cell Surface. JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC.2002,17:167-173.
    Sinclair G and Choy F. Synonymous Codon Usage Bias and the Expression of Human Glucocerebrosidase in the Methylotrophic Yeast, Pichia Pastoris. PROTEIN EXPRESSION AND PURIFICATION.2002,26:96-105.
    Snellman E A, Sullivan E R and Colwell R R. Purification and Properties of the Extracellular Lipase, Lipa, of Acinetobacter Sp Rag-1. EUROPEAN JOURNAL OF BIOCHEMISTRY.2002,269: 5771-5779.
    Stehle F, Stubbs M T, Strack D and Milkowski C. Heterologous Expression of a Serine Carboxypeptidase-Like Acyltransferase and Characterization of the Kinetic Mechanism. FEBS JOURNAL.2008,275:775-787.
    Su G, Huang D, Han S, Zheng S and Lin Y. Display of Candida Antarctica Lipase B On Pichia Pastoris and its Application to Flavor Ester Synthesis. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY.2010,86:1493-1501.
    Swarts J W, Vossenberg P, Meerman M H, Janssen A E M and Boom R M. Comparison of Two-Phase Lipase-Catalyzed Esterification On Micro and Bench Scale. BIOTECHNOLOGY AND BIOENGINEERING.2008,99:855-861.
    Takahashi S, Ueda M and Tanaka A. Function of the Prosequence for in Vivo Folding and Secretion of Active Rhizopus Oryzae Lipase in Saccharomyces Cerevisiae. APPL MICROBIOL BIOTECHNOL.2001,55:454-462.
    Tamalampudi S, Talukder M R, Hama S, Numata T, Kondo A and Fukuda H. Enzymatic Production of Biodiesel From Jatropha Oil:A Comparative Study of Immobilized-Whole Cell and Commercial Lipases as a Biocatalyst. BIOCHEMICAL ENGINEERING JOURNAL.2008,39:185-189.
    Tanino T, Ohno T, Aoki T, Fukuda H and Kondo A. Development of Yeast Cells Displaying Candida Antarctica Lipase B and their Application to Ester Synthesis Reaction. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY.2007,75:1319-1325.
    Trodler P and Pleiss J. Modeling Structure and Flexibility of Candida Antarctica Lipase B in Organic Solvents. BMC STRUCTURAL BIOLOGY.2008,8:9.
    Ueda M, Takahashi S, Washida M, Shiraga S and Tanaka A. Expression of Rhizopus Oryzae Lipase Gene in Saccharomyces Cerevisiae. JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC.2002, 17:113-124.
    Uppenberg J, Hansen M T, Patkarr S and Jones T A. The Sequence, Crystal-Structure Determination and Refinement of 2 Crystal Forms of Lipase-B From Candida-Antarctica (Vol 2, Pg 293,1994). STRUCTURE.1994,2:453-454.
    Verger R.'Interfacial Activation of Lipases:Facts and Artifacts. TRENDS IN BIOTECHNOLOGY. 1997,15:32-38.
    Vorderwulbecke T, Kieslich K and Erdmann H. Comparison of Lipases by Different Assays. ENZYME AND MICROBIAL TECHNOLOGY.1992,14:631-639.
    Vyas A P, Verma J L and Subrahmanyam N. A Review On FAME Production Processes. FUEL. 2010,89:1-9.
    Wang D, Xu Y and Shan T. Effects of Oils and Oil-Related Substrates On the Synthetic Activity of Membrane-Bound Lipase From Rhizopus Chinensis and Optimization of the Lipase Fermentation Media. BIOCHEMICAL ENGINEERING JOURNAL.2008,41:30-37.
    Washida M, Takahashi S, Ueda M and Tanaka A. Spacer-Mediated Display of Active Lipase On the Yeast Cell Surface. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY.2001,56:681-686.
    Watanabe T, Shimizu M, Sugiura M, Sato M, Kohori J, Yamada N and Nakanishi K. Optimization of Reaction Conditions for the Production of Dag Using Immobilized 1,3-Regiospecific Lipase Lipozyme Rm Im. JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY.2003,80:1201-1207.
    Yan J, Yan Y, Yang J, Xu L and Liu Y. Combined Strategy for Preparation of a Bioimprinted Geotrichum Sp Lipase Biocatalyst Effective in Non-Aqueous Media. PROCESS BIOCHEMISTRY.2009, 44:1128-1132.
    Yang J K, Liu L Y, Cao X W. Combination of Bioimprinting And Silane Precursor Alkyls Improved The Activity of Sol-Gel-Encapsulated Lipase. ENZYME AND MICROBIAL TECHNOLOGY.2010,46:257-261.
    Yilmaz E. Improving the Application of Microbial Lipase by Bio-Imprinting at Substrate-Interfaces. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY.2002,18:37-40.
    Yilmaz E. Orlistat-Induced Molecular Bio-Imprinting Of Microbial Lipase. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY.2003,19:161-165.
    Zaks A and Klibanov A M. The Effect of Water On Enzyme Action in Organic Media. JOURNAL OF BIOLOGICAL CHEMISTRY.1988,263:8017-8021.
    Zou J T, Katavic V, Giblin E M, Barton D L, Mackenzie S L, Keller W A, Hu X and Taylor D C. Modification of Seed Oil Content and Acyl Composition in the Brassicaceae by Expression of a Yeast Sn-2 Acyltransferase Gene. PLANT CELL.1997,9:909-923.
    曹雄文,苏磊,陈麒屾,等.月桂酸生物印迹对脂肪酶酯化活力的影响.中国生物工程杂志.2008,28(7):92-96.
    董斌,宋锡瑾,王杰.脂肪酶生物印迹研究进展.中国生物工程杂志.2006,3:78-82.
    傅红,裘爱泳.超临界CO2合成鱼油质构脂质中酰基转移的研究.中国粮油学报.2006,6:113-115.
    龚伟.脂肪酶构象刻录及催化能力考察,[硕士学位论文],浙江:浙江大学.2006
    龚伟,宋锡瑾,王杰.脂肪酶构象刻录及稳定性研究.浙江大学学报(工学版).2006,40:841-844.
    郭钦.食品级酿酒酵母高效分泌/展示表达系统构建.[博士学位论文],浙江:浙江大学.2009
    何庆华,许杨.分子印迹技术在真菌毒素检测中的应用.食品科学.2009,30(11):273-275.
    贺芹,徐岩,滕云,王栋.华根霉全细胞脂肪酶催化合成生物柴油.催化学报.2008,1:41-46.
    胡小刚,李攻科.分子印迹技术在样品前处理中的应用.分析化学.2006,6(7):1035-1041.
    金亮,徐岩,曹光群.华根霉全细胞脂肪酶催化合成油酸油醇酯.催化学报.2006,7:611-614.
    李小冬,吴嘉,贾东晨,等.固定化酶的研究方法概述.中国酿造.2011,11:5-9.
    刘佩.表面展示亚油酸异构酶的重组植物乳杆菌构建及其高效合成共轭亚油酸.[博士学位论文],浙江:浙江大学.2011
    刘亚轩,超声作用下脂肪酶催化豆油水解反应的研究.[博士学位论文],江苏:江南大学.2008
    娄忠良,孟子晖,王鹏,等.分子印迹技术用于模拟酶及分子反应器的研究进展.有机化学.2009,29(11):1744-1749.
    彭立凤.微生物脂肪酶的研究进展.生物技术通报.1999,2:19-24.
    孙舒扬,王栋,徐岩.固液态发酵中橄榄油对Rhizopus Chinensis全细胞脂肪酶的影响.微生物学通报.2006,4:10-14.
    滕云.酯合成脂肪酶高产菌的选育及其产酶发酵调控的研究.[博士学位论文],江苏:江南大学.2008
    王栋.华根霉(Rhizopus chinensis)非水相合成活性脂肪酶及其酶学特性的研究.[博士学位论文],江苏:江南大学.2008
    汪小锋,王俊,杨江科,闫云君.微生物发酵生产脂肪酶的研究进展.生物技术通报.2008,4:47-53.
    王忠东,白文,王颜红,等.分子印迹技术及其在食品分析中的应用.内蒙古民族大学学报(自然科学版).2011,26(2):184-189.
    肖华花,刘国光.分子印迹技术在环境领域中的应用研究进展.化学通报.2009,8:701-706.
    张中义,吴新侠.脂肪酶在手性药物制备中的应用.食品和药品.2007,9:40-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700