吸附型三元乙丙基水处理复合材料的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,水环境日益恶化,水污染呈加剧蔓延趋势,在冶金、化学、制革、食品,机械制造及采矿等工业部门排放的废水中会存在很多油类有机物和重金属离子等单一或复合污染物。处理水中这类污染物的材料研究势在必行。
     本论文选用综合性能优良的三元乙丙橡胶作为基体,添加无机类或有机类功能型的填料,采用简便易行的熔融共混方法,对多组分体系进行配方设计,制备出吸附型环境保护水处理复合材料,包括四大类8种材料:Fe_2O_3/ EPDM、Fe_2O_3(焙烧)/ EPDM、MgO/EPDM、MgO(偶联剂)/EPDM、非泡沫废弃矿渣粉/EPDM、泡沫型废弃矿渣粉/EPDM、EPDM基两亲型吸附材料以及固定化微生物材料。这些新型水处理材料利用吸附原理对水中的油类及重金属离子等污染物进行吸附去除。本论文内容申请国家发明专利后,可转化为应用成果。
     油类一般漂浮于水面,重金属离子则溶于水中,本论文中制备的水处理复合材料能够自动悬浮于油水界面处,不依靠机械外力对所处理的污染物进行吸附,提高了使用效率。
     本论文针对水中油类有机物的污染:
     (1)Fe_2O_3/EPDM和Fe_2O_3(焙烧)/ EPDM吸油材料:将Fe_2O_3在400℃下进行焙烧,焙烧后的Fe_2O_3粒径小于Fe_2O_3的粒径,在基体中具有更好的分散性。Fe_2O_3/EPDM的吸油率比交联后EPDM的吸油率提高了227%;而Fe_2O_3(焙烧)/EPDM的吸油率比Fe_2O_3/EPDM的吸油率又提高了64 %。这两种复合材料的吸油速率远大于EPDM和交联EPDM的吸油速率。并利用扫描电镜、XRD等表征手段深入讨论了这两种材料的吸油机理。
     (2)MgO/EPDM和MgO(偶联剂)/EPDM吸油材料:尝试不同种类的金属氧化物作为填料,研究偶联剂在复合材料中的作用机理及对材料力学性能的影响。MgO/EPDM的吸油率比Fe_2O_3/EPDM的吸油率增加201.89%。偶联剂的加入使得复合材料的力学性能提高,但其吸油性能有所弱化,利用红外光谱分析了复合材料吸油性能弱化的原因。
     (3)泡沫型废弃矿渣粉/EPDM吸油材料:该材料采用金矿提取后的废弃矿渣粉作为填料,利用熔融共混和模压发泡技术制备。其吸油性能不但优于Fe_2O_3/EPDM的吸油性能。同时优于非泡沫型废弃矿渣粉/EPDM。泡沫型废弃矿渣粉/EPDM与非泡沫型废弃矿渣粉/EPDM相比,不但实现废弃物再利用,其材料成本进一步降低;吸附表面积进一步增大;材料密度进一步降低。并成功探索出泡沫材料的模压发泡工艺。
     本论文针对水中油类有机物和重金属离子的复合污染:
     Fe_2O_3(焙烧)/阴离子交换树脂/ EPDM两亲型吸附材料:以EPDM作为基体,焙烧Fe_2O_3和阴离子交换树脂201Х7作为填料,制备出一种同时吸附油和六价铬离子的水处理复合材料。这种材料除了用于诸多工业部门排放的废水的处理,还可用于水源中的复合污染的治理。首次利用熔融共混方法制备的两亲吸附型复合材料,实验结果表明:在油水共存体系中,材料对油和Cr6+的总吸附能力要大于其在单一吸附介质中的吸附能力。
     本论文针对被吸附油类的后处理问题:
     Fe_2O_3(焙烧)/ EPDM /微生物固定化材料:以EPDM为基体,焙烧Fe_2O_3为填料,PEG-2000为致孔剂,采用熔融共混方法,制备出一种环境保护固定化微生物材料。该材料本身具有很好的吸油特性,其吸油率达到272.36%。其固定化菌群后实现了对被吸附原油的降解,不但增加了材料的除油率,更成功解决了吸油材料的后处理问题。材料对高效除油菌的固定化率可达8.44×105个/g,材料可以对固定化的菌群保持一定的活性。固定化菌群的原油去除率是材料本身原油去除率的近5倍。微生物的不断繁殖导致原油被不断降解,使得该材料可以长期循环使用。
At present, the freshwater resources are increasing depletion. However, the human demand for freshwater is increasing. The discharges of industrial wastewater and domestic wastewater have been significantly contaminated environment. A large number of wastewater which was not deal with has polluted the water environment. Water pollution has been seriously affected the ecological structure of water and efficient use of water resources, and it directly or indirectly hampered the sustainable development of industrial and agricultural production. In addition, it was major threat to human health. The major pollutants of Industrial and domestic sewage are oil and heavy metal ions. The treatment methods and techniques are also hot research problems for environmental researcher.
     In recent years, offshore oil exploration and the tankers and oil pipelines on the marine accident have caused serious oil pollution. At restaurants, metals, cereals, oil and leather processing industries, especially at oil extraction, processing, transport and other industries, these industries will produce a large amount of oily wastewater.
     The 30 percent oil pollution was from industrial wastewater discharge, 45 percent was from oil tanker spills in ocean. The majority research, development and application of oil sorbent materials are for the treatment of oily wastewater.
     With the rapid development of the global economy, heavy metals get into the water through mining, metal smelting processing, chemical industry waste water, pesticides, chemical fertilizers, the abuse of livelihood, geological erosion, weathering and other natural sources.
     The major pollutants in Industrial and domestic sewage are oil and heavy metal ions, its treatment methods and techniques is a hot issue in today's research.
     In the first part of our study, a new kind of material for oil adsorption was prepared by melt blending with EPDM as the matrix and Fe_2O_3 as the filler. The effects of dicumylperoxide (DCP) and Fe_2O_3 contents on the oil absorptivity were studied. The results show that the oil absorbency reaches the highest value for the Fe_2O_3/EPDM composite with 3 wt % DCP and 25 wt % Fe_2O_3, while the same is true for Fe_2O_3 (calcination)/EPDM composite with 2 wt % DCP and 30 wt % Fe_2O_3. Comparing the two samples with the highest oil absorbency, the oil absorption rate of Fe_2O_3 (calcination)/EPDM composite is higher. The experimental result indicates that the oil absorbency of Fe_2O_3/EPDM composite is 227 % higher than that of EPDM (crosslinked); the oil absorbency of Fe_2O_3 (calcination)/EPDM composite is 64 % higher than that of Fe_2O_3/EPDM composite.
     In the second part of our study, a new kind of material for oil adsorption was prepared by melt blend with EPDM as the matrix and MgO as the filler. The effects of Dicumylperoxide (DCP) and MgO contents on the oil absorbency were studied. Comparing the two samples with the highest oil adsorption rates, the experimental result indicates that the oil absorbency of EPDM (crosslinked) is 51% more than that of EPDM; the oil absorbency of MgO/EPDM composite is 886.54% more than that of EPDM (crosslinked); the oil absorbency of MgO/EPDM composite is 198.22% more than that of MgO (coupling agent)/EPDM composite. The absorbent characteristics of MgO/EPDM are better than these of MgO (coupling agent)/EPDM.
     In the third part of our study, a new kind of foaming material for oil adsorption was prepared by melting blend and mold pressing, with EPDM as the matrix and waste dusty slag as the filler. The effects of foaming agent (AC) and waste dusty slag contents on the oil absorbency were studied. The results show that the oil absorbency reached the highest value with waste dusty slag loading 10 phr, DCP loading 2 phr and AC loading being fixed at 4 phr. The oil retentions were over 80% with AC loadings from 1 to 4 phr, but when AC was over 4 phr, the oil retention decreased deeply. We compared the oil absorption rates of the foaming composites with the non-foaming composites, the results indicate that the oil absorbency of non-foaming composite is 101.46% more than that of EPDM (crosslinked); the oil absorbency of foaming composite composite is 389.82% more than that of non-foaming composite. The breaking strength decreased as MgO loadings increased; the breaking strength of MgO (coupling agent)/EPDM is higher than that of MgO/EPDM. The oil absorbency of MgO (coupling agent)/EPDM is attenuation than that of MgO/EPDM. These reasons were analyzed by SEM and IR.
     In the fourth part of our study, a new kind of material for oil and Cr (Ⅵ) absorption was prepared by melt blend, with EPDM as the matrix and calcinatory Fe_2O_3 and anion exchange resin 201Х7 as the filler. The absorbencies of composites were changed greatly with various ratios of calcinatory Fe_2O_3 and anion exchange resin 201Х7. The results show that the oil absorbencies increased continuously and Cr (Ⅵ) absorbencies were step-down as Ion exchange resin loadings from 1% to 7%. The optimum proportionings of calcinatory Fe_2O_3 and anion exchange resin 201Х7 were gotten with different oils when the absorbencies of composites for oils and Cr (Ⅵ) were reached maximum simultaneously. The total adsorptive capacity was much higher than that in only one adsorption medium.
     In the last part of our study is basis in the previous chapter, a new kind of microbial composite carrier was prepared by melt blend, with (EPDM) as the matrix and calcinatory Fe_2O_3 as the filler. The oil degrading bacteria were screened in the crude oil, cultured and breed. We immobilized bacteria using adsorption method, and measured the immobilization rate in the composite carrier. The immobilization time of the largest number of oil degrading bacteria using the composite vector was 7h. The carrier immobilized bacteria cultured 24 h, and measured its absorbance to verify the effect of immobilized bacteria. The results confirmed that the bacteria have been immobilized in the carrier successfully and the bacteria were viable. The absorbent characteristics is good, the oil absorbency is 272.36%. Compared the removal oil rate with immobilization bacteria and the composite carrier, The results are that the removal oil rate of immobilization bacteria was much higher than that of the composite carrier, and the composite carrier was an effective microorganisms immobilized carrier.
引文
[1] G. Aleksicb, M. Radeticc, Lj. Rajakovicc, V. Rajakovica. Efficiency of oil removal from real wastewater with different sorbent materials [J]. Journal of Hazardous Materials, 2007, 143(1): 494-499.
    [2] Tanker leaks oil off southern California, Marine Pollution Bulletin[R], 1990, 21(5): 221-222.
    [3] Japanese oil leak, Marine Pollution Bulletin[R], 1975, 6(3): 36.
    [4] Sekha K C, Chary N S. Fractionation studies and bioaccumulation of sediment -bound heavy metals in Kolleru lake by edible fish [J]. Environmental International. 2003, 29: 1001-1008.
    [5] Alan WMaki. The Exxon Valdez oil spill: Initial environmental impact assessment [J]. Environ Science Techno, 1991, 25(1): 24-29.
    [6] B. Ahmad, A. S. Foad, M. Ahmad, et al. Oil spill cleanup from sea water by sorbent materials [J]. Chemical Engineering and Technology, 2005, 28(12): 1525-1528.
    [7] Willis W. Gardner. Tilting pad thrust bearing tests - influence of oil flow rate on power loss and temperatures [J]. Tribology Series, 1998, 34: 211-217.
    [8] E. Fritcher, A. Byrd & N. Stegent. Optimized frac pad and gel improve well productivity [J]. Oil & Gas Journal, 1995, 93(12): 90–94.
    [9]美国道化学公司.水的精制有机液体回收的方法:日本,特公昭4527081[P]. 1970-09-05.
    [10]日本三井石油化学公司.吸油树脂的制造方法:日本,特开昭5015882[P]. 1975-02-19.
    [11]后藤隆清.高吸油树脂的开发和利用[J].机能材料, 1990, 10(11): 43-49.
    [12]机能材料市场数据.吸油性材料的市场动向[J].机能材料, 1991, 11(7): 41-47.
    [13] Wang Y., Zhao Y. Z., Wan T. Studies on syntheses and properties of high oilabsorption resin by acrylic series of dipolymerization [J]. Journal of Functional Materials, 2004, 35(5): 638-640.
    [14] Atta Ayman M., Arndt K. F. Swelling and network parameters of high oil-absorptive network based on 1-octene and isodecyl acryl ate copolymers [J]. Journal of Applied Polymer Science, 2005, 97(1): 80-91.
    [15] Atta Ayman M., Arndt K. F. Swelling of high oil-absorptive network based on 1-octene and isodecyl acryl ate copolymers [J]. Journal of Polymer Research, 2005, 12(2): 77-88.
    [16] Zhou M.H., Cho W.J. High oil-absorptive composites prepared from non-woven fiber and sponges with 4-tert- butylstyrene-EPDM-divinylbenzene graft polymer [J]. Journal of Dong Hua University (English Edition), 2001, 18(1): 6-10.
    [17] Zhou Mei Hua, Ha Chang-Sik, Cho Won-Jei. Synthesis and properties of high oil-absorptive network polymer 4-tert-Butylstyrene-SBR-divinylbenzene [J]. Journal of Applied Polymer Science, 2001, 81(5): 1277-1285.
    [18] Zhou Mei Hua, Cho Won-Jei. High oil-absorptive composites based on 4-tert-butylstyrene-EPDM-divinylbenzene graft polymer [J]. Polymer International, 2001, 50(11): 1193-1200.
    [19] Dai G Z. Evaluation of sorption behavior of heavy oil into exfoliated graphite by wicking tests [J]. Materials Science Research International, 2002, 18(4): 243-248.
    [20] Audino Michiele, Grice Kliti, Alexander Robert, et al. Macrocyclic alkanes in crude oils and sediment extracts: Enrichment using molecular sieves [J]. Organic Geochemistry, 2004, 35(5): 661-663.
    [21] Gong Z. q., Alef Kassem, Wilke Berndt-Michael. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation [J]. Journal of Hazardous Materials, 2007, 143(1): 372-378.
    [22] TONG J. m., WU Z. s., SUN X. f., et al. Adsorption kinetics ofβ-carotene andchlorophyll onto acid-activated bentonite in model oil [J]. Chinese Journal of Chemical Engineering, 2008, 16(2): 270-276.
    [23] Andini Salvatore, Cioffi Raffaele, Colangelo Francesco, et al. Adsorption of chlorophenol, chloroaniline and methylene blue on fuel oil fly ash [J]. Journal of Hazardous Materials, 2008, 157(2): 599-604.
    [24] Arfelli William. Quantitative determination of metals in oils by atomic absorption spectrophotometry: inorganic standards in acidified emulsions [J]. Journal of Testing and Evaluation, 1984, 12(3): 152-154.
    [25] Paruch Adam M, Roseth Roger. Treatment of tunnel wash waters - experiments with organic sorbent materials. Part I: Removal of polycyclic aromatic hydrocarbons and nonpolar oil [J]. Journal of Environmental Sciences, 2008, 20(8): 964-969.
    [26] Tanobe V.O.A., Sydenstricker T.H.D., Amico S.C., et al. Evaluation of flexible post consumed polyurethane foams modified by polystyrene grafting as sorbent material for oil spills [J]. Journal of Applied Polymer Science, 2009, 111(4): 1842-1849.
    [27] Okieimen Felix E, Ebhoaye Justus E. Thermal dehydrochlorination of PVC in the presence of metal soaps derived from rubber seed oil [J]. European Polymer Journal, 1992, 28(11): 1423-1425.
    [28] Watry Mark R., Richmond Geraldine L. Orientation and conformation of amino acids in monolayers adsorbed at an oil/water interface as determined by vibrational sum-frequency spectroscopy [J]. Journal of Physical Chemistry B, 2002, 106(48): 12517-12523.
    [29] Weber Jr. Walter J., Tang Jixin, Huang Qingguo. Development of engineered natural organic sorbents for environmental applications. Materials, approaches, and characterizations [J]. Environmental Science and Technology, 2006, 40(5): 1650-1656.
    [30] Singh N., Cheryan M. Extraction of oil from corn distillers dried grains withsolubles [J]. Transactions of the American Society of Agricultural Engineers, 2006, 41(6): 1775-1777.
    [31] Ahmad A.L., Loh M.M., Aziz J.A. Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption [J]. Dyes and Pigments, 2007, 75(2): 263-272.
    [32] Nilsson Lars, Bergenstahl Bjorn. Adsorption of hydrophobically modified starch at oil/water interfaces during emulsification [J]. Langmuir, 2006, 22(21): 8770-8776.
    [33] Nilsson Lars, Bergenstahl Bjorn. Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces [J]. Journal of Colloid and Interface Science, 2007, 308(2): 508-513.
    [34] Naokichi, Kageyama Hiroshi, Uyama Hiroshi. Development of high-performance composite materials from renewable resources -synthesis and applications of plant oil composites reinforced by poly (L-lactic acid) Nan fiber simai [J]. Polymer Preprints, 2006, 55(1): 2250.
    [35] Li Peixun, Yu Bo, Wei Xiucheng. Synthesis and characterization of a high oil-absorbing magnetic composite material [J]. Journal of Applied Polymer Science, 2004, 93(2): 894-900.
    [36] Mosiewicki Mirna A., Borrajo Julio, Aranguren Mirta I. Moisture absorption effects on the thermal and mechanical properties of wood flour/linseed oil resin composites [J]. Polymer International, 2007, 56(6): 779-786.
    [37] Klimova G.M., Tarasevich Yu.I. Absorption of heavy metal ions from water by sorbents on the basis of layered silicates modified by polyphosphates [J]. Khimiyai Tekhnologiya Vody, 1992, 14(12): 929-934.
    [38] Hankins Nicholas P., Lu Na, Hilal Nidal. Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation [J].Separation and Purification Technology, 2006, 51(1): 48-56.
    [39] Kaminski W., Modrzejewska Z. Application of chitosan membranes inseparation of heavy metal ions [J]. Separation Science and Technology, 1997, 32(16): 2659-2668.
    [40] Wu L., Pan Z.P. Biological treatment of wastewater containing heavy metal ion [J]. Zhongguo Jishui Paishui/China Water & Wastewater, 2001, 17(10): 31.
    [41] Lu Haitao, Yin Xizhu, Mou Shifen, Riviello J.M. Simultaneous determination of heavy and transition metals in biological samples by chelation ion chromatography[J]. Journal of Liquid Chromatography and Related Technologies, 2000, 23(13): 2033-2045.
    [42] Jiang Yijun, Gao Qiuming, Yu Huaguang, et al. Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic-organic hybrid materials[J]. Microporous and Mesoporous Materials, 2007, 103(1): 316-324.
    [43] Kadirvelu K, Thamaraiselvi K, Namasivayam C. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste [J]. Bioresouree Technology, 2001(76): 63-65.
    [44]王桂芳,包明峰,韩泽志.活性炭对水中重金属离子去除效果的研究[ J ].环境保护科学, 2004, 30(2): 26-29.
    [45] Mohan D, Chander S. Single component and multi-component adsorption of metal ions by activated carbon [J]. Colloids and Surfaces, 2001, (177):183 - 196.
    [46] Namasivayam C., Sangeetha D., Gunasekaran R. Removal of anions, heavy metals, organics and dyes from water by adsorption onto a new activated carbon from Jatropha husk, an agro-industrial solid waste [J]. Process Safety and Environmental Protection, 2007, 85(2): 181-184.
    [47] Jankowski Krzysztof, Yao Jun, Kasiura Krzysztof, et al. Multielement determination of heavy metals in water samples by continuous powder introduction microwave-induced plasma atomic emission spectrometry after preconcentration on activated carbon [J]. Spectrochimica Acta - Part B AtomicSpectroscopy, 2005, 60(3): 369-375.
    [48] Wingenfelder Ulla, Hansen Carsten, Furrer Gerhard, et al. Removal of heavy metals from mine waters by natural zeolites [J]. Environmental Science and Technology, 2005, 39(12): 4606-4613.
    [49] Wang Yanxin, Guo Yonglong, Yang Zhihua, et al. Synthesis of zeolites using fly ash and their application in removing heavy metals from waters [J]. Science in China, Series D: Earth Sciences, 2003, 46(9): 967-976.
    [50] Blanchard G., Maunaye M., Martin G. Removal of heavy metals from waters by means of natural zeolites [J]. Water Research, 1984, 18(12): 1501-1507.
    [51] Lin Su-Hsia, Juang Ruey-Shin. Heavy metal removal from water by sorption using surfactant-modified montmorillonite [J]. Journal of Hazardous Materials, 2002, 92(3): 315-326.
    [52] Jiang Wei, Su Haijia, Tan Tianwei. Adsorption properties for heavy metal ions of molecular imprinting chitosan-coated diatomite beads in water-extraction liquid of Rhodiola L. [J]. Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2008, 59(5): 1179-1183.
    [53] Liu Yun, Wu Ping-Xiao, Dang Zhi. Study of heavy metal adsorption on pillared vermiculite in wastewater [J]. Kuangwu Yanshi, 2006, 26(4): 8-13.
    [54] Liang Wendong, Liu Qiang. Study on the heavy metal removal from waste water by using upgraded apatite [J]. Wuhan Gangtie Xueyuan Xuebao/Journal of Wuhan Iron and Steel University, 2000, 23(3): 242-244.
    [55]葛俊森,梁渠.水中重金属危害现状及处理方法,江苏化工, 2007, 35(5): 44-46.
    [56] E.R., Delwiche J.T. Removal of Heavy Metals from Electroplating Rinsewaters by Precipitation, Flocculation, and Ultrafiltration.Christensen [J]. 1981, CEP Consult Ltd: 84-87.
    [57] Kaloyanides Donald. Regenerable Microporous Polypropylene Membrane Filtration System for Separation and Concentration of Heavy Metals fromIndustrial Waste Waters [J]. Proceedings-International Printed Circuits Conference, 1982, 3.76-3.80.
    [58] Codina Juan C., Cazorla Francisco M., Perez-Garcia Alejandro, et al. Heavy metal toxicity and genotoxicity in water and sewage determined by microbiological methods [J]. Environmental Toxicology and Chemistry, 2000, 19(6): 1552-1558.
    [59] Hideshi Seki, Akira Suzuki, Shin– Ichiro. Mitsueda Biosorption of heavy metal ions on rhodobacter sphaeroides and aleali - geneseutr phush [J]. Journal of Colloid and Interface Science, 1994, 197(2): 185-190.
    [60] GaddGM. Accumulation of metal by micro-organisms and algae [C]. In: Rehm, H. (Ed.). Biotechnology: A Complete Treatise, vo1.6B, Special Microbial Processes, vo1.4, VCH, Verlagsgesell chaft, Weinheim, 1988.
    [61] Duynstee E.F.J. Chemistry of EPDM Vulcanisation [J]. Kautschuk und Gummi, Kunststoffe, 1987E, 40(3): 205-209.
    [62] Zachary Mouna, Camara Susana, Whitwood Adrian C., et al. EPR study of persistent free radicals in cross-linked EPDM rubbers [J]. European Polymer Journal, 2008, 44(7): 2099-2107.
    [63]吕文良,邢海强.三元乙丙橡胶卷材在地下防水工程中的应用[J].建筑科学,2002, 18(6):42-44.
    [64]卢绮云.三元乙丙橡胶在广州地铁工程中的应用[J].广东建材,2003, 6:11-13.
    [65]许建雄,郭一枫.三元乙丙橡胶在线缆行业中应用和改性[J].电线电缆,2001, 6:30-32.
    [66]王福志,曾学忠,李继涛,等.乙丙橡胶电力电缆绝缘一步法硅烷交联工艺[J].电线电缆,2005, 2:22-24.
    [67]程时远,肖汉文,蒋涛,等.动态全硫化三元乙丙橡胶/聚丙烯共混型热塑性弹性体[J].弹性体,2000, 10(4):31-34.
    [68]谢志潜,郜奇,刘欣,等.动态硫化法制备三元乙丙橡胶/聚酚胺热塑塑性弹性[J].合成橡胶工业,2004, 27(2): 82-86.
    [69]李洪彬,蒋涛,肖汉文.动态硫化三元乙丙橡胶(EPDM)/聚丙烯(PP)热塑性弹性体的力学性能[J].胶体与聚合物,2004, 22(1):23-25.
    [70]马国维,方征平,许承威.三元乙丙橡胶对通用树脂的共混改性[J].合成橡胶工业,2001, 24(1):56-59.
    [71]瞿保钧,范维澄,王正洲.乙丙橡胶增韧氢氧化镁阻燃聚乙烯的制备[J].合成橡胶工业,2000, 23(5):319.
    [72]张启霞,范宏,卜志扬,等.三元乙丙橡胶共混改性聚丙烯[J].合成橡胶工业, 2004, 27(3):161-164.
    [73]常平,洪重奎.乙丙橡胶增韧聚丙烯共混物中橡胶相形态[J].塑料科技,2002, 1:4-6.
    [74]黄丽,姜伟,安立佳,等.环氧化三元乙丙橡胶增韧聚对苯二甲酸丁二酯的脆韧转变[J].高分子学报,2005,4: 529-534.
    [75]朱玉俊,马军,熊茂林.三元乙丙橡胶与尼龙树脂的增容共混[J].合成橡胶工业,2001, 24(6):361-364.
    [76]孙树林,徐新宇,杨海东,等.二元乙丙橡胶的环氧官能化及其增韧尼龙6的研究[J].高分子学报,2005, 3.
    [77]叶舒展,周彦豪,刘洪涛.丁睛橡胶与三元乙丙橡胶共混物的反应性增容作用[J],世界橡胶工业,2005, 32(1): 8-11.
    [78]彭树文,董丽松,鲁建春,等.氯化聚乙烯对三元乙丙橡胶与丁睛橡胶并用胶物理机械性能的影响[J].合成橡胶工业,2003, 26(1): 37-39.
    [79]张祥福. EPDM/CR共混物的研究[J].橡胶工业,1998, 45(1): 3-9.
    [80] L.J. Thomas Tournal of elastomers and plastics [J]. 1991, 23(2): 119.
    [81]欧迪垣. EPDM/CSM并用技术探讨特种橡胶特点[J]. 1992, (2): 6-8.
    [82]王明成,王清元,刘圣仑.硅橡胶/三元乙丙橡胶共混研究[J].特种橡胶制品, 1996, 1: 10-14.
    [83]周童杰. EPDM/氟橡胶的动态硫化[J].橡胶工业, 1999, 46(10): 579-528.
    [84]郑华,彭宗林,张勇,等.橡胶工业, 2003,50(7):398-401.
    [85]郑华,张勇.改性剂和增容剂在EPDM/蒙脱土纳米符合材料中的作用[J].弹性体, 2003, 13 (4):1-5.
    [86]娄成玉,刘大华.合成橡胶工业手册[M].北京:化工出版社,1993.
    [87]娄成玉.氯化三元乙丙橡胶[J].弹性体,1995, (5): 44-48.
    [88] Shaw,S,李九玉.聚苯乙烯/接枝三元乙丙橡胶相容性的研究[J].橡胶参考资料, 1990,(2) : 22-25.
    [89]江畹兰.新型氯化三元乙丙橡胶及其硫化胶的性能[J].世界橡胶工业, 2001, 28 (2):15-16.
    [90]尹在龙.日本协会志,166(7): 495-501.
    [91]张莹,陈信忠.三元乙丙橡胶的催化环氧化[J].高分子材料科学与工程,2002,18(1):59-62.
    [92]蔡红莉.织物用热红外透明粘合剂的研究[J].天津工业大学学报,2003, 22(8): 45-48.
    [93]顾雪蓉,乔军.硫磺化乙丙三元橡胶(EPDM)离聚物的制备及其性能研究[J].高分子材料科学与工程,1990, (2):17-22.
    [94]马步勇,谢洪泉.硫磺化乙丙三元橡胶离聚体[J].合成橡胶工业,1991, 14(3):227-231.
    [95]董颖.硫磺化乙丙三元橡胶离聚物的合成[J].弹性体,2003, 13 (1):13-15.
    [96]刘安华,江碗兰.三元乙丙橡胶-甲基丙烯酸甲醋溶胀机械接枝共聚研究[J].合成橡胶工业,1995, 18(2): 97-99.
    [97]何继敏.新型聚合物发泡材料及技术[M].北京:化学工业出版社,2008.
    [98]张京珍.泡沫塑料成型加工[M].北京:化学工业出版社,2005.
    [99] Deniel Klempner, Kurt C.Frisch. Handbook of polymeric foams and foam technology. New York: Hanser Publishers, 1991.
    [100]钱志屏.泡沫塑料[M].北京:中国石化出版社,1998.
    [101] Qin X., Thompson M.R., Hrymak A.N., Torres, A. Rheological comparison of chemical and physical blowing agents in a thermoplastic polyolefin [J]. Industrial and Engineering Chemistry Research, 2006, 45(8): 2734-2740.
    [102]吴舜英,徐敬一.泡沫塑料成型,第二版[M].北京:化学工业出版社,1999.
    [103] Kim Seong G., Park Chul B., Sain Mohini. Foam ability of thermoplastic vulcanized blown with various physical blowing agents [J]. Journal of Cellular Plastics, 2008, 44(1): 53-67.
    [104] Jacobs L.J.M., Danen K.C.H., Kemmere M.F., Keurentjes J.T.F. A parametric study into the morphology of polystyrene-co-methyl methacrylate foams using supercritical carbon dioxide as a blowing agent [J]. Polymer, 2007, 48(13): 3771-3780.
    [105] Stemmler Konrad, Folini Doris, Ubl Sandy, et al. European emissions of HFC-365mfc, a chlorine-free substitute for the foam blowing agents HCFC-141b and CFC-11[J]. Environmental Science and Technology, 2007, 41(4): 1145-1151.
    [106] Lyon James T., Riley Robert E. Effective use of compatibilizers to achieve resin stability with hydrocarbon blowing agents [J]. Journal of Cellular Plastics, 2003, 39(3): 239-251.
    [107]清文.泡沫塑料[J].科学中国人, 1996, (9): 39.
    [108] Dutta A., Cakmak M. Foaming of vulcanized PP/EPDM blends using chemical blowing agents [J]. Rubber Chemistry and Technology, 1992, 65(4): 778-791.
    [109] Sims G.L.A., Sirithongtaworn W. Azodicarbonamide and sodium bicarbonate blends as blowing agents for crosslinked polyethylene foam [J]. Cellular Polymers, 1997, 16(4): 271-283.
    [110] Yang Jincai, Liu Lina, Feng Wei, et al. Study on LDPE/EPDM blend foam forming technology (1). The effect of chemical blowing agent AC, cross-link agent DCP on foam forming technology [J]. Hecheng Shuzhi Ji Suliao/China Synthetic Resin and Plastics, 1998, 15(3): 30-33.
    [111] Yang Jincai, Liu Lina, Feng Wei, et al. Study on LDPE/EPDM blend foamforming technology (1). The effect of chemical blowing agent AC, cross-link agent DCP on foam forming technology [J]. Hecheng Shuzhi Ji Suliao/China Synthetic Resin and Plastics, 1998, 15(3): 30-33.
    [112] Okada Kiyoshi, Ikawa Fumihiko, Isobe Toshihiro, et al. Low temperature preparation and machinability of porous ceramics from talc and foamed glass particles [J]. Journal of the European Ceramic Society, 2009, 29(6): 1047-1052.
    [113] Azimipour Bahar, Marchand Frederic. Effect of calcium carbonate particle size on PVC foam [J]. Journal of Vinyl and Additive Technology, 2006, 12(2): 55-57.
    [114] Carbon black in PUR foam increases insulating ability [J]. Modern Plastics, 1995, 72(4): 91.
    [115] Rodrigues Neto, Jo?o B., Moreno Rodrigo. Rheological behaviour of kaolin/talc/alumina suspensions for manufacturing cordierite foams [J]. Applied Clay Science, 2007, 37(1): 157-166.
    [116] Wang Ming Yi, Zhou Nan Qiao, Wen Sheng Ping. The effect of concentrations of modifying agent and plasticizer on cell morphology of PVC microcellular foam [J]. Polymer - Plastics Technology and Engineering, 2009, 48(3): 303-309.
    [117] Decker, Robert W. Role of lubricants in rigid PVC foam processing [J]. Annual Technical Conference - ANTEC, Conference Proceedings, 1995, (3): 4134-4137.
    [118] Zhang Jingjing, Li Lin, Chen Guang, Wee Paul. Influence of iron content on thermal stability of magnetic polyurethane foams [J]. Polymer Degradation and Stability, 2009, 94(2): 246-252.
    [119] Sipaut C.S., Sims G.L.A., Mohamad Ibrahim, M.N. Crosslinking of polyolefin foam. III. Increasing low-density polyethylene foam production efficiency by incorporation of polyfunctional monomers [J]. Cellular Polymers, 2008, 27(2):67-90.
    [120] Sims, G.L.A., Sipaut, C.S. Crosslinking of Polyolefin Foams: I. Effect of Triallyl Cyanurate on Dicumyl Peroxide Crosslinking of Low-Density Polyethylene [J]. Cellular Polymers, 2001, 20(4): 255-277.
    [121] Bing Li, Nanqiao Zhou, Wang Ming-Yi, Zhang Ping. Study of vibration field on microcellular foaming in nucleating agents [J]. Polymer - Plastics Technology and Engineering, 2008, 47(10): 1054-1060.
    [122] Choi Soo Kyung, Jo Byung Wook, Sohn Jung Sun, Choi Yoo Sung. Flame retardant polymeric foams based on poly (ethylene vinylacetate) /clay nanocomposites [J]. Journal of Nanoscience and Nanotechnology, 2008, 8(10): 5479-5484.
    [123]蔡业彬,国明成,彭玉成,谢存禧.泡沫塑料加工过程中的气泡成核理论(Ⅰ)-经典成核理论及述评[J].塑料科技, 2005, 3(167): 12-16.
    [124]蔡业彬,国明成,彭玉成,谢存禧.泡沫塑料加工过程中的气泡成核理论(Ⅱ)-剪切能成核理论及其发展[J].塑料科技, 2005, 4(168): 37-43.
    [125] Alvarez Gisela S., Foglia María L., Copello Guillermo J., et al. Effect of various parameters on viability and growth of bacteria immobilized in sol-gel-derived silica matrices [J]. Applied Microbiology and Biotechnology, 2009, 82(4): 639-646.
    [126] Biyk Andrzej, Traczewska Teodora M. Anthracene and phenanthrene degradation by bacteria immobilized on activated carbon and zeolites [J]. Environment Protection Engineering, 1999, 25(3): 123-129.
    [127] Tsygankov A.A., Hirata Y., Miyake M., et al. J.Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction [J]. Journal of Fermentation and Bioengineering, 1994, 77(5): 575-578.
    [128] Sakairi Maria Antonina Catalan, Yasuda Kimiaki Matsumura, Masatoshi. Nitrogen removal in seawater using nitrifying and denitrifying bacteriaimmobilized in porous cellulose carrier [J]. Water Science and Technology, 1996, 34(7): 267-274.
    [129]朱柱,李和平,郑泽根,等.固定化细胞技术中的载体材料及其在环境治理中的应用[J].重庆建筑大学学报,2000, 22(5): 95-100.
    [130] Ishikawa Mitsuyoshi, Yamamura Shohei, Ikeda Ryuzoh, et al. Development of a compact stacked flatbed reactor with immobilized high-density bacteria for hydrogen production [J]. International Journal of Hydrogen Energy, 2008, 33(5): 1593-1597.
    [131] Czaczyk Katarzyna, Albrecht Anna, Mroczkowski Andrzej, et al. Mechanical stability of carrageenan and carrageenan/locust bean gum gels used for immobilization of propionic acid bacteria [J]. Journal of Biotechnology, 1997, 53(1): 13-20.
    [132] Shahbazi Abolghasem, Mims Michele R., Li Yebo, et al. Lactic acid production from cheese whey by immobilized bacteria [J]. Applied Biochemistry and Biotechnology - Part A: Enzyme Engineering and Biotechnology, 2005, 122(1): 529-540.
    [133] Yu Charles, Lee Andy M., Bassler Bonnie L., et al. Chitin utilization by marine bacteria: A physiological function for bacterial adhesion to immobilized carbohydrates [J]. Journal of Biological Chemistry, 1991, 266(36): 24260-24267.
    [134] Joshi NT. DSouza SF. J. Environ. Sci. Health. 1999, A34 (8):1691.
    [135] Seannell AGM, Hill C, Ross RP, et al. J. of APPL. Micro boil. , 2000, 89: 574.
    [136] GardonH, PaussA. APPI. Miero biolBioteeh, 2001, 56: 517-523.
    [137] White G.F., Thomas O.R.T. Immobilization of the surfactant-degrading bacterium Pseudomonas C12B in polyacrylamide gel beads: I. Effect of immobilization on the primary and ultimate biodegradation of SDS, and redistribution of bacteria within beads during use [J]. Enzyme and Microbial Technology, 1990, 12(9): 697-705.
    [138] Yuan, Linjiang. Denitrification characters of denitrifying bacteria immobilized by polyvinyl alcohol (PVA) [J]. Zhongguo Huanjing Kexue/China Environmental Science, 2000, 18(2): 189-191.
    [139]吕荣湖,郭召海,孙阳昭,等.包埋固定化微生物法处理含油废水研究[J].环境污染治理技术与设备,2006,7(1):89-93.
    [140]朱文芳,李伟光.微生物固定化技术处理含油废水的研究[J].工业水处理, 2007, 27(10): 44-47.
    [141] Al-Hasan R.H., Salamah S., Al-Dabbous S. Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae [J]. International Biodeterioration and Biodegradation, 2002, 50(1): 55-59.
    [142] K. Takeno, Y. Yamaoka and K. Sasaki. Treatment of oil-containing sewage wastewater using immobilized photosynthetic bacteria [J]. World Journal of Microbiology & Biotechnology, 2005, 21:1385-1391.
    [143] Freundlich H. Colloid&capillary chemistry. E. P. [M]. London: Dutton & Co. Inc., New York, and Methuen & Co. Ltd., 1926.
    [144] Adam N. K. Physics and chemistry of surfaces [M]. London: Oxford university Press, 1941.
    [145] Tsutsumi K., Matsushima Y and Matsuoto A. Surface heterogeneity of modified active carbons [J]. Langmuir, 1993, 9: 2665-2669.
    [146]许保玖.当代给水与废水处理原理[M].北京:高等教育出版社,1990.
    [147]张巧丽.氧化铁/活性炭复合材料的制备及去除水中有机物和砷的研究[D].天津:天津大学,2004.
    [148]欧玉春,方晓萍.高性能无机粒子填充聚丙烯/三元乙丙橡胶复合材料[J].高分子学报,1996,5.
    [149] Duynstee E.F.J. Chemistry of EPDM Vulcanisation [J]. Kautschuk und Gummi, Kunststoffe, 1987E, 40(3): 205-209.
    [150] Zachary Mouna, Camara Susana, Whitwood Adrian C., et al. EPR study of persistent free radicals in cross-linked EPDM rubbers [J]. European PolymerJournal, 2008, 44(7): 2099-2107.
    [151]陈学榕,黄彪,江茂生,等.生态型木纤维吸油材料的制备与研究[J] .福州大学学报,2006, 34(3): 383-387.
    [152]鲁新宇,路建美.多孔性高吸油性树脂的合成及性能[J].南京化工学院学报,1995, 17(2): 43 - 47.
    [153] Matta A, Arndt K F. Swelling and network parameters of high oil absorptive network based on 1-octene and isodecyl acrylate copolymers [J]. Journal of Applied Polymer Science, 2005, 97(1): 80 -91.
    [154]杨俊华.高吸油树脂[J].合成树脂及塑料, 1991(4) : 39-43.
    [155]赵有.高吸油性树脂[J].化工新型材料, 1993(10) : 23-27.
    [156]汪济奎,郭卫红.高吸油性树脂[J].高分子材料, 1994(2) :24-27.
    [157]陆晶晶,周美华.吸油材料的发展[J].东华大学学报, 2002, 28(1): 78-83.
    [158]高志祥.吸油材料[J].现代化工, 1995, (2): 54-55.
    [159] Sano Y, Sugahara K, Choi K, et al. Two step adsorption process for deep desulfurization of diesel oil [J]. Fuel, 2005, 84(6): 903-910.
    [160]李华,刘奇,许时.糊精在氧化矿表面的吸附特性及作用机理[J].中国有色金属学报,1996, 6,(3): 30-34.
    [161]吴德怀,陈孝祥,田冰式.碱性氧化铁的制备及其对铬吸附性能的研究[J].环境污染与防治,1994, 16(2): 11-15.
    [162] Cain J. L. and Harrison S. R. Preparation ofα-Fe particles by reduction of ferrous ion in lecithin/cyclohexane/water association colloids[J]. J. Main. and Main. Mat, 1996, 155: 67-69.
    [163] WANG Yan, WANG Shurong, ZHAO Yingqiang, et al. H2S sensing characteristics of Pt2dopedα2Fe2O3 thick film sensors [J]. SensActuators: B, 2007, 125: 79 - 84.
    [164]孔载坚.塑料增韧[M].北京:北京化学工业出版社,1992.
    [165]吕彦梅,唐华杰,候馨.刚性增韧材料[J].塑料科技,1999, (1):33-36.
    [166]刘英俊,刘伯元.塑料填充改性[M].北京:中国轻工业出版社,1998,5.
    [167]王从南,沈志明.新型吸油材料[J ].非织造布, 2000, 8(4): 1.
    [168]朱倜夫,李世英,包季欣.合成橡胶工艺学[M].北京:石化出版社, 1992: 336-361.
    [169]山下晋三,金子柬助.交联剂手册[M].北京:化学工业出版社, 1990: 109-114.
    [170]谢锋.影响气敏α-Fe2O3超细粒体粒度因素的研究[J].传感器技术,1999, 18(5): 12-16.
    [171]清山哲朗.金属氧化物及其催化作用[M].合肥:中国科学技术大学出版社, 1991:44-46.
    [172]邹秦,刘阳春,李明红,孟中岩.用甲酸盐柠檬酸盐制备(Sr1-xCax)TiO3微粉的研究[J].无机材料学报, 1994,9,(2):166-172.
    [173]刘平生,李利,周宁琳,等.蒙脱土/聚丙烯酸高吸水性树脂的合成[J].复合材料学报, 2006, 23(3): 44-48.
    [174] Okazaki M, Murota M, Kawaguehi Y, etal. Curing of epoxy resin by ultrafine silica modified by grafting of hyperbranched using dendrimer dynthesis methodology [J]. J APPI Polym Sci, 2001, 80(4):573-579.
    [175] Rong M Z, Ji Q L, Zhang M Q, etal. Graft polymerization of Vinyl monomers onto nanosized alumina Partieles [J]. Eur Polym J, 2002, 38(8):1573-1582.
    [176] M.H. Choi, B.H. Jeon, I.J. Chung.The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenol resin composites [J], Polymer, 2000, 41, 3243–3252.
    [177]杜仕国.复合材料用硅烷偶联剂的研究进展[J],玻璃钢/复合材料,1996, 4, 32-36.
    [178]陈世容,瞿晚星,徐卡秋.硅烷偶联剂的应用进展[J],有机硅材料, 2003, 17(5), 28-31.
    [179] Mtyatake Kenichiro, Ohama Osamu, Kawahara Yukiharu, et al. Study on analysis method for reaction of silane coupling agent on inorganic materials [J]. SEI Technical Review, 2007, 65: 21-24.
    [180] Adhikary A., Mukhopadhyay R., Deuri A.S. Effect of silane coupling agent (Si-69) on thermoxidative stability of butyl rubber compounds [J]. Journal of Materials Science, 1995, 30(16): 4112-4114.
    [181]高红云,张招贵.硅烷偶联剂的偶联机理及研究现状[J],江西化工, 2003, 2, 30-35.
    [182]刘亚青,刘亚群.有机硅烷偶联剂[J],华北工学院学报, 1997, 18, 328-333.
    [183]纪占敏,杜仕国,施冬梅,等.硅烷偶联剂在复合材料中的应用研究[J].现代涂料与涂装,2006, (12):44-46.
    [184] Ismail Hanafi, Suryadiansyah, Azhari B. The effect of ethylene diamine dilaurate and silane coupling agent on cure characteristics, mechanical, and thermal properties of silica-filled natural rubber composites [J]. Polymer - Plastics Technology and Engineering, 2005, 44(8): 1669-1681.
    [185]朱学文,郑淑君.高吸油树脂研究进展[J].化学推进剂与高分子材料,2004, 2(1):15-18.
    [186]吴兵,李发生,何绪文. PHBV泡沫吸油材料的制备及吸油性能研究[J].交通环保,2002, 23(1): 17-20.
    [187] Tanobe V.O.A., Sydenstricker T.H.D., Amico S.C., et al. Evaluation of flexible postconsumed polyurethane foams modified by polystyrene grafting as sorbent material for oil spills [J]. Journal of Applied Polymer Science, 2009, 111(4): 1842-1849.
    [188] Liu Xiu-Qi, Xing He-Qin, Zhang Guo, et al. Oil absorption properties of foaming waste dusty slag/EPDM composites for machine oil [J]. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2009, 39(1): 56-60.
    [189] Stirna U., Cabulis U., Beverte I. Water-blown polyisocyanurate foams from vegetable oil polyols [J]. Journal of Cellular Plastics, 2008, 44(2): 139-160.
    [190] Mannhardt Karin, Novosad Jerry J. Effects of wettability and residual oil on adsorption of foam-forming surfactants [J]. In Situ, 1994, 18(2): 145-183.
    [191] Ni Sheng-Chung, Kuo Ping-Lin. Chemical and physical adsorption of polymers containing thiophosphate, amino, or polysiloxane groups at the oil/metal interface under extreme pressure [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2002, 41(1): 106-115.
    [192] SHAN G R, XU P Y, WENG Z X, et a1. Synthesis and properties of oil absorption resins filled with polybutadiene [J]. J Appl. Poly Sci., 2003, 89: 3309-3314.
    [193]钱军民,李旭祥.聚合物-无机纤维复合泡沫材料吸声性能的研究[J].高分子材料科学与工程,2001,17(4):145-148.
    [194] Yuan Li-Rong, Shen Yong-Ming, Tang Jun. Analysis on the mixing of pollutants in water current combining with waves [J]. Shuili Xuebao/Journal of Hydraulic Engineering, 2007, 38(3): 260-266.
    [195] Wu P.X., Liao Z.W., Zhang H.F., et a1. Adsorption of phenol on inorganic-organic pillared montmorillonite in polluted water [J]. Environment International, 2001, 26(5): 401-407.
    [196] Tang Li-Li, Niu Sheng-Jie, Shuxian Fan, et a1. Observational study of content of Hg in fog water relative to air pollution in suburbs of Nanjing [J]. Proceedings of SPIE - The International Society for Optical Engineering, 2008, 6973.
    [197] Gen?-Fuhrman Hülya, Wu Peng, Zhou Yushan, et a1. Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent [J]. Desalination, 2008, 226(1): 357-370.
    [198] Liu Jianguo, Shao Wanchen, Xu Jiakuan. Variations among 19 wetland plant species in the uptake and tolerance of Cd, Pb and Zn from metal polluted water [J]. 2nd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2008, 2817-2820.
    [199] Chevreuil M., Blanchard M., Teil M.-J., et a1. Evaluation of the pollution by organochlorinated compounds (polychlorobiphenyls and pesticides) and metals(Cd, Cr, Cu and Pb in the water and in the zebra mussel (Dreissena polymorpha pallas) of the river Seine [J]. Water, Air, and Soil Pollution, 1996, 88(3): 371-381.
    [200] Navalon Sergio, Alvaro Mercedes, Garcia Hermenegildo. Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of threeβ-lactam antibiotics with ClO2. Water Research, 2008, 42(8): 1935-1942.
    [201] Gojmerac T., Ostojic Z., Paukovic D., et a1. Evaluation of surface water pollution with atrazine, an endocrine disruptor chemical, in agricultural areas of Turopolje, Croatia [J]. Bulletin of Environmental Contamination and Toxicology, 2006, 76(3): 490-496.
    [202] Dwivedi S., Tripathi R.D., Rai U.N., et a1. Dominance of algae in ganga water polluted through fly-ash leaching: Metal bioaccumulation potential of selected algal species [J]. Bulletin of Environmental Contamination and Toxicology, 2006, 77(3): 427-436.
    [203] Konstantinou Ioannis K., Hela Dimitra G., Albanis Triantafyllos A. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels [J]. Environmental Pollution, 2006, 141(3): 555-570.
    [204]陈黎军,刘成梅.容量法测定铬盐废水中高浓度六价铬[J].青海环境,1995,6(1):29-31.
    [205]邰玲,张稳婵,李华静.水样中六价铬的测定方法研究[J].计量与测试技术,2007, 34(7):54-55.
    [206]郑礼胜,等.用粉煤灰处理含铬废水的实验研究[J].粉煤灰综合利用,1997(2):38-40.
    [207]刘秀奇,张国. Fe2O3/EPDM新型吸油材料的制备及其吸油性[J],复合材料学报,2007,24(6):31-35.
    [208] Sun Jianping, Li Wenhong, Ma Fang, et a1. Study on the efficiency ofpollutant removal from drinking water by immobilized microorganism [J]. Zhongguo Jishui Paishui/China Water & Wastewater, 2000, 16(2): 58-60.
    [209] Kabaivanova Ludmila, Dimitrov Plamen, Boyadzhieva Ivanka, et a1. Nitrile degradation by free and immobilized cells of the thermophile Bacillus sp. UG-5B, isolated from polluted industrial waters [J]. World Journal of Microbiology and Biotechnology, 2008, 24(11): 2383-2388.
    [210] Akhtar Suhail, Husain Qayyum. Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water [J]. Chemosphere, 2006, 65(7): 1228-1235.
    [211] Spasyonova L.N., Shevchenko A.L., Gvozdyak P.I. et a1. Purification of the surface waters, polluted by radionuclides, by immobilized hydrobiocenosis [J]. Khimiyai Tekhnologiya Vody, 2004, 26(4): 395-402.
    [212] Wingfield G.I., Greaves M.P., Bebb J.M., et a1. Microbial immobilization of phosphorus as a potential means of reducing phosphorus pollution of water [J]. Bulletin of Environmental Contamination and Toxicology, 1985, 34(4): 587-596.
    [213] Qingxin Li, Congbao Kang, Changkai Zhang. Waste water produced from an oilfield and continuous treatment with an oil-degrading bacterium [J]. Process Biochemistry, 2005, 40: 873–877.
    [214] Takayama Katsumi, Yoshimura Tadayosi, Nambo Yukio. Nitrate removal from wastewater based on bioelectrocatalytic reduction - Potentiality of carbon felt as an immobilization carrier of denitrifying bacteria [J]. Society of Fiber Science and Technology, 2003, 59(10): 414-417.
    [215] Radwan S.S., Al-Hasan R.H., Salamah S., et a1. Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae [J]. International Biodeterioration and Biodegradation, 2002, 50(1): 55-59.
    [216] Catalan-Sakairi M., Yasuda K., Matsumura M. Nitrogen removal in seawater using nitrifying and denitrifying bacteria immobilized in porous cellulosecarrier[J]. Environmental Contaminants, 1996, 34(4):267-274.
    [217] Ssouki A M, Issa G I, Atia K S. Pullulanase immobilization on natural and synthetic polymers [J]. J. Chem. Technol. Biotechnol, 2001, 76(7): 700-706.
    [218] Chen J P, Su D R. Latex particles with thermo-flocculation and magnetic properties for immobilization ofα- chymotrypsin [J]. Biotechnol. Prog. , 2001, 17(2), 369-375.
    [219] Rittich B, panováA, Yuriy O, et al. Characterization of deoxyribonuclease I immobilized on magnetic hydrophilic polymer particles [J]. J. Chromatogr. B, 2002, 774(1): 25-31.
    [220]张轶.静止或缓流城市污染地表水微生物固定化修复技术研究[D],沈阳:东北大学环境学院,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700