用户名: 密码: 验证码:
基于环三磷腈高性能苯并噁嗪树脂的设计及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯并噁嗪是在酚醛树脂的基础上发展的一类新型热固型树脂,它具备传统酚醛树脂所有优点,如优异的机械性能,良好的化学稳定性、样品尺寸稳定性,较高化学电阻率、热稳定性,并且相应单体热固化过程近零收缩率,固化后的样品吸水率低,阻燃性高。此外,苯并噁嗪单体来源广,且单体分子结构设计及合成操作简单,可用来制备满足不同性能需求的功能性苯并噁嗪树脂,因此它可替代传统酚醛树脂,广泛应用于高科技领域。而环三磷腈是一种典型的由N和P原子交替组成的平面非离域六元环无机化合物,每个P原子上可以连接两个基团。由于无机磷腈环的生物相容性、耐热性、结构稳定性、立体多反应点和阻燃性,使得相应的衍生物具有广泛的应用前景。通过化学键将功能性的苯并噁嗪基团和环三磷腈环结合起来,合成了环三磷腈类苯并噁嗪单体和包含苯并嗯嗪结构的预聚物,并研究其热固化交联性质及固化后材料的性能。此外,相应的环三磷腈苯并噁嗪单体改性传统的苯并噁嗪或环氧,提高了相应共聚物的耐热性和机械性能。
     本文通过分子设计,在无机环三磷腈上引入不同数目的有机苯并噁嗪基团和联苯基团,得到了分别含有二个(BBOz)、四个(TBOz)和六个(HBOz)苯并噁嗪基团的功能性单体。通过1H,13C,31P-NMR和元素分析表征了相应单体的结构。通过变温红外(FT-IR)和差示扫描量热仪(DSC)研究了相应单体的热开环聚合行为。通过热失重仪(TGA)和动态热机械仪(DMA)分别对目标材料的热稳定性和机械性能进行分析。同时场发扫描电镜(Fs-SEM)也用来观察目标材料的断面形貌,并研究了相应热固性树脂的微观结构。
     由于BBOz、TBOz和HBOz单体的不同结构,相应单体表现出了不同的聚合活性。在相同条件下,含有六个苯并噁嗪基团的HBOz单体最先发生开环聚合反应,并且最先聚合完全;而含有二个苯并噁嗪基团及二个联苯基团的BBOz单体最后发生聚合反应,也是最难被聚合完全的单体。同样,单体的不同结构,也导致相应的聚苯并噁嗪表现出不同的热稳定性、机械性能和抗湿性。由四个苯并噁嗪基团和一个联苯基团组成的单体(TBOz)聚合所得聚苯并噁嗪(PTBOz)表现出了最好的热稳定性和机械性能,其起始分解温度约为440℃,850℃时的残焦量近70%,并且相应的聚合物的玻璃化温度(Tg)为254℃。山HBOz聚合所得的聚苯并噁嗪PHBOz的热稳定性和机械性能最差,其起始分解温度和高温残焦量分别为400℃和66.9%,对应的Tg只有152℃。三种环三磷腈聚苯并噁嗪树脂的平衡吸湿量都低于1wt%,PBBOz拥有最低吸湿率,而PHBOz的吸湿率最高。
     在环三磷腈二胺的基础上,我们也合成了主链上同时含有苯并噁嗪基团和环磷腈的线性低聚物。相比传统一步法(方法A),分步法(方法B)合成的低聚物的分子量会高出近一倍。但用方法B合成的苯并噁嗪预聚物的起始聚合温度、最大放热峰温度和聚合放热焓都比方法A合成的苯并噁嗪低聚物要高出很多。热稳定性测试结果显示:无论方法A或B,最终交联后的聚合物都表现出了优异的热稳定性。
     HBOz、TBOz和BBOz单体分别与传统的苯并噁嗪单体(Pa, Ba)共聚,改善了相应共混单体的热固化条件,使得相应的混合单体在较低的温度下便可发生开环共聚合反应。共聚物的热稳定和机械性能相比传统的聚苯并噁嗪树脂有了明显的提高。添加20wt%环三磷腈类苯并噁嗪单体到Pa或Ba单体中,共聚物的起始分解温度提高约30℃,高温残焦量最高可增加60%,相应共聚物Tg也大幅度被提高。
     HBOz、TBOz和BBOz单体与环氧E44共聚物高温时的残焦量和Tg相对于E44环氧树脂都明显提高,高温残焦量被提高了至少500%,而对应的T。提高至少10℃但由于环氧树脂与苯并噁嗪树脂间存在微观相分离结构,对应共聚物的起始分解温度会随苯并噁嗪含量增加而降低,同时对应共聚物的初始储能模量无明显变化。
Benzoxazine rensins are developed class of high-performance thermosetting resins instead of traditional phenolic-formaldehyde resin in high-tech field. These thermosetting resins not only possess all the advantages of traditional phenolic resins such as excellent mechanical, thermal properties, dimentional stability and high chemical resistivity, but also have unique advantages of near-zero shrinkage upon curing, thermal and flame retardant, low water absorption and remarkable molecular design flexibility. Besides, corresponding monomers can be conveniently designed and generated, so the funcatioanal polybenzoxazines can be easily gained and satisfied for different applications. On the other hand, cyclotriphosphazene (CP) derivatives are a typical class of organic-inorganic compounds with a planar non-delocalized cyclic ring consisting of alternating N and P atoms. Six functional groups can be attached onto a CP ring. Due to the versatility of cyclotriphosphazene chemistry, high stability and biocompatibility of the CP ring allows for a wide range of functional groups to be attached onto CP, and corresponding CP-based derivatives can be applied in many fields. So that, combining the CP and benzoxazine together by chemical bonding is an interesting method to obtain high-performance benzoxazine monomer and polybenzoxazine. Similarly, synthesizing a linear polymer precursor with benzoxazine moieties and CP in main chain is also a good way to get high-performance polybenzoxazine. Besides, the performances of thermal stability and mechanic property for traditional benzoxazine and epoxy resins can also be improved by co-polymerizing with CP-base benzoxazines.
     A series of organic-inorganic hybrid benzoxazine monomers based on cyclotriphosphazene (CP) have been synthesized, which possess variable number of organic benzoxazine moieties and biphenyl groups distributed on the inorganic ring of cyclotriphosphazene. The structures of the monomers were confirmed by 1H NMR,13C NMR,31P NMR and elemental analysis. The ring-opening polymerization behaviors of the new benzoxazine monomers were investigated by Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The thermal property and mechanic performance of the thermoset polymer were also evaluated by thermal gravimetric analyzer (TGA) and DMA, respectively. Besides, the fracture surfaces of co-polybenzoxazines samples were also observed by scanning electron.
     The polymerization activity of the monomers relied on the number of benzoxazine moiety and biphenyl group, the monomers with six benzoxazine moieties (HBOz) was easier to polymerize than the others, while the monomer with two benzoxazine moieties and two biphenyl groups (BBOz) was the hardest one to polymerize. Due to the high crosslinking nature containing rigid and stable inorganic CP ring and biphenyl groups in the networks, the polybenzoxazines resulting from the as-prepared monomers showed different thermal stability, mechanic property and humidity resistance. The polybenzoxazine PTBOz resulting from TBOz which contain four benzoxazine moieties and one biphenyl group showed the highest thermal stability and glass transition temperature (Tg). The onset decomposition temperature of PTBOz was about 440℃, the char yield at 850℃(Yc) was 69.6%, and corresponding Tg was as high as 254℃. While PHBOz which polymerized from HBOz got the lowest thermal stability and Tg, it started to be thermal degradation at about 400℃, and its Yc and Tg were 66.9% and 152℃, respectively. Meanwhile, PBBOz exhibited the highest humidity resistance, and PHBOz got the lowest, but all of the polybenzoxazines showed high humidity resistance, and the balance water uptakes were lower than 1wt%.
     Based on the CP-diamine, two routes were attempted to synthesize the linear polymer precursor with benzoxazine moieties and CP rings in the main chain. Comparing to traditional method A, higher molecular weight can be gained by method B, and the molecular weight was about two times higher than that synthesized by method A. However, the polymer precursor synthesized with method A could undergo ring-opening polymerization at lower temperature than that using method B. No matter what, both the polybenzoxazines resulting from the polymer precursors showed excellent thermal stability.
     The performances of traditional benzoxazine were improved by co-polymerizing with CP-based benzoxazines. The CP-based benzoxazines could decrease the polymerization temperature of traditional benzoxazines. Due to the different dimensional crosslinking structures of the CP-based benzoxazines under ring-opening polymerization, the CP-based benzoxazines showed different degree of improvement on the thermal stability and mechanic properties for the co-polybenzoxazines. However, the Yc of all co-polybenzoxazines was improved at least 36%, even higher to 60% for some samples after adding 20wt% CP-based benzoxazines. What's more, the Tg of the co-polybenzoxazine raised at least 10℃by adding 20wt% CP-based benzoxazines.
     Similarly, the Yc and Tg of epoxy/CP-based benzoxazine co-polymers were also improved. The Yc of the co-polymer was improved at least 500%, and corresponding Tg was improved about 10℃. However, there was an appearance of microphase separation between epoxy resin and CP-based polybenzoxazine, the onset decomposition temperature decreased with the increasing content of CP-based benzoxazines; Meantime, there was little change to the storage modulus of the epoxy co-polymerizing with CP-based benzoxazines.
引文
[1]Riess G, Schwob J M, Guth G, et al. Advances in polymer sythesis[M]. Culbertson B M and McGrath J E, Editors. New York, Plenum Press,1985:27-31.
    [2]Ning X, Ishida H. Phenolic materials via ring-opening polymerization:Synthesis and characterization of bisphenol-A based benzoxazines and their polymers[J]. Journal of Polymer Science Part A:Polymer Chemistry,1994,32:1121-1129.
    [3]Sudhakar S, Sellinger A. Nanocomposite dendrimers based on cyclic phosphazene cores:amorphous materials for electroluminescent devices[J]. Macromolecular Rapid Communications,2006,27(4):247-54.
    [4]De Jaeger R, Gleria M. Poly(organophosphazene)s and related compounds:synthesis properties and applications[J]. Progress in Polymer Science,1998,23(2):179-276.
    [5]Modesti M, Zanella L, Lorenzetti A, et al. Thermally stable hybrid foams based on cyclophosphazenes and polyurethanes[J]. Polymer Degradation and Stability 2005,87: 287-292.
    [6]刘朋军,张连华.聚磷睛功能材料研究进展[J].化学研究与应用,2001,13(1):32-38.
    [7]Allcock HR, Kugel RL, Valan KJ. Phosphonitrilic compou Ⅳ high molecular weight poly(alkoxyandaryloxyphosphazene)[J]. Inorganic Chemimstry,1966,5:1709-1715.
    [8]Allcock HR, Kugel RL. High molecular weight poly(diaminophosphazenes)[J]. Organic chemistry,1966,5:1716-1718.
    [9]Nair P R, Francis D J. Phosphazene-modified polyurethanes:Synthesis, mechanical and thermal characteristics[J]. European Polymer Journal,1996,32:1415-1420.
    [10]Allcock HR. Synthesis and characterization of bindered polyphosphazenes via functionalized intermediates:Exploratry models for electro optical materials[J]. Macromolecules,1998,31:5206-5205.
    [11]Gouri M E, Bachiri A E, Hegazi S E, et al. Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin[J]. Polymer Degradation and Stability,94(11):2101-2106.
    [12]Liu R, Wang X. Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin[J]. Polymer Degradation and Stability,2009,94(4):617-624.
    [13]Shin Y J, Ham Y R, Kim S H, et al. Application of cyclophosphazene derivatives as flame retardants for ABS[J]. Journal of Industrial and Engineering Chemistry,2010, 16:364-367.
    [14]Lejeune N, Dez I, Jaffres P, et al. Synthesis, crystal structure and thermal properties of phosphorylated cyclotriphosphazenes[J]. European Journal of Inorganic Chemistry,2008,1:138-143.
    [15]Guo Y-N, Qiu J-J, Tang, H-Q, et al. High transmittance and environment-friendly flame-resistant optical resins based on poly(methylmethacrylate) and cyclotriphos-phazene derivatives [J]. Journal of Applied Polymer Science,2011,121(2):727-734.
    [16]Martina M, Hutmacher DW. Biodegradable polymers applied in tissue engineering research:a review[J]. Polymer International,2007,56(2):145-157.
    [17]Lee S B, Song S-C, Jin J-I, et al. Thermosensitive cyclotriphosphazenes[J]. Journal of the American Chemical Society,2000,122:8315-8316.
    [18]Lee S B, Song S-C, Jin J-I, et al. Structural and thermosensitive properties of cyclotriphosphazenes with poly (ethylene glycol) and amino acid esters as side groups[J]. Macromolecules,2001,34:7565-7569.
    [19]Cho YW, Lee J-J, Song S-C. Novel thermosensitive 5-fluorouracil-cyclotriphos-phazene conjugates:synthesis, thermosensitivity, degradability, and in vitro antitumor activity[J]. Bioconjugate Chemistry,2005,16:1529-1535.
    [20]Siwy M, Sek D, Kaczmarczyk B, et al. Synthesis and in vitro antileukemic activity of some new 1,3-(oxytetraethylenoxy)cyclotriphos-phazene derivatives [J]. Journal of Medicinal Chemistry,2006,49:806-810.
    [21]Kim J K, Toti U S, Song R, et al. A macromolecular prodrug of doxorubicin conjugated to a biodegradable cyclotriphosphazene bearing a tetrapeptide[J]. Bioorganic & Medicinal Chemistry Letters,2005,15:576-3579.
    [22]Yu J Y,.Tun Y J, Jang S H, et al. Nanoparticulate platinum (Ⅱ) anticancer drug: synthesis and characterization of amphiphilic cyclotriphosphazene-platinum(Ⅱ) conjugates[J]. Journal of Inorganic Biochemistry,2007,101:1931-1936.
    [23]Jadhav V B, Jun Y J, Song J H, et al. A novel micelle-encapsulated platinum(Ⅱ) anticancer agent [J]. Journal of Controlled Release 2010,147:144-150.
    [24]Majoral J P, Caminade A M. Dendrimers containing heteroatoms (Si, P, B, Ge, or Bi)[J]. Chemical Reviews,1999,99,845-880.
    [25]Barbera J, Bardaji M, Jimenez J, et al. Columnar mesomorphic organizations in cyclotriphosphazenes[J].2005,127 (25):8994-9002.
    [26]Barbera J, Jimenez J, Laguna A, et al. Cyclotriphosphazene as a Dendritic Core for the Preparation of Columnar Supermolecular Liquid Crystals [J]. Chemistry of Materials,2006,18:5437-5445.
    [27]Xu J, Ling T C, He C. Hydrogen bond-directed self-assembly of peripherally modified cyclotriphosphazenes with a homeotropic liquid crystalline phase[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46:4691-4703.
    [28]包瑞.基于环三磷腈的液晶功能材料的设计、凝胶特性及胆甾相光阀[博士学位论文].武汉:华中科技大学,2010.
    [29]Bao R, Pan M, Qiu J-J, et al. Synthesis and characterization of six-arm star-shaped liquid crystalline cyclotriphosphazenes[J]. Chinese Chemical Letters,2010,21: 682-685.
    [30]Allcock H R, Welna D T, Stone D A. Synthesis of pendent functionalized cyclotriphosphazene polyoctenamers:amphiphilic lithium ion conductive materials [J]. Macromolecules,2005,38,10406-10412.
    [31]Chen-Yang Y W, Chen S Y, Yuan C Y, et al. Preparation and characterization of composite polymer electrolytes based on UV-curable vinylic ether-containing cyclotriphosphazene, LiClO4, and a-Al2CO3[J]. Macromolecules,2005,38:2710-2715.
    [32]Kaskhedikar N, Burjanadze M, Karatas Y, et al. Polymer electrolytes based on cross-linked cyclotriphosphazenes[J]. Solid State Ionics,2006,177:3129-3134.
    [33]Stone D A, Welna D T, Allcock H R. Synthesis and Characterization of Lithium-Ion Conductive [J]. Chemistry of Materials,2007,19:2473-2482.
    [34]Ding J, Wang L, Yu H, et al. Well-controlled formation of nanofibers and double wall vesicles through the electrostatic-assisted assembly of a couple of star polyelectrolytes-complementary[J]. Journal of Physical Chemistry C,2009,113: 5126-5132.
    [35]Fei S, Allcock H R. Methoxyethoxyethoxyphosphazenes as ionic conductive fire retardant additives for lithium battery systems[J]. Journal of Power Sources,2010, 195:2082-2088.
    [36]Yang M, Talke F E, Perettie D J, et al. Cyclotriphosphazenes as potential lubricants for thin film hard discs[J]. Tribology Transactions,1995,38:636-644.
    [37]Keller M A, Saba C S. Oxidative stability and degradation mechanism of a cyclotriphosphazene lubricant[J]. Analytical Chemistry,1996,68:3489-3492.
    [38]Rule K L, Selvaraj I I, Kirchmeier R L. Synthesis and characterization of per/polyfluorophenoxy derivations of octachlorocyclotetraphosphazenes[J]. Journal of Fluorine Chemistry,2001,112:307-312.
    [39]Liu W, Zhu J, Liang Y. Effect of bridged cyclotriphosphazenes as lubricants on the tribological properties of a steel-on-steel system [J]. Wear,2005,258:725-729.
    [40]Tao Z, Bhushan B. Bonding, degradation, and environmental effects on novel perfluoropolyether lubricants[J]. Wear,2005,259:1352-1361.
    [41]Li J, Zhou F, Feng D, et al. Synthesis and lubrication characteristics of aryloxycyclophosphazenes substituted with imidazolium[J]. Journal of Tribology, 2009,131(3):32101-32105.
    [42]Fushimi T, Allcock H R. Cyclotriphosphazenes with sulfur-containing side groups: refractive index and optical dispersion[J]. Dalton Transaetions,2009(14):2477-2481.
    [43]Zhang L, Shi J, Jiang Z W, et al. Photo refractive performance of hyper structured cyclotriphosphazene molecular glasses containing earbazole moieties[J]. Advanced Functional Materials,2008,18(2):362-368.
    [44]Guo Y-N, Zhao C, Liu S-Z, et al. Synthesis and properties of the optical resin composed of cyclotriphosphazenes [J]. Polymer Bulletin,2009,62(4):421-431.
    [45]郭雅妮.基于环三磷腈的无卤阻燃光学树脂的制备与性能[博士学位论文].武汉:华中科技大学,2011.
    [46]M. Gleria, R. De Jaeger (Eds), Applicative Aspects of Cyclophosphazenes[M]. New York:Nova Science Publishers Inc,2004.
    [47]Ainscough E W, Brodie A M, Depree C V, et al. Divalent cobalt, nickel and zinc halide complexes with multimodal ligands based on the cyclotriphosphazene platform:A structural study [J]. Polyhedron,2006,25:2341-2352.
    [48]Ainscough E W, Brodie A M, Davidson R J, et al. The first coordination polymer containing a chiral cyclotriphosphazene ligand[J]. Inorganic Chemistry Communica-tions,2008,11:171-174.
    [49]Gall M, Breza M. QTAIM study of transition metal complexes with cyclophosphazene-based multisite ligands Ⅰ:Zinc(Ⅱ) and nickel(Ⅱ) complexes[J]. Polyhedron,2009,28:521-524.
    [50]Zhu L, Zhu Y, Pan Y, et al. Fully crosslinked poly[cyclotriphosphazene-co-(4,4'-sulfonyldiphenol)] microspheres via precipitation polymerization and their superior thermal properties [J]. Macromolecular Reaction Engineering,2007,1: 45-52.
    [51]Holly F W, Cope A C. Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine[J]. Journal of the American Chemical Society,1944,66:1875-1879.
    [52]Burke W J, Glennie L M, Weatherbee C. Condensation of halophenols with formaldehyde and primary amines. Journal of Organic Chemistry,1964,29: 909-912.
    [53]Kopf P W, Wagner E R. Formation and cure of novolacs:NMR study of transient molecules[J]. Journal of Polymer Science Part A:Polymer Chemistry Edition,1973, 11:939-960.
    [54]Schreiber H. Verfahren Zur Herstellung Von Kunststoffen[P]. German Patent 2225504,1973.
    [55]Ishida H, Rodriguez Y. Curing Kinetics of a new benzoxazine based phenolic resin by DSC[J]. Polymer,1995,36(16):3151-3158.
    [56]Dunkes J, Ishida H. Vibrational assignments of N,N-bis(3,5-dimethyl-2-hydroxy-benzyl)methylamine in the fingerprint region[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,1995,51A (5):855-867.
    [57]Ishida H, Allen DJ. Physical and mechanical characterization of near-zero shrinkage polybenzoxazine[J]. Journal of Polymer Science Part B:Polymer Physics,1996, 34(6):1019-1030.
    [58]Ishida H. Process for preparation of benzoxazine compounds in solventless systems[P]. US Patent 5543516,1996.
    [59]Ning X, Ishida H. Phenolic materials via ring-opening polymerization:Synthesis and characterization of bisphenol-A based benzoxazines and their polymers [J]. Journal of Polymer Science Part A:Polymer Chemistry,1994,32(6):1121-1129.
    [60]Aversa M C, Giannetto P, Caristi C, et al. Behaviour of an N-(o-hydroxybenzyl)-(3-amino-acid in the presence of dehydrating agents. Synthesis of a 3,4-dihydro-2H-1,3-benzoxazine[J]. Journal of the American Chemical Society, Chemical Communications,1982,469-470.
    [61]Katritzky A R, Xu Y J, Jain R. A novel dilithiation approach to 3,4-dihydro-2H-1,3-benzothiazines,3,4-dihydro-2H-1,3-benzoxazines, and 2,3,4,5-tetrahydro-1,3-benzothiazepines[J]. Journal of Organic Chemistry,2002,67(23): 8234-8236.
    [62]Wang Y X, Ishida H. Cationic ring-opening polymerization of benzoxazines[J]. Polymer,1999,40(16):4563-4570.
    [63]Wang Y X, Ishida H. Synthesis and properties of new thermoplastic polymers from substituted 3,4-dihydro-2H-1,3-benzoxazines[J]. Macromolecules,2000,33(8): 2839-2847.
    [64]Ghosh N N, Kiskan B, Yagci Y. Synthesis and properties of new thermoplastic polymers from substituted 3,4-dihydro-2H-1,3-benzoxazines[J]. Progress in Polymer Science,2007,32(11):1344-1391.
    [65]Russell V M, Koenig J L, Low H Y, et al. Study of the characterization and curing of benzoxazines using 13C solid-state nuclear magnetic resonance[J]. Journal of Applied Polymer Science,1998,70(7):1413-1425.
    [66]Kasapoglu F, Cianga I, Yagci Y, et al. Photoinitiated cationic polymerization of mono functional benzoxazine[J]. Journal of Polymer Science Part A:Polymer Chemistry,2003,41(21):3320-3328.
    [67]Low H Y, Ishida H. Structural effects of phenols on the thermal and thermo-oxidative degradation of polybenzoxazines[J]. Polymer,1999,40:4365-4376.
    [68]Kim H J, Brunovska Z, Ishida H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers[J]. Polymer,1999,40: 6565-6573.
    [69]Agag T, Takeichi T. Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets[J]. Macromolecules, 2003,36(16):6010-6017.
    [70]Agag T, Takeichi T. Novel benzoxazine monomers containing p-phenyl propargyl ether:Polymerization of monomers and properties of polybenzoxazines[J]. Macromolecules,2001,34(21):7257-7263.
    [71]Brunovska Z, Ishida, H. Thermal study on the copolymers of phlhalonitrile and phenylnitrile-functional benzoxazines[J]. Journal of Applied Polymer Science,1999, 73(14):2937-2949.
    [72]Ishida H, Ohba S. Synthesis and characterization of maleimide and norbomene functionalized benzoxazines[J]. Polymer,2005,46(15):5588-5595.
    [73]Andreu R, Espinosa M A, Galia M, et al. Synthesis of novel benzoxazines containing glycidyl groups:A study of the crosslinking behavior[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(4):1529-1540.
    [74]Kiskan B, Yagci Y. Thermally curable benzoxazine monomer with a photodimerizable coumarin group[J]. Journal of Polymer Science Part A:Polymer Chemistry,2007, 45(9):1670-1676.
    [75]Allen D J, Ishida H. Effect of phenol substitution on the network structure and properties of linear aliphatic diamine-based benzoxazines[J]. Polymer,2009,50(2): 613-626.
    [76]Yagci Y, Kiskan B, Ghosh N N. Recent advancement on polybenzoxazine-A newly developed high performance thermoset[J]. Journal of Polymer Science Part A: Polymer Chemistry,2009,47(21):5565-5576.
    [77]Chernykh A, Agag T, Ishida H. Novel benzoxazine monomer containing diacetylene linkage:An approach to benzoxazine thermosets with low polymerization temperature without added initiators or catalysts[J]. Polymer,2009,50(14): 3153-3157.
    [78]Kiskan B, Yagci Y, Sahmetlioglu E, et al. Preparation of conductive polybenzoxazines by oxidative polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry,2007,45(6):999-1006.
    [79]Gacal B, Cianga L, Agag T, et al. Synthesis and characterization of maleimide (Co)polymers with pendant benzoxazine groups by photoinduced radical polymerization and their thermal curing[J]. Journal of Polymer Science Part A: Polymer Chemistry,2007,45(13):2774-2786.
    [80]Kiskan B, Demiray G, Yagci Y. Thermally curable polyvinylchloride via click chemistry[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(11): 3512-3518.
    [81]Ergin M, Kiskan B, Gacal B, et al. Thermally curable polystyrene via click chemistry[J]. Macromolecules,2007,40(13):4724-4727.
    [82]Kukut M, Kiskan B, Yagci Y. Self-curable benzoxazine functional poly-butadienes synthesized by click chemistry[J]. Designed Monomers and Polymers,2009,12(2): 167-176.
    [83]Ates S, Dizman D, Aydogan B, et al. Synthesis, characterization and thermally activated curing of polysulfones with benzoxazine end groups[J]. Polymers,2011,52: 1504-1509.
    [84]Kiskan B, Yagci Y. Synthesis and characterization of naphthoxazine functional poly(ε-caprolactone)[J]. Polymer,2005,46(25),11690-11697.
    [85]Yildirim A, Kiskan B, Demirel A L, et al. Synthesis, characterization and properties of naphthoxazine-functional poly(propylene oxide)s[J]. European Polymer Journal, 2006,42(11):3006-3014.
    [86]Tasdelen M A, Kiskan B, Yagci Y. Photoinitiated free radical polymerization using benzoxazines as hydrogen donors[J]. Macromolecular Rapid Communications,2006, 27(18):1539-1544.
    [87]Kiskan B, Colak D, Muftuoglu A E, et al. Synthesis and characterization of thermally curable benzoxazine-functionalized polystyrene macromonomers[J]. Macromolecular Rapid Communications,2005,26(10):819-824.
    [88]Ishida H, Lee Y H. Study of hydrogen bonding and thermal properties of polybenzoxazine and poly-(ε-caprolactone) blends[J]. Journal of Polymer Science Part B:Polymer Physics,2001,39(7):736-749.
    [89]Zheng S X, Lu H, Guo Q P. Thermosetting blends of polybenzoxazine and poly(s-caprolactone):Phase behavior and intermolecular specific interactions [J]. Macromolecular Chemistry and Physics,2004,205(11):1547-1558.
    [90]Nakamura M, Ishida H. Synthesis and properties of new crosslinkable telechelics with benzoxazine moiety at the chain end[J]. Polymer,2009,50(12):2688-2695.
    [91]Chernykh A, Liu J P, Ishida H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain[J]. Polymer,2006,47(22): 7664-7669.
    [92]Takeichi T, Kano T, Agag T. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets[J]. Polymer,2005, 46(26):12172-12180.
    [93]Kiskan B, Yagci Y, Ishida H. Synthesis, characterization, and properties of new thermally curable polyetheresters containing benzoxazine moieties in the main chain[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(2): 414-420.
    [94]Kiskan B, Aydogan B, Yagci Y. Synthesis, characterization, and thermally activated curing of oligosiloxanes containing benzoxazine moieties in the main chain[J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47(3):804-811.
    [95]Velez-Herrera P, Doyama K, Abe H, et al. Synthesis and characterization of highly fluorinated polymer with the benzoxazine moiety in the main chain[J]. Macromolecules,2008,41(24):9704-9714.
    [96]Chou C I, Liu YL. High performance thermosets from a curable Diels-Alder polymer possessing benzoxazine groups in the main chain[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(19):6509-6517.
    [97]Nagai A, Kamei Y, Wang X S, et al. Synthesis and crosslinking behavior of a novel linear polymer bearing 1,2,3-triazol and benzoxazine groups in the main chain by a step-growth click-coupling reaction[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(7):2316-2325.
    [98]Chernykh A, Agag T, Ishida H. Synthesis of linear polymers containing benzoxazine moieties in the main chain with high molecular design versatility via click reaction[J]. Polymer,2009,50(2):382-390.
    [99]Wang L, Zheng S. Morphology and thermomechanical properties of main-chain polybenzoxazine-block-polydimethylsiloxane multiblock copolymers[J]. Polymer, 2010,51(5):1124-1132.
    [100]Kiskan B, Ghoshb N N, Yagci Y. Polybenzoxazine based composites as high performance materials[J]. Polymer International,2011,60:167-177.
    [101]Jang J, Seo D. Performance improvement of rubber-modified polybenzoxazine[J]. Journal of Applied Polymer Science,1998,67(1):1-10.
    [102]Ishida H, Lee YH. Infrared and thermal analyses of polybenzoxazine and polycarbonate blends[J]. Journal of Applied Polymer Science,2001,81(4): 1021-1034.
    [103]Su Y-C, Chen W-C, Ou K-L, et al. Study of the morphologies and dielectric constants of nanoporous materials derived from benzoxazine-terminated poly(ε-caprolactone)/polybenzoxazine co-polymers[J]. Polymer,2005,46: 13758-3766.
    [104]Takeichi T, Guo Y, Agag T. Synthesis and characterization of poly(urethane-benzoxazine) films as novel type of polyurethane/phenolic resin composites [J]. Journal of Polymer Science Part A:Polymer Chemistry,2000,38(22):4165-4176.
    [105]Zhong H, Lu Y, Chen J, et al. Preparation, characterization, and polymerization of novel maleimidobenzoxazine containing carboxylic moiety and its cocuring behaviors with epoxy resin[J]. Journal of Applied Polymer Science,2010,118(2): 705-710.
    [106]Rao BS, Reddy K R, Pathak S K, et al. Benzoxazine-epoxy copolymers:effect of molecular weight and crosslinking on thermal and viscoelastic properties[J]. Polymer International,2005,54:1371-1376.
    [107]Jain R, Narula AK, Choudhary V. Studies on curing and thermal behavior of diglycidyl ether of bisphenol-A and benzoxazine mixtures[J]. Journal of Applied Polymer Science,2007,106(5):3327-34.
    [108]Hwang H-J, Lin C-Y, Wang C-S. Flame retardancy and dielectric properties of dicyclopentadiene-based benzoxazine cured with a phosphorus-containing phenolic resin[J]. Journal of applied polymer science,2008,110:2413-2423.
    [109]Espinosa MA, Galia M, Cadiz V. Novel phosphorilated flame retardant thermosets: epoxy-benzoxazine-novolac systems[J]. Polymer,2004,45:6103-6109.
    [110]Sponton M, Ronda J C, Galia M, et al. Development of flame retardant phosphorus-and silicon-containing polybenzoxazines[J]. Polymer Degradation and Stability, 2009,94(2):145-150.
    [111]Zhang J, Xu R, Yu D. A novel poly-benzoxazinyl functionalized polyhedral oligomeric silsesquioxane and its nanocomposite with polybenzoxazine[J]. European Polymer Journal,2007,43(3):743-752.
    [112]Kumar KSS, Nair CPR, Sadhana R, et al. Benzoxazine-bismaleimide blends:Curing and thermal properties [J]. European Polymer Journal,2007,43(12):5084-5096.
    [113]Espinosa MA, Cadiz V, Galia M. Development of novel flame-retardant thermosets based on benzoxazine-phenolic resins and a glycidyl phosphinate[J]. Journal of Polymer Science Part A:Polymer Chemistry,2004,42(2):279-289.
    [114]Kumar KSS, Nair CPR, Ninan KN. Silica fiber-polybenzoxazine-syntactic foams; Processing and properties [J]. Journal of Applied Polymer Science,2008,107(2): 1091-1099.
    [115]Agag T, Takeichi T. Polybenzoxazine-montmorillonite hybrid nanocomposits synthesis and characterization[J]. Polymer,2000; 41:7083-7090.
    [116]Agag T, Takeichi T. Preparation and cure behavior of organoclay-modified allyl-functional benzoxazine resin and the properties of their nanocomposites [J]. Polymer Composites,2008,29(7):750-757.
    [117]Phiriyawirut P, Magaraphan R, Ishida H. Peparation and characterization of polybenzoxazine-clay immiscible nanocomposite[J]. Materials Research Innovations,2001,4:187-196.
    [118]Fu HK, Huang CF, Kuo SW, et al. Effect of an organically modified nanoclay on low-surface-energy materials of polybenzoxazine[J]. Macromolecular Rapid Communications,2008,29:1216-1220.
    [119]Agag T, Tsuchiya H. Takeichi T. Novel organic-inorganic hybrids prepared from polybenzoxazine and titania using sol-gel process[J]. Polymer,2004,45(23): 7903-7910.
    [120]Chen Q, Xu RW, Zhang J, et al. Polyhedral oligomeric silsesquioxane(POSS) nanoscale reinforcement of thermosetting resin from benzoxazine and bisoxazoline[J]. Macromolecular Rapid Communications,2005,26:1878-1882.
    [121]Liu YH, Zhang W, Chen Y, et al. Polybenzoxazine containing polysilsesquioxane: Preparation and thermal properties [J]. Journal of Applied Polymer Science,2006, 99(3):927-936.
    [122]Lu T, Liang G, Peng Y, et al. Blended hybrids based on silsesquioxane-OH and epoxy resins[J]. Journal of Applied Polymer Science,2007,106:4117-4123.
    [123]Fu BX, Namani M, Lee A. Influence of phenyl-trisilanol polyhedral silsesquioxane on properties of epoxy networked glasses[J]. Polymer,2003,44:7739-7747.
    [124]Kiskan B, Demirel AL, Kamer O, et al. Synthesis and characterization of nanomagnetite thermosets based on benzoxazines[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(20):6780-6788.
    [125]Jia Kun, Xu M, Zhao R, et al. Chemically bonded iron carbonyl for magnetic composites based on phthalonitrile polymers[J]. Polymer International,2011,60: 414-421.
    [126]Kumar KSS, Nair CPR, Ninan KN. Effect of fiber length and composition on mechanical properties of carbon fiber-reinforced polybenzoxazine[J]. Polymers for Advanced Technologies,2008,19(7):895-904.
    [127]Shen SB, Ishida H. Development and characterization of high-performance polybenzoxazine composites[J]. Polymer Composites,1996,17:710-719.
    [128]Huang K-W, Kuo S-W. High-performance polybenzoxazine nanocomposites containing multifunctional POSS cores presenting vinyl-terminated benzoxazine groups[J]. Macromolecular Chemistry and Physics,2010,211(21):2301-2311.
    [129]Rimdusit S, Ishida H. Development of new electronic packaging materials based on ternary systems of benzoxazine, epoxy and phenolic resins[J]. Polymer 2000,41: 7941-7949.
    [130]Dettloff M L, White J E, Null M J. High Char yield Benzoxazine Composites[P]. US Patent 6482946 BI,2002.
    [131]顾宜,鲁在君,谢美丽.开环聚合酚醛树脂与纤维增强复合材料[P].CN1115772A,1996.
    [132]Sehreiber H. Phenolic resins as electric insulation[P]. German Patent 2217099, 1973.
    [133]Schreiber H. Method of bonding polyimide films and printed circuit boards incorporation the same[P]. European Patent 356379,1990.
    [134]Sehreiber H. Resin compositions flame-retardant when cured[P]. European Patent 493310.1995.
    [135]Sehreiber H. Curable resins comprising halogenated epoxy resins and 1-oxa-3aza-etraline compounds, method for preparing and use of resins [P]. US Patent 5443911,1995.
    [136]Harold P, Higginbottom Wilbraham Mass. Polymerizable compositions comprising polyamines and poly(dihydrobenzoxazine)[P]. US Patent 4501864,1985.
    [137]Harold P, Higginbotom M, Drumm F. Proeess for deposition of resin dispersions on metal substrates[P]. US patent 4557979,1985.
    [138]Grabarnik L G, Puryga T V, Matveev V A, etal. Hardening of phenol-formaldehyde and arenephenol-formaldehyde oligomers with out evolution of volatile matter [J]. IZV Akad Nauk Kaz SSR Ser Khim,1989,3:64-70.
    [139]Grabarnik L G, Leonova MB, Korotin MM, et al. Comparative study of curing of phenol-formaldehyde resin with hexamethylenetetramine and benzoxazine by thermal analysis methods[J]. IZV Akad Nauk Kaz SSR Ser Khim 1990,3:65-69.
    [140]Teruki A, Yasuyuki H, Akihiko S, et al. Brake Lining[P]. Japan Patent 8074896, 1996.
    [141]Sulnitomo B半导体密封树脂的制法[J].甲醛与甲醇,2005,5:4445.
    [142]Chang C W, Lin C H, Lin H T, et al. Development of an aromatic triamine-based flame-retard ant benzoxazine and its high-performance copolybenzoxazines[J]. European Polymer Journal,2009,45:680-689.
    [143]Lin C H, Lin H T, Chang S L, et al. Benzoxazines with tolyl, p-hydroxyphenyl or p-carboxyphenyl linkage and the structure-property relationship of resulting thermosets[J]. Polymer,2009,50:2264-2272.
    [144]Lin H T, Lin C H, Hu Y M, et al. An approach to develop high-Tg epoxy resins for halogen-free copper clad laminates[J]. Polymer,2009,50:5685-5692.
    [145]Lin C H, Cai S X, Leu T X, et al. Synthesis and Properties of flame-retardant benzoxazines by three approaches[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44:3454-3468.
    [1]Ning X, Ishida H. Phenolic materials via ring-opening polymerization:Synthesis and characterization of bisphenol-A based benzoxazines and their polymers[J]. Journal of Polymer Science Part A:Polymer Chemistry,1994,32:1121-1129.
    [2]Holly F W, Cope A C. Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine[J]. Journal of the American Chemical Society,1944,66:1875-1879.
    [3]Riess G, Schwob J M, Guth G, et al. Advances in polymer sythesis[M]. Culbertson B M and McGrath J E, Editors. New York, Plenum Press,1985:27-31.
    [4]Yagci Y, Kiskan B, Ghosh N. Recent advancement on polybenzoxazine-a newly developed high performance thermoset[J]. Journal of Polymer Science Part A: Polymer Chemistry,2009,47:5565-5576.
    [5]Kim H J, Brunovska Z, Ishida H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers[J]. Polymer,1999,40: 6565-6573.
    [6]Agag T, Takeichi T. Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets[J]. Macromolecules, 2003,36(16):6010-6017.
    [7]Agag T, Takeichi T. Novel benzoxazine monomers containing p-phenyl propargyl ether: polymerization of monomers and properties of polybenzoxazines[J]. Macromolecules, 2001,34(21):7257-7263.
    [8]Brunovska Z, Ishida, H. Thermal study on the copolymers of phthalonitrile and phenylnitrile-functional benzoxazines[J]. Journal of Applied Polymer Science,1999, 73(14),2937-2949.
    [9]Ishida H, Ohba S. Synthesis and characterization of maleimide and norbomene functionalized benzoxazines[J]. Polymer,2005,46(15):5588-5595.
    [10]Andreu R, Espinosa M A, Galia M, et al, Reina J A. Synthesis of novel benzoxazines containing glycidyl groups:A study of the crosslinking behavior[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(4):1529-1540.
    [11]Chang C W, Lin C H, Lin H T, et al. Development of an aromatic triamine-based flame-retardant benzoxazine and its high-performance copolybenzoxazines[J]. European Polymer Journal,2009,45:680-689.
    [12]Lin C H, Lin H T, Chang S L, et al. Benzoxazines with tolyl, p-hydroxyphenyl or p-carboxyphenyl linkage and the structure-property relationship of resulting thermosets[J]. Polymer,2009,50:2264-2272.
    [13]Lin H T, Lin C H, Hu Y M, et al. An approach to develop high-Tg epoxy resins for halogen-free copper clad laminates[J]. Polymer,2009,50:5685-5692.
    [14]Lin C H, Cai S X, Leu T X, et al. Synthesis and Properties of flame-retardant benzoxazines by three approaches[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44:3454-3468.
    [15]Liu YH, Zhang W, Chen Y, et al. Polybenzoxazine containing polysilsesquioxane: Preparation and thermal properties[J]. Journal of Applied Polymer Science,2006, 99(3):927-936.
    [16]Sudhakar S, Sellinger A. Nanocomposite dendrimers based on cyclic phosphazene cores:amorphous materials for electroluminescent devices[J]. Macromolecular Rapid Communications,2006,27(4):247-54.
    [17]Liu C M, Qiu J J, Bao R, et al. Synthesis and characterization of coumarin-containing polyphosphazene[J]. Reactive and Functional Polymers,2006,66:455-464.
    [18]Emsley J, Udy P B. Polymerization of hexachlorotriphosphonitrile(NPCl2)3[J]. Polymer,1972,13:593-594.
    [19]Ye C, Zhang Z, Liu W. A novel synthesis of hexasubstituted cyclotriphosphazenes[J]. Synthetic Communication,2002,32:203-209.
    [20]Barbera J, Jimenez J, Laguna A, et al. Cyclotriphosphazene as a dendritic core for the preparation of columnar supermolecular liquid crystals [J]. Chemistry of Materials, 2006,18:5437-5445.
    [21]Andreu R, Reina JA, Ronda JC. Studies on the thermal polymerization of substituted benzoxazine monomers:Electronic effects[J]. Journal of Polymer Science Part A: Polymer Chemistry,2008,46:3353-3366.
    [22]Sudo A, Kudoh R, Nakayama H, et al. Selective formation of poly(N,O-acetal) by polymerization of 1,3-benzoxazine and its main chain rearrangement [J]. Macromolecules,2008,41,9030-9034.
    [23]Andreu R, Reina JA, Ronda JC. Carboxylic acid-containing benzoxazines as efficient catalysts in the thermal polymerization of benzoxazines[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46:6091-6101.
    [24]Kimura H, Matsumoto A, Ohtsuka K. New type of phenolic resin:curing reaction of phenol-novolac based benzoxazine with bisoxazoline or epoxy resin using curing agent and the properties of the cured resin[J]. Journal of Applied Polymer Science, 2008,107:710-708.
    [1]Ishida H, Sanders D P. Improved thermal and mechanical properties of polybenzoxazines based on alkyl-subsitituted aromatic amines[J]. Jounal of Polymer Science Part B:Polymer Physics,2000,38:3289-3301.
    [2]Ning X, Ishida H. Phenolic materials via ring-opening polymerization:Synthesis and characterization of bisphenol-A based benzoxazines and their polymers[J]. Journal of Polymer Science Part A:Polymer Chemistry,1994,32:1121-1129.
    [3]Ishida H, Allen DJ. Physical and mechanical characterization of near-zero shrinkage polybenzoxazine[J]. Journal of Polymer Science Part B:Polymer Physics,1996, 34(6):1019-1030.
    [4]Burke W J.3,4-dihydro-1,3,2H-benzoxazines:Reaction of p-substituted phenols with N,N-dimethylolamines. Journal of the American Chemical Society,1949,71: 609-612.
    [5]Burke W J, Glennie E L M, Weatherbee C. Condensation of hydroxyaromatic compounds with formaldehyde and primary aromatic amines[J]. Journal of the American Chemical Society,1954,76:1677-1679.
    [6]Ishida H, Sanders D P. Regioselectivity and network structure of difunctional alkyl-substituted aromatic amine-based polybenzoxazines[J]. Macromolecules,2000, 33:8149-8157.
    [7]Allen D J, Ishida H. Physical and mechanical properties of flexible polybenzoxazine resins:Effect of aliphatic diamine chain length[J]. Journal of Applied Polymer Science,2006,101:2798-2809.
    [8]Chang S L, Lin C H. Facile, one-pot synthesis of aromatic diamine-based benzoxazines and their advantages over diamines as epoxy hardeners [J]. Journal of Polymer Science Part A:Polymer Chemistry,2010,48:2430-2437.
    [9]Wang Y X, Ishida H. Synthesis and properties of new thermoplastic polymers from substituted 3,4-dihydro-2H-1,3-benzoxazines[J]. Macromolecules,2000,33:2839-2847.
    [10]Kim H D, Ishida H. Model compounds study on the network structure of polybenzoxazines[J]. Macromolecules,2003,36:8320-8329.
    [11]Phongtamrug S, Chirachanchai S, Tashiro K. Supramolecular structure of N,N-bis(2-hydroxybenzyl)alkylamine:from hydrogen bond assembly to coordination network in guest acceptance[J]. Macromolecular Symposia,2006,242: 40-48.
    [12]Sudo A, Du L C, Hirayama S, et al. Substituent effects of N-alkyl groups on thermally induced polymerization behavior of 1,3-Benzoxazines[J]. Journal of Polymer Science Part A:Polymer Chemistry,2010,48:2777-2782.
    [13]Brunovska Z, Ishida, H. Thermal study on the copolymers of phthalonitrile and phenylnitrile-functional benzoxazines[J]. Journal of Applied Polymer Science,1999, 73(14):2937-2949.
    [14]Kim H J, Brunovska Z, Ishida H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers[J]. Polymer,1999,40: 6565-6573.
    [15]Agag T, Takeichi T. Novel benzoxazine monomers containing p-phenyl propargyl ether:Polymerization of monomers and properties of polybenzoxazines [J]. Macromolecules,2001,34(21):7257-7263.
    [16]Agag T, Takeichi T. Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets[J]. Macromolecules, 2003,36(16):6010-6017.
    [17]Ishida H, Ohba S. Synthesis and characterization of maleimide and norbomene functionalized benzoxazines[J]. Polymer,2005,46(15):5588-5595.
    [18]Andreu R, Espinosa M A, Galia M, et al. Synthesis of novel benzoxazines containing glycidyl groups:A study of the crosslinking behavior[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(4):1529-1540.
    [19]Liu Y L, Chou C I. High performance benzoxazine monomers and polymers containing furan groups[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2005,43(21):5267-5282.
    [20]Andreu R, Reina J A, Ronda J C. Carboxylic acid-containing benzoxazines as efficient catalysts in the thermal polymerization of benzoxazines[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46:6091-6101.
    [21]Kiskan B, Koz B, Yagci Y. Synthesis and characterization of fluid 1,3-Benzoxazine monomers and their thermally activated curing[J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47:6955-6961.
    [22]Agag T, Arza C R, Maurer F H J, et al. Primary amine-functional benzoxazine monomers and their use for amide-containing monomeric benzoxazines [J]. Macromolecules,2010,43:2748-2758.
    [23]Lin C H, Cai S X, Leu T X, et al. Synthesis and Properties of flame-retardant benzoxazines by three approaches [J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44:3454-3468.
    [24]Sponton M, Lligadas G, Ronda J C, et al. Development of a DOPO-containing benzoxazine and its high-performance flame retardant copolybenzoxazines[J]. Polymer Degradation and Stability,2009,94:1693-1699.
    [25]Liu Y L, Hsu C W, Chou C I. Silicon-containing benzoxazines and their polymers: copolymerization and copolymer properties [J]. Journal of Polymer Science Part A: Polymer Chemistry,2007,45:1007-1015.
    [26]Huang J, Kuo S, Huang H. Preparation of VB-a/POSS hybrid monomer and its polymerization of polybenzoxazine/POSS hybrid nanocomposites[J]. Journal of Applied Polymer Science,2009,111:628-634.
    [27]Ye Y S, Yen Y C, Chang F C. Sulfonated poly(ether ether ketone) membranes crosslinked with sulfonic acid containing benzoxazine monomer as proton exchange membranes[J]. Polymer,2009,50:3196-3203.
    [28]Liu Y F, Yue Z Q, Gao J G. Synthesis, characterization, and thermally activated polymerization behavior of bisphenol-S/aniline based benzoxazine[J]. Polymer, 2010,51:3722-3729.
    [29]Allcock H R. Chemistry and applications of polyphosphazenes[M]. Hoboken: Wiley-Interscience,2003, part II.
    [30]Carriedo GA, Fernandez-Catuxo L, Garcla A F J, et al. Preparation of a new type of phosphazene high polymers containing 2,2'-dioxybiphenyl groups[J]. Macromolecules,1996,29:5320-5325.
    [31]Sardon H, Irusta L, Fernandez-Berridi M J, et al. Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)-triethoxysilane (APTES)[J]. Polymer,2010,51:5051-5057.
    [32]Dunkers J, Ishida H. Vibrational assignments of 3-alkyl-3,4-dihydro-6-methyl-2H-1,3-benzoxazines in the fingerprint region[J]. Spectrochiraica Acta, 1995,51:1061-1074.
    [33]Sudo A, Kudoh R, Nakayama H, et al. Selective formation of poly(N,O-acetal) by polymerization of 1,3-benzoxazine and its main chain rearrangement[J]. Macromolecules,2008,41:9030-9034.
    [34]Rheiner PB, Sellner H, Seehach D. Dendritic styryl taddols as novel polymer cross-linkers:first application in an enantioselective Et, Zn addition mediated by a polymer-incorporated titanate[J]. Helvetica Chimica Acta,1997,80:2027-2032.
    [35]Masashi H, Atsushi S, Takeshi E. Acceleration effect of five-membered cyclic dithiocarbonate on an epoxy-amine curing system [J]. Journal of Polymer Science Part A:Polymer Chemistry,2007,45:4606-4611.
    [36]Loapez J, Ramirez C, Torres A, et al. Isothermal curing by dynamic mechanical analysis of three epoxy resin systems:gelation and vitrification [J]. Journal of Applied Polymer Science,2002,83:78-85.
    [37]Allen D J, Ishida H. Effect of phenol substitution on the network structure and properties of linear aliphatic diamine-based benzoxazines[J]. Polymer,2009,50: 613-626.
    [1]Yagci Y, Kiskan B, Ghosh N N. Recent advancement on polybenzoxazine-a newly developed high performance thermoset[J]. Journal of Polymer Science Part A: Polymer Chemistry,2009,47:5565-5576.
    [2]Chernykh A, Liu J P, Ishida H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain[J]. Polymer,2006,47(22): 7664-7669.
    [3]Takeichi T, Kano T, Agag T. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets[J]. Polymer,2005, 46(26):12172-12180.
    [4]Kiskan B, Yagci Y, Ishida H. Synthesis, characterization, and properties of new thermally curable polyetheresters containing benzoxazine moieties in the main chain[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(2): 414-420.
    [5]Kiskan B, Demiray G, Yagci Y. Thermally curable polyvinylchloride via click chemistry[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(11): 3512-3518.
    [6]Ergin M, Kiskan B, Gacal B, et al. Thermally curable polystyrene via click chemistry[J]. Macromolecules,2007,40(13):4724-4727.
    [7]Kiskan B, Colak D, Muftuoglu A E, et al. Synthesis and characterization of thermally curable benzoxazine-functionalized polystyrene macromonomers[J]. Macromolecular Rapid Communications,2005,26(10):819-824.
    [8]Ates S, Dizman C, Aydogan B, et al. Synthesis, characterization and thermally activated curing of polysulfones with benzoxazine end groups[J]. Polymer,2011,52: 1504-1509.
    [9]Li Y-Y, Yin Z-Y, Lu J-H. Synthesis of bisphenol F[J]. Journal of petrolchemical university,2006,19:33-36.
    [10]Strauss S H, Pawlik M J, Skowyra J, et al. Comparison of the molecular and electronic structures of (.mu.-oxo) bis[(5,10,15,20-tetraphenylporphyrinato) iron(Ⅲ)] and (.mu.-oxo)his[(7,8-dihydro-5,10,15,20-tetraphenyl-porphyrinato) iron(Ⅲ)] [J]. Inorganic Chemistry,1987,26(5):724-730.
    [11]Liu J, Ishida H. In:Salamone JC, editor. The polymeric materials ency-clopedia[M]. Florida:CRC Press,1996,484-494.
    [12]Chernykh A, Liu J, Ishida H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain[J]. Polymer,2006,47:7664-7669.
    [13]Govard GR, Sebastiani D, Schnell I, et al. Benzoxazine Oligomers:Evidence for a helical structure from solid-state NMR spectroscopy and DFT-based dynamics and chemical shift calculations. Journal of the American Chemical Society,2003,125 (19): 5792-5800.
    [14]Dunkers J, Ishida H. Vibrational assignments of 3-alkyl-3,4-dihydro-6- methyl-2H-1,3-benzoxazines in the fingerprint region[J]. Spectrochiraica Acta,1995,51: 1061-1074.
    [15]蔺彬彬,仇永清,苏忠民,et al.水杨醛缩苯胺类席夫碱构象异构体的稳定性及其非线性光学性质的理论研究[J].高等学校化学学报,2001,22(9):1551-1554.
    [1]Riess G, Schwob J M, Guth G, et al. Advances in polymer sythesis[M]. Culbertson B M and McGrath J E, Editors. New York:Plenum Press,1985:27-31.
    [2]Jang J, Seo D. Performance improvement of rubber-modified polybenzoxazine[J]. Journal of Applied Polymer Science,1998,67(1):1-10.
    [3]Ishida H, Lee YH. Infrared and thermal analyses of polybenzoxazine and polycarbonate blends[J]. Journal of Applied Polymer Science,2001,81:1021-1034.
    [4]Su Y-C, Chen W-C, Ou K-L, et al. Study of the morphologies and dielectric constants of nanoporous materials derived from benzoxazine-terminated poly(ε-caprolactone)/ polybenzoxazine co-polymers[J]. Polymer,2005,46:13758-3766.
    [5]Takeichi T, Guo Y, Agag T. Synthesis and characterization of poly-(urethane-benzoxazine) films as novel type of polyurethane/phenolic Resin composites[J]. Journal of Polymer Science Part A:Polymer Chemistry,2000,38(22): 4165-4176.
    [6]Zhong H, Lu Y, Chen J, et al. Preparation, characterization, and polymerization of novel maleimidobenzoxazine containing carboxylic moiety and its cocuring behaviors with epoxy resin[J]. Journal of Applied Polymer Science,2010,118(2):705-710.
    [7]Rao BS, Reddy K R, Pathak S K, et al. Benzoxazine-epoxy copolymers:effect of molecular weight and crosslinking on thermal and viscoelastic properties[J]. Polymer International,2005,54:1371-1376.
    [8]Jain R, Narula AK, Choudhary V. Studies on curing and thermal behavior of diglycidyl ether of bisphenol-A and benzoxazine mixtures[J]. Journal of Applied Polymer Science,2007,106(5):3327-34.
    [9]Hwang H-J, Lin C-Y, Wang C-S. Flame retardancy and dielectric properties of dicyclopentadiene-based benzoxazine cured with a phosphorus-containing phenolic resin[J]. Journal of Applied Polymer Science,2008,110:2413-2423.
    [10]Espinosa MA, Galia M, Cadiz V. Novel phosphorilated flame retardant thermosets: epoxy-benzoxazine-novolac systems[J]. Polymer,2004,45:6103-6109.
    [11]Sponton M, Ronda J C, Galia M, et al. Development of flame retardant phosphorus-and silicon-containing polybenzoxazines[J]. Polymer Degradation and Stability, 2009,94(2):145-150.
    [12]Zhang J, Xu R, Yu D. A novel poly-benzoxazinyl functionalized polyhedral oligomeric silsesquioxane and its nanocomposite with polybenzoxazine[J]. European Polymer Journal,2007,43(3):743-752.
    [13]Kumar KSS, Nair CPR, Sadhana R, Ninan KN. Benzoxazine-bismaleimide blends: Curing and thermal properties [J]. European Polymer Journal,2007,43(12):5084- 5096.
    [14]Espinosa MA, Cadiz V, Galia M. Development of novel flame-retardant thermosets based on benzoxazine-phenolic resins and a glycidyl phosphinate [J]. Journal of Polymer Science Part A:Polymer Chemistry,2004,42(2):279-289.
    [15]Andreu R, Reina JA, Ronda JC. Studies on the thermal polymerization of substituted benzoxazine monomers:Electronic effects[J]. Journal of Polymer Science Part A: Polymer Chemistry,2008,46:3353-3366.
    [16]Chang CW, Lin CH, Lin HT, et al. Development of an aromatic triamine-based flame-retardant benzoxazine and its high-performance copolybenzoxazines[J]. European Polymer Journal,2009,45:680-689.
    [1]DiStasio JI. Epoxy resin technology:development since 1979[M]. Hoboken, NJ: Noyes Data Corporation,1982, Part Ⅰ.
    [2]May CA, editor. Epoxy resins:chemistry and technology[M]. New York:Marcel Dekker,1988.
    [3]Bilyeu B, Brostow W, Menard KP. Epoxy thermosets and their applications I: Chemical structures and applications[J]. Journal of Materials Education,1999,21: 281-286.
    [4]Bilyeu B, Brostow W, Menard KP. Epoxy thermosets and their applications II:Thermal analysis[J]. Journal of Materials Education,2000,22:107-30.
    [5]Bilyeu B, Brostow W, Menard KP. Determination of volume changes during cure via void elimination and shrinkage of an epoxy prepreg using a quartz dilatometry cell[J]. Polimery,2001,46:799-802.
    [6]Wunderlich B. Thermal analysis[M]. San Diego:Academic Press,1990.
    [7]Kim WG, Nam TY. Curing characteristics of o-cresol novolac epoxy resin modified by bismaleimide[J]. Journal of polymer science part A:Polymer Chemistry,1996,34: 957-962.
    [8]Musto P, Martuscelli E, Ragosta G, et al. An interpenetrated system based on a tetrafunctional epoxy resin and a thermosetting bismaleimide:Structure-properties correlation[J]. Journal of Applied Polymer Science,1998,69:1029-1042.
    [9]Wang WJ, Peng LH, Hsiue GH, et al. Characterization and properties of silicon-containing epoxy resins[J]. Polymer,200,41:6113-6122.
    [10]Hsiue GH, Wang C, Chang FC. Synthesis, characterization, thermal and flame-retardant properties of silicon-based epoxy resins[J]. Journal of Applied Polymer Science,1999,73:1231-1238.
    [11]Wu CS, Liu YL, Chiu YS. Epoxy resins possessing flame retardant elements fron silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents[J]. Polymer,2002,43:4277-4284.
    [12]Wang TS, Shau MD. Properties of Epon 828 resin cured by cyclic phosphine oxide tetra acid[J]. Journal of Applied Polymer Science,1998,70:1887-1885.
    [13]Liu YL, Hsiue GH, Chiu YS. Synthesis, characterization, thermal, and flame retardant properties of phosphate-based epoxy resins[J]. Journal of polymer science part A: Polymer Chemistry,1997,35:565-574.
    [14]Wang CS, Lin CH. Properties and curing kinetic of diglycidyl ether of bisphenol A cured with a phosphorus-containing diamine[J]. Journal of Applied Polymer Science, 1997,74:1635-1645.
    [15]Chen-Yang YW, Lee HF, Yuan CY. A flame-retardant phosphate and cyclotriphosphazene-containing epoxy resin:Synthesis and properties. Journal of polymer science part A:Polymer Chemistry,2000,38:972-981.
    [16]Sudo A, Kudoh R, Nakayama H, et al. Selective formation of poly(N,O-acetal) by polymerization of 1,3-benzoxazine and its main chain rearrangement [J]. Macromolecules,2008,41:9030-9034.
    [17]Rao BS, Rajavardhana Reddy K, Pathak S K, et al. Benzoxazine-epoxy copolymers: effect of molecular weight and crosslinking on thermal and viscoelastic properties [J]. Polymer International,2005,54:1371-1376.
    [18]Sponton M, Ronda J C, Galia M, et al. Development of flame retardant phosphorus-and silicon-containing polybenzoxazines[J]. Polymer Degradation and Stability, 2009,94:145-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700