氮素营养对小白菜体内抗氧化物质含量和抗氧化活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高蔬菜体内抗坏血酸(AsA)、谷胱甘肽(GSH)、多酚和类黄酮等具抗氧化作用的生物活性物质含量,不仅可以增强植物本身对各种环境胁迫的抗性,而且可以增进人体的健康。因此,通过生物技术和农艺措施提高蔬菜抗氧化物质的含量具有重要的意义。蔬菜体内的的生物活性物质含量和抗氧化活性不但与其自身的遗传因素有关,还受到光照、温度、水分、施肥和栽培措施以及食前加工方法等因素的影响,其中氮素营养对抗坏血酸、多酚、类黄酮等抗氧化物质含量有显著影响。但以往关于氮素营养对蔬菜抗氧化物质含量影响的研究结果不尽一致,而且大多仅仅测定了不同氮素营养供应下蔬菜体内某种单一抗氧化物质的含量,对于多种生物活性物质的综合影响与总抗氧化活性结合起来研究尚少见报道。本研究以两个小白菜品种为材料,采用水培和土培试验研究了不同氮素供应水平、形态以及氮肥用量对其体内AsA、GSH、多酚、类黄酮等生物活性物质含量和抗氧化活性的影响,旨在为生产优质蔬菜的氮肥施用提供依据。取得的主要结果如下:
     1.采用水培试验,研究了不同供氮养水平(2、10、18、26 mmol·L~(-1))对2个小白菜(Brassica Chinensis L.)品种(苏州青和冬妃)抗氧化物质含量和抗氧化活性的影响。结果表明,适宜的供氮水平(10 mmol·L~(-1)),有利于小白菜生物量的增加,但供氮过高却降低小白菜的生物量,并导致硝酸盐的积累。在氮亏缺条件下(2 mmol·L~(-1)),类黄酮、总酚、抗坏血酸等抗氧化物质含量以及FRAP(Ferric reducing antioxidant power)值和DPPH(1,1-diphenyl-2-picrylhydrazyl)自由基清除率最高,随着供氮水平的提高,抗氧化物质含量和总抗氧化活性均随之下降,而谷胱甘肽浓度没有显著变化。但是在氮水平为10 mmol·L~(-1)时,生物量和抗氧化物质积累量最高。因此,综合考虑小白菜的产量与营养品质,在供氮水平为10 mmol·L~(-1)的溶液培养条件下,可获得较高的产量,并同时兼顾其营养品质。
     2.采用4种氮形态比例(硝铵比分别为100∶0、75∶25、50∶50、25∶75)对2个小白菜品种(苏州青和冬妃)抗氧化物质含量和抗氧化活性的影响。结果表明随着营养液中硝铵比从100∶0降低为75∶25时,地上部鲜重和干重显著升高,进一步降低硝铵比则显著下降。小白菜体内抗坏血酸、谷胱甘肽含量、类黄酮、多酚等抗氧化物质含量以及FRAP值和DPPH自由基清除率均随着混合氮源中供铵比例的提高逐渐升高,以硝铵比25∶75处理最高;硝酸盐含量随着混合氮源中供铵比例的提高而显著降低。而硝铵比为75∶25时不仅可以显著降低硝酸盐含量,而且其生物量和各种抗氧化物质积累量最高。因此,在本试验条件下,综合考虑小白菜的产量和营养品质因素,营养液中硝铵比以75∶25为宜。
     3.采用土培试验,研究了3个氮肥用量(0、150、300 mg N·kg~(-1)土)对2个小白菜品种(苏州青和冬妃)抗氧化物质含量和抗氧化活性的影响。结果表明,随着氮肥用量从0 mg N·kg~(-1)提高150 mg N·kg~(-1),2个品种的鲜重和干重显著升高,进一步提高氮肥用量则显著下降。叶片和叶柄硝酸盐含量随着氮肥用量显著上升,而在高氮条件下冬妃的硝酸盐含量显著低于苏州青。在氮亏缺条件下,类黄酮、总酚、抗坏血酸等抗氧化物质含量以及FRAP值和DPPH自由基清除率最高,随着氮肥用量的提高,抗氧化物质含量和总抗氧化活性均随之下降,而谷胱甘肽浓度没有变化。但是在150 mg N·kg~(-1)土的施氮量条件下,抗氧化物质积累量最高。因此,在试验的土培条件下,150 mgN·kg~(-1)的氮肥施用量下可获得产量和品质兼顾的优质蔬菜。
Public awareness of the purported health benefits of dietary antioxidants.such as ascorbic acid(AsA),vitamin E,phenolics,carotinoids,flavonoids and glutathione(GSH)has increased the demand for vegetable products with recognized and improved antioxidants quality.Therefore,the pathways that improve the synthesis of these compounds may yield benefits as widespread as improved plant stress tolerance and improved human physical and mental health. As we known,besides the genetic factor,the contents of the phytochemicals above were also affected by many environmental factors,e.g.light,temperature,water, fertilization and cooking processes.Hereinto,nitrogen nutrition has remarkable effects on the accumulation of AsA,phenolics,flavonoids and GSH in plants. Previous researches were conducted on the effects of nitrogen nutrition supply levels on the content of antioxidant substances in plants,however,these results were different and were limited to the content of phytochemicals,while its effect on antioxidative activities was not analyzed.In our reaseach,two cultivars of Chinese cabbage(Brassica Chinensis L.)were employed to investigate the effects of nitrogen supply levels and different NO_3~-:NH_4~+ ratios on the contents of AsA, total phenolics,flavonoids,GSH,FRAP(Ferric reducing antioxidant power)value and DPPH(1,1-diphenyl-2-picrylhydrazyl)radical scavenging rate.
     1.A hydroponic experiment was conducted to investigate the effects of different nitrogen levels(2,10,18 and 26 mmol.L~(-1))on the antioxidants contents and antioxidative activities in two cultivars(SZQ and DF)of Chinese cabbage (Brassica Chinensis L.).Results showed that appropriate nitrogen supply level(10 mmol.L~(-1))facilitated to increase the plants biomass,but superfluous nitrogen supply decreased them.The nitrate content in plants increased obviously along with the increase of nitrogen supply.Highest contents of ascorbic acid,total phenolics,flavonoid,and DPPH radical scavenging rate and FRAP value were recorded when nitrogen deficient(2 mmol.L~(-1)).The contents of ascorbic acid,total phenolics and flavonoids and antioxidative activities were markedly decreased by the increases of nitrogen level,while GSH was not affected.However,the highest antioxidants accumulation were founded at the nitrogen level of 10 mmol.L~(-1). Therefore,the nitrogen level of 10 mmol.L~(-1)might be the optimal nitrogen level for production of both high-yield and high-quality vegetable under this experimental condition
     2.A hydroponic experiment was conducted to investigate the effects of different NO_3~-:NH_4~+ ratios(100:0,75:25,50:50 and 25:75)on the antioxdant contents and antioxidative activities in two cultivars(SZQ and DF)of Chinese cabbage(Brassica Chinensis L.).As the results shown,the fresh biomass and dry weight of Chinese cabbage were significantly increased when NO_3~-:NH_4~+ ratio 100:0 was replaced by the treatment of NO_3~-:NH_4~+ ratio 75:25,while keep increase the scale of ammonium in the nutrient solution inhibited them. Furthermore,the content of ascorbic acid,GSH,flavonoids and total phenolics of Chinese cabbage were enhanced with the increase of ammonium ratio,while nitrate content was decreased.In a word,the lowest conent of nitrate and highest biomass and antioxidant accumulation were founded at NO_3~-:NH_4~+ ratio of 75:25, hence,it should be optimal for the aim of yield and quality.
     3.A pot experiment was carried out to study the effects of different nitrogen application rates(0,150 and 300 mg N·kg~(-1)soil)on the antioxidant contents and antioxidative activities in two cultivars(SZQ and DF)of Chinese cabbage (Brassica Chinensis L.).Results showed that fresh and dry weights of shoots were markedly increased by by increasing nitrogen rate from 0 mg N·kg~(-1)to 150 mg N·kg~(-1),and were siginicantly decreased with further increasing nitrogen rate. Nitrate contents in leaf and petiole increased with increasing N rate.Higher nitrate contents were observed in cultivar of SZQ than that of DF.Highest contents of ascorbic acid,total phenolics,flavonoid,and DPPH radical scaveging rate and FRAP value were recorded in the control treatment(0 mg N·kg~(-1)).The contents of ascorbic acid,total phenolics and flavonoids and antioxidative activities were markedly decreased by the increases of nitrogen supply,while GSH was not affected.However,the highest antioxidant accumulation were founded at the application rate of 150 mg N·kg~(-1)soil.Therefore,the rate of 150 mg N·kg~(-1)might be the optimal nitrogen application rate for production of both high-yield and high-quality vegetable under this experimental condition.
引文
1. Anderson JV, Chevone BI, Hess JL. Reactive oxygen species and antioxidants: relationships in green cells. Physiologia Plantarum, 1992,100:224-233.
    2. Arrigon IO, Calabrese G, De Gara L, et al. Correlation between changes in cell ascorbate and growth of Lupinus albus seedings. Journal of Plant Physiology, 1997,150: 302-308
    3. Arrigoni O. Ascorbate system in plant development. Journal of Bioenergetics and Biomembranes, 1994,26:407-419.
    4. Asada K. Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants. Physiologia Plantarum, 1992,85:235-241.
    5. Avila M, Velasco J, Cansado J, Notario V. Quercetin mediates the down-regulation of mutant p53 in the human breast cancer cell line MDA-MB468. Cancer Reserch, 1994, 54(9): 2424-2428
    6. Aviram M, Fuhrman B. Polyphenolic Flavonoides Inhibit Macrophagemediated Oxidation of LDL and Attenuate Atherogenesis. Journal of Health Science, 1998,137: 45-50.
    7. Awad, MA, de Jager A, van Westing L. Flavonoid and chlorogenic acid levels in apple fruit. Characterisation of variation. Scientia Horticulturae, 2000, 83:249-63.
    8. Benzie IF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 1999, 299:15-27.
    9. Bilyk APL. Cooper GM, Sapers. Varietal Differences in Distribution of Quercetin and Kaempferol in Onion (Allium cepa L) tissue. Journal of Agriculture and Food Chemisty, 1984, 32:274-367.
    10. Bongue-Bartelsman M, Phillips DA. Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiology and Biochemistry, 1995, 33: 539-546.
    11. Britto DT, Kronzucker HJ. NH_4~+ toxicity in higher plants: a critical review. Journal of Plant Physiology, 2002,159: 567-584.
    12. Britto DT, Siddiqi MY, Glass AD M, et al. Futile transmembrane NH_4~+ cycling: a cellular hypothesis to explain ammonium toxicity in plants. PNAS, 2001, 98(7): 4255-4258.
    13. Byrant JP, Chapin FS, Klein DR. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 1983,40: 357-368
    14. Cantos E, Garcia-Viguera C, de Pascual-Teresa S, Tomas-Barberan TA. Effect of postharvest ultraviolet irradiation on resveratrol and other phenolics of cv. Napoleon table grapes. Journal of Agriculture and Food Chemistry, 2000,48:4606-12.
    15. Castelluccio C, Paganga G, Melikian N, Bolwell GP, Pridham J, Sampson J, Rice-Evans C. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants, FEBS Lett, 1995,368:188-192
    16. Chenard CH, Kopsell DA, Kopsell DE. Nitrogen Concentration Affects Nutrient and Carotenoid Accumulation in Parsley. Journal of Plant Nutrition, 2005,28: 285-297.
    17. Citterio S, Sgorbati S, Scippa S, Sparvoli E. Ascorbic acid effect on the onset of cell proliferation in pea root. Physiologia Plantarum, 1994, 92: 601-607
    18. Conklin PL, Williams EH, Last RL. Environmental stress sensitivities of an ascorbic acid-deficient Arabindopsis mutant. Proc Natl Acad Sci USA, 1996,93: 9970-9974.
    19. Coultate. Food: The chemistry of its components, 2nded. The Royal Society of Chemistry, 1990, 137-149.
    20. Davey MW, Montagu MV, Inze' D, Sanmartin M. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 2000, 80: 825-860.
    21. de Jager A, van der Plas LA, van der Krol A. Flavonoid and chlorogenic acid changes in skin of 'Elstar' and 'Jonagold' apples during development and ripening. Scientia Horticulturae, 2001, 90: 69-83.
    22. Demming-Adams B, Adams III WW. Antioxidants in Photosynthesis and Human Nutrition. Science, 2002,298: 2149-2153.
    23. Dixon DP. Glutathione-mediated detoxification systeme on plant. Curr Opin Plant Biol, 1998,1: 258-266.
    24. Dumas Y, Dadomo M, Lucca G D, Grolier P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture, 2003, 83:369-382.
    25. Eskling M, Arvidsson PO, Akerlund HE. The xanthophylls cycle, its regulation and components. Physiologia Plantarum, 1997,100: 806-816.
    26. Esteban MA, Villanueva MJ, Lissarrague JR. Effect of irrigation on changes in the anthocyanin composition of the skin of cv. Tempranillo (Vitis vinifera L.) grape berries during ripening. Journal of the Science of Food and Agriculture, 2001, 81(4): 409-20.
    27. Fry SC. Cross-linking of matrix polymers in the growing cellwalls of angiosperms. Annu Rev. Physiologia Plantarum, 1986,37:165-186.
    28. Giblin FJ. Glutathione: a vital lens antioxidant. Ocul Pharmacol Ther, 2000,16:121-135.
    29. Graham WD, Stevenson MH. Effects of irradiation on vitamin C content of strawberries and potatoes in combination with storage and with further cooking in potatoes. Journal of the Science of Food and Agriculture, 1997,75(3): 371-377.
    30. Ha SB, Smith AP, Howden R, et al. Phytochelati synthetase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell, 1999,11:1153-1164.
    31. Hakkinen SH, Torronen AR. Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: influence of cultivar, cultivation site and technique. Food Res Int, 2000, 33(6): 517-524.
    32. Harborne JB. Nature, distribution and function of plant flavonoids. Prog Clin Biol Res, 1986, 213:15-24.
    33. Hodnick WF, Milosavljevic EB, Nelson JH, et al. Electrochemistry of flavonoids: Relationships between redox potentials, inhitition of mitochondrial respiration and production of oxygen radicals by flavonoids. Plant Physiology and Biochemistry, 1988, 37: 2607-2611.
    34. Hoff T, Stummann BM, Henningsen KW. Structure, function and regulation of nitrate reductase in higher plants. Physiologia Plantarum, 1992, 84: 616-624
    35. Holcroft D, Kader A. Carbon dioxide-induced changes in color and anthocyanin synthesis of stored strawberry fruit. Hortscience, 1999, 34:1244-1248.
    36. Jimenez-Escrig A, Drageted LO, Daneshvar B, et al. In vitroantioxidant activities of edible artichoke and effect on biomarkers of antioxidant in rats. Journal of Agriculture and Food Chemistry, 2003, 51(18): 5540-5545.
    37. Jones R B, ImsicA M, FranzA P. et al, High nitrogen during growth reduced glucoraphanin and flavonol content in broccoli (Brassica oleracea var. italica) heads. Australian Journal of Experimental Agriculture, 2007,47: 1498-1505.
    38. Jovanovic SV, Steedem S, Tosic M, Marjanivic B, Simicg MG. Flavonoids as antioxidants. Journal of the America Chemical Society, 1994,116:4846-4851.
    39. Kalt W, Lawand C, Ryan DAJ, McDonald JE, Donner H, Forney CF. Oxygen radical absorbing capacity, anthocyanin and phenolic content of highbush blueberries (Vaccinium corymbosum L.) during ripening and storage. Journal of Agriculture and Food Chemisty, 2003, 128: 917-923.
    40. Kalt W, Ryan DAJ, Duy JC, Prior RL, Ehlenfeldt MK, Vander Kloet SP. Interspecific variation in anthocyanins, phenolics and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vactinium Section Cyanococcus sp.). Journal of Agriculture and Food Chemistry, 2000,49:4761-4767.
    41. Kalt W. Effects of Production and Processing Factors on Major Fruit and Vegetable Antioxidants. Journal of the Science of Food and Agriculture, 2005, 70:11-19.
    42. Karpinski S, Escobar C, Karpinska B, Creissen G, Nullineaux PM. Photosynthetic electron-transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell, 1997,9: 627-640.
    43. Kato N, Esaka M. Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobatoo cells. Physiologia Plantarum, 1999,105:321-329.
    44. Kingston-Smith AH, Harbinson J, Foyer CH. Acclimation of glutathione synthetase by buthionine sulfoximein (S-n_butyl homocysteine sulfoximine). Journal of Biological Inorganic Chemistry, 1999,102:42-51.
    45. Kopsell D A, Kopsell D E, Curran-Celentano J. Carotenoid pigments in kale are influenced by nitrogen concentration and form. Journal of the Science of Food and Agriculture, 2007, 87: 900-907
    46. Kovacik J, Ba c kor M. Changes of phenolic metabolism and oxidative status in nitrogen-deficient Matricaria chamomilla plants. Plant and Soil, 2007, 297: 255-265.
    47. Kovacik J, Klejdus B, Backor M. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Science, 2007,172: 393-399.
    48. Kuhnau J. The Flavonoids. A class of semi-essential food components. Their role in human nutrition. World Review of Nutrition & Dietetics, 1976,24:117-191.
    49. Kurilich AC, Juvik JA. Quantification of carotenoid and tocopherol antioxidants in Zea mays. Journal of Agriculture and Food Chemistry, 1999,47(5): 1948-1955.
    50. Kurilich AC, Tsau GJ, Brown A, Howard L, Klein BP, Jeffery EH, Kushad M, Wallig MA, Juvik JA. Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. Journal of Agriculture and Food Chemistry, 1999,47(4): 1576-1581.
    51. Lachman J, Orsak M, Pivec V, Kucera-Czech J. Effect of the year and storage on ascorbic acid content and total polyphenol content in three apple varieties. Journal of Food Science, 2000, 18(2): 71-74.
    52. Lancaster JE, Reay PF, Norris J, Butler RC. Induction of flavonoids and phenolic acids in apple by UV-B and temperature. Journal of Horticultural Science and Biotechnology, 2000, 75(2): 142-148.
    53. Lancaster JE. Regulation of skin color in apples. Critical Reviews in Plant Sciences, 1992, 10: 487-502.
    54. Lea US., Slimestad R, Smedvig P, Lillo C. Nitrogen deficiency enchances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta, 2007, 225:1245-1253.
    55. Lee JJ, Crosby K M, Pike L M, et al. Impact of genetic and environmental variation on development of flavonoids and carotenoids in pepper (Capsicum spp.). Scientia Horticulturae, 2005,106:341-352.
    56. Lee SK, Kader AA. Preharvest and postharvest factors influencing Vitamin C content of horticultural crops. Postharvest Biology and Technology, 2000, 20: 207-220.
    57. Lefsrud MG, Kopsell DA, Kopsell DE. Nitrogen Levels Influence Biomass, Elemental Accumulations, and Pigment Concentrations in Spinach. Journal of Plant Nutrition, 2007, 30: 171-185.
    58. Lillo C, Lea U S, Ruoff P. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant, Cell and Environment, 2008,31: 587-601.
    59. Lin LS, Varner JE. Expression of ascorbate oxidase in zucchini squash (Cucurbita pepo). Plant Physiology, 1991,96:159-165.
    60. Luthria DL, Mukhopadhyay S, Krizek DT. Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. Journal of Food Composition and Analysis, 2006,19: 771-777.
    61. Maas JL, Wang SL, Galletta GG. Health enhancing properties of strawberryfruit. In: pritts MP, Chanlder CK, Crocker TE, editors. Proc IV North AmericanStrawberry Growers Conference; 1995 Feb 15-17; Orlando, Fla.: Univ. of FloridaPress, Gainseville, Fla. p11-18.
    62. Mangas JJ, Rodrigues R, Suarez, Picinelli A, Dapena E. Study of the phenolic profile of cider apple varieties at maturity by multivariate techniques. Journal of Agriculture and Food Chemistry, 1999, 47: 4046-4052.
    63. Mangiapane H, Thomson J, SalterA, Brown S, Bell GD, White DA. The inhibition of the oxidation of low density lipoprotein by (+)-catechin, a naturally occurring flavonoid. Biochemical Pharmacology, 1992, 43(3): 445-450.
    64. Mission J, Raghothama K. G., Jain A et al. A genomo-wide transcriptional analysis using Arabidopis thaliana affymetrix gene chips determined plant responses to phosphate deprivation. PNAS, 2005,102:11934-11939.
    65. MittelstraB K, Treutter D, PleBl M. et al. Modification of Primary and Secondary Metabolism of Potato Plants by Nitrogen Application Differentially Affects Resistance to Phytophthora infestans and Alternaria solani. Plant Biology, 2006; 8: 653-661.
    66. Mozafar, A. Nitrogen fertilizers and the amount of vitamins in plants: a review. Journal of Plant Nutrition, 1993,16: 2479-2506.
    67. Muller K, Hippe J. Influence of differences in nutrition on important quality charateristics of some agricultural crops. Plant and Soil, 1987,100: 35-45.
    68. Nagy S. Vitamin C content of citrus fruit and their products. Journal of Agriculture and Food Chemistry, 1980,28:8-18.
    69. Nagy S. Vitamin C content of citrus fruit and their products. Journal of Agriculture and Food Chemistry, 1980,28:8-18.
    70. Nunes MCN, Brecht JK, Morais AMMB, Sargent SA. Controlling temperature and water loss to maintain ascorbic acid levels in strawberries during postharvest handling. Journal of Food Science, 1998,63(6): 1033-1036.
    71. Ortuno, Reynaldo I, Fuster MD, Botia J, Puig DG, Sabter F, Lidon AG, Porras I, Del Rio JA. Citrus cultivars with high flavonoid contents in the fruits. Scientia Horticulturae, 1997, 68: 231-236.
    72. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A. Vitamin C as antioxidant: Evaluation of its role in disease prevention. Journal of the American Society for Horticultural Science, 2003,22(1): 18-35.
    73. Padh H. Cellular functions of ascorbic acid. Biochemstry and Cell Biology, 1990, 68: 1166-1173
    74. Pascale S, de Maggio A, Fogliano V, Ambrosino P, Ritieni A. Irrigation with saline water improves carotenoids content and antioxidant activity tomato. Journal of Horticultural Science and Biotechnology, 2001, 76(4): 447-53.
    75. Patil BS, Pike LM, Yoo KS. Variation in the quercetin conrent in dirrerent colored onions (Allium cepa L.). Journal of the American Society for Horticultural Science, 1995, 120: 909-913.
    76. Pignocchi C, Foyer C H. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Current Opinion in Plant Biology, 2003, 6: 379-389.
    77. Podsedek A, Wilska-Jeszka J, Anders B, Markowski J. Compositional characterization of some apple varieties. European Food Research and Technology, 2000,210(4): 268-272.
    78. Podsedek A. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT-Food Science and Technology, 2007,40:1-11.
    79. Potters G, Horemans N, Bellone S, et al. Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiology, 2004, 134: 1479-1487.
    80. Potters G, Horemans N, Caubergs RJ, Asard H. Ascorbate and Dehydroascorbate Influence Cell Cycle Progression in a Tobacco Cell Suspension. Plant Physiology, 2000,124(1): 17-20.
    81. Price SF, Breen PJ, Valladao M, Watson BT. Cluster sun exposure and quercetin in Pinot noir grapes and wine. American Journal of Enology and Viticulture, 1995,46(2): 187-94.
    82. Sanchez E, Ruiz JM, Romero L. Proline metabolism in response to nitrogen toxicity in fruit of French Bean plants (Phaseolus vulgaris L. cv Strike). Scientia Horticulturae, 2002, 93: 225-233.)
    83. Scheible W-R, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopis in response to nitrogen. Plant Physiology, 2004,136: 2483-2499.
    84. Simonne AH, Simonne EH, Eitenmiller RR, Mills HA, Green NR. Ascorbic acid and provitamin A contents in unusually colored bell peppers (Capsicum annuum L.). Journal of Food Composition and Analysis, 1997,10(4): 299-311.
    85. Smirnoff N. Ascorbate biosynthesis and function in photoprotection. Phil Trans R Soc Lond Ser B Biol Sci, 2000, 355:1455-1464.
    86. Smirnoff N. The function and metabolism of ascorbic acid in plants. Annals of Botany, 1996,78: 661-669.
    87. Stewart AJ, Chapman W, Jenkins GI, Graham I, Martin T, Crozier A. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant, Cell and Environment. 2001,24:1189-1197.
    88. Stout MJ, Brovont RA, Duffey SS. Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato. Journal of Chemical Ecology, 1998, 24 (6): 945-963
    89. Strisse T, Halbwirth H, Hoyer U. et al. Growth-Promoting Nitrogen Nutrition Affects Flavonoid Biosynthesis in Young Apple (Malus domestica Borkh.) Leaves. Plant Biology, 2005, 7: 677-685.
    90. Tadolino B, Juliano C, Piu L et al. Resveratrol inhibition of lipid peroxidation. Free Radical Research, 2000,33:105-114.
    91. Takahama T, Egashira T, Wakamastu K. Hydrogen Peroxide-dependent Synthesis of Flavonols in Mesophyll Cells of Vicia faba L. Plant and Cell Physiology, 1989, 30: 951-955
    92. Takahama U. Regulation of peroxidase-dependent oxidation of phenolics by ascorbic acid: Different effects of ascorbic acid on the oxidation of coniferyl alcohol by the apoplastic soluble and cellwall-bound peroxidases from epicotyls of Vigna angularis. Plant Cell Physiology, 1994, 34: 809-817
    93. Terao J, Piskula M, Yao Q. Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers. Archives of Biochemistry and Biophysics, 1994, 308 (1): 278-284.
    94. Tewari RK, Kumar P, Sharma PN. Oxidative Stress and Antioxidant Responses in Young Leaves of Mulberry Plants Grown Under Nitrogen, Phosphorus or Potassium Deficiency. Journal of Integrative Plant Biology, 2007,49: 313-322
    95. Tommasini R, Vogt E, Fromenteau M, Hortensteiner S, Matile P, Amrhein N, Martinoia E. An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugote and chlorophyll catabolite transport activity. The Plant Journal, 1998,13: 773-780.
    96. van der Sluis AA, Dekker M, de Jager A, Jongen WMF. Activity and concentration of polyphenolic antioxidants in apple: Effect of cultivar, harvest year, and storage conditions. Journal of Agriculture and Food Chemistry, 2001,49: 3606-3613.
    97. Veljovic-Jovanovic S D, Pignocchi C. Low ascorbic acid in the vtc-1 mutant of arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant. Plant Physiology, 2001, 127(2): 426-435.
    98. Wang Zhao-Hui, Li Sheng-Xiu, Malhi S. Effects of fertilization and other agronomic measures on nutritional quality of crops. Journal of the Science of Food and Agriculture, 2008, 88:7-23.
    99. Wildi B, Lutz C. Antioxdant composition of selected high alpine plant species from different altitudes. Plant Cell Environment, 1996,19:138-146.
    100. Yabuta Y, Yoshimura K, Takeda T, Shigeoka S. Molecular characterization of tobacoo mitochondrial L-galactono-1. 4-lactone dehydrogenase and its expression in Escherichia coli. Plant Cell Physiology, 2002,41: 666-675.
    101.Zhang J,Kirkham MB.Antioxidant responses to drought in sunflower and sorghum seedlings.New Phytol,1996,132:361-373.
    102.安华明,陈力耕,樊卫国,胡西琴.高等植物中维生素C的功能、合成及代谢研究进展.植物学通报,2004,21(5):608-617.
    103.陈建生,唐拴虎,张发宝,徐培智,张志新.氮硫肥配施对菜心产量及品质的效应研究.土壤通报,2003,34(1):36-39.
    104.陈新平,邹春琴,刘亚萍,张福锁.菠菜不同品种累积硝酸盐能力的差异及其原因.植物营养与肥料学报,2000,6:30-34.
    105.丁凤英.还原型谷胱甘肽治疗慢性乙型肝炎104例疗效观察.山东医药,2003,43:23-24.
    106.方毅民,董炳庆,杨军,于滨,李善春.还原型谷胱甘肽对急性心肌梗死再灌注的疗效观察.中国全科医学,2005,8:998-1000.
    107.冯丽,宋曙辉,赵霖,徐桂花.植物多酚种类及其生理功能的研究进展.江西农业学报,2007,19(10):105-107.
    108.高俊凤.植物生理学实验指导.高等教育出版社.2006.
    109.关永东,徐辉,李敏遐.还原型谷胱甘肽对急性有机磷中毒的治疗.中国药业,2001,10:32-33.
    110.郭长江,韦京豫.食材新宠儿多酚类物质.中国食品报,2004-03.
    111.焦琰.长春花不同生活史型中内源抗坏血酸、谷胱甘肽的生理生态学特征.2006,东北林业大学,硕士学位论文
    112.李合生.植物生理生化实验原理和技术.高等教育出版社.2000.
    113.李娟,朱祝军,钱琼秋.氮肥和硫肥对叶芥菜生长及营养品质的影响.园艺学报,2005,32:1045-1050.
    114.李淑华,白洁,周宁.谷胱甘肽治疗糖尿病肾病疗效观察.山东医药,2004,44:56-57.
    115.凌关庭.抗氧化食品与健康.化学工业出版社.2004.
    116.马茂桐等,我国菜园土壤养分状况与施肥。<<菜园土壤肥力与蔬菜合理施肥>>,谢建昌和陈际型,河海大学出版社,1997,pp.25-33.
    117.沈良臣.还原型谷胱甘肽在急性胰腺炎中的临床应用.中西医结合杂志,2002,10:897-898.
    118.石碧,狄莹.植物多酚.科学出版社.2002.
    119.孙艳,徐君伟.高温胁迫对不同黄瓜品种幼苗中抗坏血酸代谢的影响.西北农业学报,2007,16(6):164-169
    120.孙屹峰,秦咏梅,毛永平.还原型谷胱甘肽辅助治疗老年糖尿病合并脂肪肝疗效观察.新 乡医学院学报,2002,19:393-394.
    121.姚民秀,徐倩,李盈,,赵桂欣,孟新,陈学宾.谷胱甘肽治疗糖尿病神经病变.中国新药与临床杂志,2000,19:67-68.
    122.张英鹏等,林咸永,章永松,都韶婷.氮素形态对菠菜硝酸盐和草酸含量的影响.园艺学报,2005,32:648-652.
    123.赵迎庆,王炳元,王悦琴.还原型谷胱甘肽治疗酒精性肝病35例.中华实用医学,2003,5:40.
    124.朱步东,李昕,赵启成,黄晓雷.还原型谷胱甘肽增强恶性肿瘤化疗患者抗氧化能力的研究.癌症,2004,23:452-455.
    125.朱国祥,蔡正平,梅祥冬.阿托莫兰治疗抗结核药所致轻、中度肝损害.医学新知杂志,2005.15:65-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700