药物柳氮磺胺吡啶与若干金属离子作用的配位化学及含硫杂环配体与Cu(I)的配合物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柳氮磺胺吡啶(5-[对-(2-吡啶胺磺酰基)苯偶氮]水杨酸)是一种抗菌药物,它可以改变肠道菌群,减少个体内存的抗原,临床上可用其治疗溃疡性结肠炎、风湿性关节炎和类风湿性关节炎等。它的金(I)、铜(II)配合物也具有抗风湿作用,但未见有关它的配合物的单晶结构报道。本文以有机药物柳氮磺胺吡啶为配体与金属离子作用,合成了七个配合物,并测定了它们的单晶结构,研究了它们的谱学性质。另一方面,水杨醛与邻氨基苯硫酚缩合时得到苯并噻唑衍生物,但与金属离子配位时噻唑环(沿着C─S键)通常会断裂,本论文在以得到的苯并噻唑衍生物与Cu(I)作用获得C─S键没有断裂的配合物,并测定了它的单晶结构,研究了它的谱学性质。
    获得配体柳氮磺胺吡啶的单晶,并用X-射线衍射仪测定了它的晶体结构。配体分子式C36H42O19N8S2Cl, Mr = 990.35,属三斜晶系,空间群P-1,晶胞参数:a = 11.5878(7), b =15.0294(9), c = 15.3792(9)?, α = 113.119(1), β = 109.331(1), γ = 92.447(1)?, V = 2280.6(2)?3, Z = 2, Dc = 1.442Mg/m3, R1 = 0.1214, wR2 = 0.2499在一个不对称单元中有两分子去质子的配体,一个氯离子和九个结晶水,每个配体的羧基和酚羟基均去质子而呈-2价,这样配体以-5价阴离子形式存在。配体晶体结构中有大量分子间和分子内氢键存在。
    碱土金属离子与有机药物柳氮磺胺吡啶作用, 获得了镁(II)、钙(II)、锶(II)的柳氮磺胺吡啶配合物单晶,X-射线单晶结构分析显示,配合物(H-Sulp)[Mg(H-Sulp)(H2O)5]·5H2O(1), 分子式C36H46MgN8O20S2, Mr =999.24 属三斜晶系,空间群P-1,晶胞参数:a = 11.1516(13), b =15.4471(19), c = 16.0471(19)?, α = 115.654(2), β = 107.909(2), γ = 91.861(2)?, V = 2326.4(5)?3, Z =2, Dc = 1.426Mg/m3, R1 = 0.1298, wR2 = 0.2585; 配合物(H-Sulp)[Ca(H-Sulp)(H2O)6]· 3H2O(2),分子式C36H44CaN8O19S2, Mr = 996.99属三斜晶系,空间群P-1,晶胞参数 :a =11.5786(11), b =15.0224(15), c =15.3953(15)?, α = 113.129(2), β = 109.302(2), γ = 92.477(2)?, V = 2277.5(4)?3, Z = 2, Dc = 1.454 Mg/m3, R1 = 0.1423, wR2 = 0.2966;配合物(H-Sulp) [Sr(H-Sulp)(H2O)6]·3H2O(3),
    
    分子式C36H44SrN8O19S2, Mr = 1044.53, 属三斜晶系,空间群P-1,晶胞参数 :a = 11.583(2), b = 15.128(3), c = 15.518(4)?, α = 113.19(1), β = 109.18(1), γ = 93.30(1)?, V = 2305.4(8)?3, Z = 2, Dc =1.505 Mg/m3, R1 = 0.0592, wR2 = 0.1243。三个配合物均为离子型化合物,配合物1的中心金属离子 Mg(II)采取六配位的变形的八面体几何构型,配合物2和3的中心金属离子Ca(II)和Sr(II)为七配位的加帽八面体。这三个配合物中,羧基均为单齿配位,吡啶N均没有参加配位。由于配合物1-3在分子间、分子内均存在大量的强氢键和弱氢键,这些氢键的交互作用使得这三个配合物具有三维超分子结构。室温下,用λEX = 326nm紫外光激发配合物2, 能发射出(λEM = 447nm)蓝色荧光,可以归属为π→π*跃迁和π-π堆积作用及氢键作用。
    铅是主族毒害元素,用溶液法合成得到了一个结构新颖的一维配位聚合物[{Pb(H-Sulp)2(H2O)}·H2O]∞ (4),分子式C37H32PbN8O14S2, Mr = 1084.02 ,属单斜晶系,空间群P21/c,晶胞参数:a = 20.485(2), b = 26.374(3), c =7.6331(9)?, β = 95.424(2)?, V = 4105.6(8)?3, Z=4, Dc = 1.754 Mg/m3, R1 = 0.0990, wR2 = 0.2412。配合物4为双核结构,具有对称中心,每个 Pb(II)为六配位的畸变八面体,配位羧基采用单齿配位和桥连三齿配位两种方式,晶体结构中含有 菱形结构单元(Pb-Pb距离4.04?),化合物通过相邻的 结构单元与Pb-Pb弱成键链接成一维链状结构,而配合物中大量的分子间和分子内氢键交互作用稳定了这种结构。
    获得了一个Co(II)配合物[Co(H-Sulp)2(H2O)4]·4H2O(5) 单晶,分子式C36H44CoN8O20S2, Mr = 1031.84, 属三斜晶系,P-1空间群,晶胞参数 :a = 5.2318(8), b = 14.406(2), c = 14.6278(15)?, α = 87.435(4), β = 82.356(5), γ = 80.846(4)?, V = 1078.5(3)?3, Z = 1, Dc = 1.589Mg/m3, R1 = 0.0514, wR2 = 0.1408。配合物5中钴(II)离子是六配位的压扁八面体结构,钴(II)的周围被两个不同配体(H2-Sulp)的羧基氧(单齿配位)和四个配位水分子的氧原子所包围。
    配合物(6)和(7)是柳氮磺胺吡啶分别与Zn(OAc)2·H2O和Zn(OH)2形成的配合物,晶体结构分析显示,它们结构式相同[Zn(H-Sulp)2(μ-O)(H2O)],互为手性异构体。配合物6、7的分子式C18H12N4O6SZn, Mr = 477.75, 均属正交晶系,P2(1)2(1)2(1)空间群,配合物6的晶胞参数:a = 5.2571(4), b = 17.6412(16), c = 20.1091(13)?, V = 1864.9(3)?3, Z = 4, Dc = 1.702 Mg/m3, R1 = 0.0587, wR2 = 0.1287,配合物7 的晶胞参数:a = 5.2730(5), b =17.8473(17), c =20.319(2)? , V = 1912.2(3)?3, Z = 4, Dc = 1.660 Mg/m3, R1 = 0.0573, wR2 = 0.1358。配合物6和7的中心离子Zn(II)的配位环境相同,均为四配位的四面体结构,Zn(II)分别与来自两个不同配体的吡啶N和羧基O以及
Sulfasalazine is a kind of antibacterial drug, which works inside the bowel by changing the bacteria group and reducing antigen of the body. Sulfasalazine is used to prevent and treat inflammatory bowel disease, such as ulcerative colitis, and rheumatoid arthritis. Its gold(I) and copper(II) complexes also have pharmacological actions, however their crystal structure have not been reported . Seven crystal structures have been obtained by treatment sulfasalazin with alkali-earth metal salts ,Pb(NO3)2,Co(O Ac)2 .4H2O,Zn(OH)2 and Zn(OAc)2, respectively.
    The condensation of salicyaldehyde with 2-aminothiophenol resulted in benzothiazoly derivates, which, when reacted with some metals, yields a complex in which the ligand usually establishes the rupture of the thiazole ring (along the C-S). This paper reports the coordination reaction of the benzothiazoly derive with Cu(I), obtained a complex, in which thiazole ring does not appear rupture. The crystal structure is determinated.
    Crystallographic data for the ligand sulfasalazine: C36H42O19N8S2Cl, Mr = 990.35, belongs to the triclinic crystal system, space group P-1, cell parameters: a = 11.5878(7), b =15.0294(9), c = 15.3792(9)?, α = 113.119(1), β = 109.331(1), γ = 92.447(1)?, V = 2280.6(2)?3, Z = 2, Dc = 1.442Mg/m3, R1 = 0.1214, wR2 = 0.2499. In an asymmetry unit, there are two deprotonized sulfasalazines, one chlorine ion and nine lattice waters.
    The reactions of sulfasalazin with alkali-earth metal (Mg(II), Ca(II) and Sr(II)) salts afford three sulfasalazin alkali-earth metal compounds. Compound (H-Sulp)[Mg(H-Sulp)(H2O)5]·5H2O(1), C36H46MgN8O20S2, Mr = 999.24, belongs to the triclinic crystal system, space group P-1, cell parameters: a =11.1516(13), b = 15.4471(19), c = 16.0471(19)?, α = 115.654(2), β = 107.909(2), γ =91.861(2)?, V = 2326.4(5)?3, Z = 2, Dc = 1.426Mg/m3, R1 = 0.1298, wR2 = 0.2585. Compound (H-Sulp)[Ca(H-Sulp)(H2O)6]· 3H2O (2), C36H44CaN8O19S2, Mr = 996.99, belongs to
    
    the triclinic, space group P-1, cell parameters: a =11.5786(11), b = 15.0224(15), c = 15.3953(15)?, α =113.129(2), β =109.302(2), γ = 92.477(2)?, V = 2277.5(4)?3, Z = 2, Dc = 1.454 Mg/m3, R1 = 0.1423, wR2 = 0.2966. Compound (H-Sulp)[Sr(H-Sulp)(H2O)6]·3H2O(3) ,C36H44SrN8O19S2, Mr = 1044.53, belongs to the triclinic, space group P-1,cell parameters: a = 11.583(2), b = 15.128(3), c = 15.518(4)?, α = 113.19(1), β = 109.18(1), γ = 93.30(1)? , V = 2305.4(8)?3, Z = 2, Dc = 1.505 Mg/m3, R1 = 0.0592, wR2 = 0.1243。 These three crystals are all ionic complexes, the centeral metal Mg(II) of complex 1 adopts six-coordinated distorted octahedral geometry. Ca(II) for compound 2 and Sr(II) for compound 3 adopt seven-coordinated capped octahedral geometry. Among these compounds, carboxyl of ligand is monodentate and N atom of pyridine doesn't participate in the coordination. In addition, there are a large number of strong hydrogen bonds and weak hydrogen bonds in compound 1, 2 and 3, which result to form 3-D supramolecular structures.
    Lead is a main group toxic heavy metal elememt. A novel 1-D coordination polymer [{Pb(H-Sulp)2(H2O)}·2H2O·CH3OH]∞(4) has been obtained by the reaction of Pb(NO3)2 and sulfasalazin. Its crystal data: C37H32PbN8O14S2, Mr = 1084.02 monoclinic, space group P21/c, cell parameters: a = 20.485(2), b = 26.374(3), c = 7.6331(9)?, β=95.424(2)?, V = 4105.6(8)?3, Z = 4, Dc = 1.754 Mg/m3, R1 = 0.0990, wR2 = 0.2412. Pb(II) adropts six-coordinated octahedral geometry. The carboxylate group of ligand acts as both monodentate and terdentate modes to coordinate to Pb(II). carboxyes The crystal structure of compound 4 contains Pb-O-Pb-O rhomboidal units formed through the two bridging O, in which the Pb-Pb distance is 4.04?. The ajacent Pb-O-Pb-O rhomboidal units are linked by Pb-Pb weak directed bonding with Pb-Pb distance of 3.626? and results in a 1-D infinite structure. A large number of hydrogen bonding interactions in the pack of compound 4 forms 2-D netwok strucutre, which may play important role for stablizing the compound.
    Through t
引文
1. Wilknson Sir; Stone, G. F. A.; Abel, E. W. Comprehensive Coordination Chemistry-The Synthesis, Reaction, Properties and Applications of Coordination Compounds. Oxford: Pergamon Press, 1987.
    2. William, A. F.; Florianic, C; Merbach, A. E. Perspectives in Coordination Chemistry. Basel: Velag Helbetica Chimica Acta, 1992, 156.
    3. 钱沿龙,陈新滋主编。金属有机化学与催化。北京:化学工业出版社,1997。
    4. 徐光宪,袁承业。稀土的溶剂萃取。北京:科学出版社,1987。
    5. 游效曾编著。分子材料-光电功能化合物。上海:上海科技出版社,2000。
    6. Abdulla, M.; Behbhani, A.; Dashli, H. Magnesium Health Disease 1989, 111
    7. Sengbusch, P. V. Molekular-und Zellbiologie; Springer: Berlin, 1979.
    8. Classen, H. G. Metal Ions In Biological Systems; Sigel, H., Ed.;Marcel Dekker: New York, 1990, vol. 26, Chapter 29
    9. Durlach, J. Le Magnesium en Pratique Clinique; Bailliere: Paris, 1985.
    10. Classen, H. G. Nowitski, S.; schimatschek, H. F. Magnesium Bull. 1991, 132, 39
    11. Evans, C. A.; Guerremont, R.; Rabemstein, D. L. Metal Ions In Biological Systems; Sigel, H., Ed.;Marcel Dekker: New York, 1979, vol. 9, p41
    12. Doyne, T. Adv. Protein Chem.. 1996, 22, 600.
    13. Freeman, H. C. Inorganic Biochemistry; Eichhorn, J., Ed.; Marcel Dekker: New York, 1979, Vol. 1, p 129
    14. (a)Drake, S. R.; Arunasaiam, V. C. Polyhedron, in press . (b)Timovich, R. J. Am. Chem. Soc., 1969, 91, 4430.
    15. (a)Schmidbaur, H.; Classen, H. G.; Helbig, J. Angew. Chem. 1990, 102, 1122. (b)Schmidbaur, H.; Classen, H. G.; Helbig, J. Angew. Chem., Int. Ed. Engl. 1990, 29, 1090.
    16. Schmidbaur, H.; Bach, I.; Wilkinson, D. L.; Muller, G. Chem. Ber. 1989, 122, 1433.
    17. Schmidbaur, H.; Classen, H. G.; Riedo, J.; Helbig, J. Angew. Chem., Int. Ed. Engl. 1991, 29, 1090.
    
    
    18. Mann, S.; Webb, J.; Williams, R. J. P., Eds. Biominerallization: VCH: weinheim, 1989.
    19. (a)Krampitz, G.; Graser, G. Angew. Chem. 1988, 100, 1181. (b)Krampitz, G.; Graser, G. Angew. Chem. Int. Ed. Engl. 1988, 27, 1145.
    20. Jakubke, H. D.; Jeschkat, H. Aminosauren, Peptide, Proteine; Verlag Chemie: weinheim, 1982: p38ff
    21. Kreiger, G.; Classen, H. G. Magnesium Bull 1979, 3,191
    22. Sigel, H., Ed. Metal Ions In biological Systems: a multivolume series: Marcel Dekker: New York, 1974-present.
    23. (a) Schmidbaur, H.; Bach, I.; Wilkinson, D. L.; Muller, G. Chem. Ber. 1990, 123, 1599. (b)Jenden, D. J.; Reger, J. F. J.physiol.(London) 1963, 169, 889. (c)Martin, R. B. Metal Ions In Biological Systems; Sigel, H., Ed.;Marcel Dekker: New York, 1986, vol. 20, p43.
    24. Schmidbaur, H.; Kumberger, O.; Riede, J. Inorg. Chem. 1991, 30, 3101.
    25. Cole, L. B.; Holt, E. M. Inorg. Chim. Acta 1989, 160, 195.
    26. Debuyst, P. R.; Dejehet, f.; Dekandelaer, M.-C.; Declercq, J.-P.; Germain, G.; Meerssche, M. V. J. Chim. Phys. 1979, 76, 1117.
    27. Murugavel, R.; Karambelkar, V. V.; Anantharaman, G.; Walawalkar, M. G. Inorg. Chem.. 2000, 39, 1381
    28. 陈振锋, 南京大学博士学位论文, 2001.
    29. Wagstaff A. J., Benfied P., Monk J. P., Drugs 1988, 36, 132.
    30. Herrmann W. A., Herdtweck E., Pajdla L., Inorg. Chem. 1991, 30, 2579.
    31. Kiprof P., Scherer W., Pajdla L., Herdtweck E., Herrmann W. A., Chem. Ber. 1992, 125, 43.
    32. Herrmann W. A., Kiprof P., Scherer W., Pajdla L., Chem. Ber. 1992, 125, 2657.
    33. Asato E., Driessen W. L., de Graaff R. A. G., Hulsbergen F. B., Reedijk J., Inorg. Chem. 1991, 30, 4210.
    34. Asato E., katsura K., Mikuriya M., Turpeinen U., Mutikainen I., Reedijk J., Inorg. Chem. 1995, 34, 2447.
    35. (a) Martin, R. B. In Encyclopedia of Inorganic Chemistry; King, R. B., Ed.; Wiley Interscience: Chichester, U. K., 1994, Vol. 4, p2185. (b) Ratcliffe, J. M. Lead in Man and the Enviromnent, Wiley, New York, 1981.
    36. (a) Palca, J. Science, 1991, 253, 842. (b) Needleman, H. L.; Gunnoe, C.; Leviton, A.; Reed, R.; Peresie, H.; Maher, C.; Barrett, P. New Eng. J. Med. 1979, 300, 689.
    Kasakov, S. A.; Hecht, S. M. in: King, R. B.(Ed.), Encycloedia of Inorganic
    
    37. Chemistry, 1994, Vol. 5, pp. 2697.
    38. Martin, R. B. In Encyclopedia of Inorganic Chemistry; King, R. B., Ed.; Wiley Interscience: Chichester, U. K., 1994, Vol. 4, p2185.
    39. Harrison, P. G. In Comprehensive Coordination Chemistry; Wilkinson, G., Grillard, R. D., Mccleverty, J.A., Eds.; Pergamon Press: Oxford, U. K., 1987; Vol. 3, p183.
    40. Kourgiantakis M., Matzapetakis M., Raptooulou C. P., Terzis A., Salifoglou A. Inorganica Chimica Acta 2000, 297, 134-138.
    41. Williams R. J. P., et al., New Frends in Bioinorganic Chemistry, 355-385(1978).
    42. Schrauzer G. N., ed., Inorganic and Nutritional Aspects of Cancer, Plenum, 169-189 (1978).
    43. Sorenson J. R. J., in Metal Ions in Biological Systems, ed. H. Sigel, Marcel Dekker, New York, 1982, 14, p. 77.
    44. Catheine Dendrinou-Samara, Panagiotis D. Jannakoudakis, Dimitis P. Kessissoglou, George E. Manoussakis, Dimitris Mentzafos and Aris Terzis, J. Chem. Soc.,Dalton Trans., 1992, 3259.
    45. Chemcal & Engineering News, 1990, 68(12), 38.
    46. 彭司勋主编,药物化学进展,化学工业出版社,36。
    47. Caldwell, J. Chemistry & Industry, 1995, 5, 176.
    48. Kenji Nomiya, Satoshi Takahashi and Ryusuke Noguchi, J. Chem. Soc., Dalton Trans., 2000, 4369-4373.
    49. Abrahams, B. F.; Batten, S. R.; Hamit, H.; Hoskins, B. F.; Robson, R., Chem. Commun., 1996, 1313.
    50. Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A Chem. Commun. 1996, 1393.
    51. Bu, X. H.; Biradha, k.; Yamaguchi, T.; Nishimura, M.; Ito, T.; Tanaka, K.; Shionoya, M. Chem. Commun. 2000, 1953
    52. Bu, X. H.; Morishita, H.; Tanaka, K.; Biradha, K.; Shionoya, M. Chem. Commun. 2000, 971.
    53. Chen, Z.-F.; Xiong, R.-G.; Zuo, J.-L.; Guo, Z.-J.; You, X.-Z and Hoong-Kun Fun, J. Chem. Soc., Dalton Trans. 2000,4010.
    54. Chen, Z.-E.; Zhang, J.; Xiong, R.-G.; You, X.-Z., Inorg. Chem. Commun., 2000, 3, 493.
    55. Chen, Z.-E.; Xiong, R.-G., et al. J. Chem. Soc., Dalton Trans., 2001, (17), 2453-2455
    56. Xiong, R.-G.; You, X.-Z, et al. Agnew. Chem.2001,
    57. Yevs Chaput, Union med. Canada 1960, 89, 1464.
    58. 安富荣,施安国,王平全。中国新药杂志,1999,8(9),595
    
    
    59. Truelover, S. C. Proc. Intern. Congr. Gastroenterol, 6th , Leiden, 1960, 483.
    60. Van Riel Piet, L. C. M.; Kroot Eric-Jan, J. A. Rheumatoid Arthritis. Oxford: Oxford University Press, 2000, 351.
    61. 陈冠容。药学通报,1987,22(10),621。
    62. 张师艺,成秀莲。广东医学,1990,11(16),40。
    63. Akira Yanagawa, Shinichi Narikawa, Toshitaka Kudo, et al. Enshho, 1995, 15(3):261.
    64. Roberts, N. A.; Robinson, P. A. Superoxide Dismutase Chem., Biol. Med. Proc. Int. Conf., 4th. Amsterdam, 1985, 538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700