保护地有机蔬菜种植体系下养分分配规律及环境效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前有机蔬菜产业在我国发展迅速,在高度集约化的有机蔬菜产区(例如山东、北京等地区),由于种植人员单凭常规水肥管理经验从事有机蔬菜种植,缺乏有机种植下的水肥资源管理理论以及相关的试验数据,使有机蔬菜的种植面临一系列问题。本研究在有机种植条件下,研究了两种灌溉处理(W1:常规灌溉;W2:减量灌溉)以及三种施肥处理(N1:常规施肥;N2:减量施肥;N3:对照处理)对有机蔬菜产量、品质、土壤养分变化以及N、P养分淋失等问题,其研究结果如下:
     在有机蔬菜种植中有机肥的施用量减少到常规施肥量的2/3,灌溉量减少到常规灌溉量的80%时,除第一茬菜外,其余两茬菜产量降低。同时常规施肥处理的萝卜硝酸盐的含量有超标的风险,施肥量较灌溉量对有机蔬菜中硝酸盐的含量影响较大。其中当有机肥的施用量减少到常规施肥量的2/3时,减量施肥处理的萝卜硝酸盐含量较常规施肥处理减少了27.1%;当灌溉量减少到常规灌溉量的80%时,减量灌溉处理的萝卜硝酸盐含量较常规灌溉处理减少了6.3%。
     常规施肥导致有机蔬菜地0-90 cm土层土壤无机氮有逐渐累积的趋势。其中在常规灌溉和减量灌溉下,常规施肥处理的土壤无机氮含量分别高达395.99 kg/ha,366.58 kg/ha;但是减量施肥处理的土壤无机氮含量分别为298.85 kg/ha,294.25 kg/ha,明显降低了土壤无机氮含量。
     本研究中有机肥的施用以氮素作为推荐对象,同时有机肥中N、P、K养分存在不平衡性,这导致0-30 cm土层土壤磷素的大量累积,其中常规灌溉和减量灌溉下,常规施肥处理的土壤速效磷含量分别高达237.75mg/kg,248.34 mg/kg。经过三茬菜后,各施肥处理的土壤有机质、全氮、全磷含量均有一定程度的提高,这也表明有机肥有培肥地力的作用。
     有机蔬菜地淋洗液的累积量与灌溉量和施肥量有关。通过控制灌溉量能够明显降低三茬菜的淋洗液累积量,当灌溉量减少到常规灌溉量的80%时,减量灌溉处理的淋洗液累积量较常规灌溉处理减少了31.4%;当有机肥的施用量减少到常规施肥量的2/3时,减量施肥处理的淋洗液累积量较常规施肥处理减少了22.2%。
     灌溉量和施肥量对三茬菜N、P的累积淋洗量有密切的关系,控制灌溉量以及施肥量均能够减少N、P的累积淋洗量。当灌溉量减少到常规灌溉量的80%时,减量灌溉处理的N、P累积淋洗量较常规灌溉处理分别减少了47.0%、65.4%;当有机肥的施用量减少到常规施肥量的2/3时,减量施肥处理的N、P累积淋洗量较常规施肥处理分别减少了29.5%、52.5%。
     常规施肥处理的氮素、磷素以及钾素盈余均高于减量施肥处理。其中在常规灌溉和减量灌溉下,常规施肥处理的磷素盈余高达4398.6 kg/ha, 4387.75 kg/ha。当有机肥基于氮肥推荐时,过高的磷素投入是造成土壤磷素累积的主要原因。同时养分利用率以钾素最高,其次是氮素,磷素最低。并且减量灌溉处理的灌溉水利用率显著高于常规灌溉处理。
Recently, organic vegetable industry develops rapidly in China. In some dense organic vegetable production region, for example, Shan dong province and Bei jing city, organic vegetables planting faces some problems because farmers depend on the experience of conventional management including water and fertilization and lack of the theory about water and fertilization and some experimental data. Under organic vegetable planting condition, the reseach studied two irrigation and three fertilizer treatments which influenced yields, quality, soil nutrients and leaching of nitrogen and phosphorus. The results were as follows:
     When the amount of fertilizer was reduced to two third of conventional fertilizer treatment and amount of irrigation was reduced to 80 percent of conventional irrigation treatment, yields of the last two organic vegetable crops decreased except for the first crop. And nitrate content was reduced by 27.1 percent and 6.3 percent compared with conventional fertilizer and irrigation treatment.
     The Nmin content accumulated gradually in 0-90 cm soil layer under the planting of three organic vegetable crops. The soil Nmin content of conventional fertilizer treatment were 395.99 kg/ha and 366.58 kg/ha under two kinds of irrigation treatments. But the soil Nmin content decreased significantly when the amount of fertilizer was reduced.
     Phosphorus accumulated greatly in 0-30cm soil layer because the amount of organic fertilizer was calculated according to the nitrogen application amount and the nitrogen, phosphorus and potassium content of organic fertilizer were unparallel. The soil Olsen-P contents of conventional fertilizer treatment has reached 237.75 mg/kg and 248.34 mg/kg under two kinds of irrigations. Meanwhile, the soil organic matter, total nitrogen and total phosphorus content have increased partly.
     Amount of fertilizer and irrigation affected the leaching dramatically. When amount of irrigation was reduced to 80 percent of conventional amount, the loss of leachate, nitrogen and phosphorus were reduced by 31.4%,47.0% and 65.4%. When the amount of fertilizer was reduced to two third of conventional amount of fertilizer, the loss of leachate, nitrogen and phosphorus were reduced by 22.2%,29.5% and 52.5%.
     The conventional fertilizer treatment was higher than the other fertilizer treatment when we calculated nitrogen, phosphorus and potassium surplus. The phosphorus surplus of conventional fertilizer treatment has reached 4398.6 kg/ha and 4387.75 kg/ha under two kinds of irrigation treatments. Meanwhile, potassium use efficiency was higher than that of nitrogen and phosphorus and the irrigation use efficiency of conventional irrigation treatment was lowerer than the other treatment that amount of irrigation was reduced to 80 percent of conventional irrigation treatment.
引文
[1]鲍士旦.土壤农化分析[M],第三版,北京:中国农业出版社.2000.
    [2]陈新,梁成华,张恩平,等.长期定位施肥对蔬菜保护地土壤磷素空间分布的影响[J].中国农学通报,2005(21):209~212,276.
    [3]曹志洪.施肥与土壤健康质量[J].土壤,2003,35(6):450~455.
    [4]杜相革,王慧敏.有机农业概论.北京:中国农业大学出版社,2001.
    [5]郭颖,赵牧秋,吴蕊,等.有机肥对设施菜地土壤-植物系统硝酸盐迁移累积的影响[J].农业环境科学学报,2008,27(5):1831~1835.
    [6]黄锦法,曹志洪,李艾芬,等.稻麦轮作田改为保护地菜田土壤肥力质量的演变[J].植物营养与肥料学报,2003,9(1):19~25.
    [7]郝建强.中国有机食品发展现状、问题及对策分析[J].世界农业,2006,(7):1~4.
    [8]陆安泽.美国有机农业的调查与探讨[J].世界农业,1982(5):1~3,(6):1~4.
    [9]刘德,吴凤芝.哈尔滨市郊蔬菜大棚土壤盐分状况及影响[J].北方园艺,1998,(2):1~2.
    [10]刘畅.有机、无公害与常规生产模式的比较.中国农业大学硕士论文.
    [11]刘春生,宋国菡,史衍玺,等.棕壤和褐土的酸淋溶特征[J].水土保持学报,2002,16(3):5~8.
    [12]刘宏斌,李志宏,张维理,等.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究[J].植物营养与肥料学报,2004,10(3):286~291.
    [13]李合生.2000,植物生理生化实验原理与技术.北京:高等教育出版社.
    [14]刘建玲,廖文华,张凤华,等.菜园土各形态磷库的变化及空间分布[J].河北农业学学报,2004,27(6):7~111.
    [15]吕家珑,Fortune S, Brookes P C.土壤磷淋溶状况及其Olsen-P磷“突变点”研究[J].农业环境科学学报,2003,22(2):142~146.
    [16]李科江,张素芳,贾文竹,等.半干旱区长期施肥对作物产量和土壤肥力的影响[J].植物营养与肥料学报,1999,5(1):21~25.
    [17]李淑仪,郑惠典,廖新荣.有机肥施用量与蔬菜硝酸盐和重金属关系初探[J].生态环境,2005,14(6):307~313.
    [18]李显军.2006.我国有机农业发展背景、现状和展望[J].农产品市场周刊,(42):26~29.
    [19]李晓旭,赵语丝,崔品.世界有机农业发展及对中国的启示[J].世界农业,2006(8):39~42.
    [20]刘志扬.美国农业新经济.青岛:青岛出版社,2003:5.
    [21]秦釪生,涂士华,冯文强,等.有机肥料对蔬菜生产和硝酸盐累积的影响[J].四 川农业大学学报,2002,20(4):351~353.
    [22]戎秋涛,杨春茂,徐文彬.土壤酸化研究进展[J].地球科学进展,1996,11(4):396~401.
    [23]沈长江,芬兰的生态农业[J],世界农业,1997(2):32~331.
    [24]沈其荣,沈振国.有机肥氮素的矿化特征及与其化学组成的关系[J].南京农业大学学报,1992,15(1):59~64.
    [25]沈善敏,国外的长期肥料试验[J].土壤通报,1984,2~4,85~87,134~138,184~185.
    [26]唐继伟,林治安,许建新,等.有机肥与无机肥在提高土壤肥力中的作用[J].中国土壤与肥料,2006(3):44~47.
    [27]唐政.有机蔬菜种植体系中水肥配置的农学及环境效应研究.中国农业科学院博士学位论文.
    [28]王伯仁,李冬初,黄晶.红壤长期肥料定位试验中土壤磷素肥力的演变[J].水土保持学报,2008,22(5):96~101,141.
    [29]王彩绒,胡争议,杨林章,等.太湖典型地区菜地土壤磷淋失风险[J].环境科学学报,2005,25(1):76~801.
    [30]汪德水,程宪国.旱地土壤中的肥水激励机制[J].植物营养与肥料学报,1995,1(1):64~71.
    [31]文宏达,刘玉柱,李晓丽.水肥耦合与旱地农业持续发展[J].土壤与环境,2002,11(3):315.
    [32]王红霞,周建斌,雷张玲,等.有机肥中不同形态氮及可溶性有机碳在土壤中淋溶特性研究[J].农业环境科学学报,2008,27(4):1364~1370.
    [33]王宏燕.全球有机农业发展现状和我国有机农业发展对策[J].农业系统科学与综合研究,2003(19):223~229.
    [34]王立刚,李维炯,邱建军,等.生物有机肥对作物生长、土壤肥力及产量的效应研究[J].土壤肥料,2004(5):14~16.
    [35]王慎强,蒋其鳖,钦绳武,等.长期施用有机肥与化肥对潮土土壤化学及生物学性质的影响[J].中国生态农业学报,2001(9):67~69.
    [36]王新军,廖文华,刘建玲.菜地土壤磷素淋失及其影响因素[J].华北农学报,2006,21(4):67~70.
    [37]吴建繁,王运华.无公害蔬菜营养与施肥研究进展[J].植物学通报,2000,17(6):492~503.
    [38]席运官,李正方.蔬菜有机与无机生产系统能流、经济流的比较研究[J].生态农业研究,1999,7(2):39~42.
    [39]席运官,陈瑞冰.论有机农业的环境保护功能[J].环境保护.2006(9):48~52.
    [40]谢永利.有机、无公害与常规蔬菜生产定位试验比较研究[博士学位论文].北京:中国农业大学,2008.
    [41]尤彩霞,陈涛,王真,等.不同有机肥对日光温室黄瓜土壤氮运移的影响的研究[J].土壤肥料,2006(2):52~55.
    [42]杨合法,解永丽,范聚芳,等.不同施肥对保护地土壤肥力及作物产量的影响[J].中国农学通报,2006(22):250~254.
    [43]姚丽贤,周修冲.有机肥对环境的影响及预防研究[J].中国生态农业学报.2005,13(2):113~115.
    [44]袁新民,同延安,杨学云,等.有机肥对土壤NO3--N累积的影响[J].土壤与环境,2000,9(3):197~200.
    [45]杨学云,Brookes P C,李生秀.土壤磷的淋失机理初步研究[J].植物营养与肥料学报,2004,10(5):479~482
    [46]杨学云,古巧珍,.马路军,等.土壤磷素淋移的形态研究[J].土壤学报,2005,42(5):792~798.
    [47]宗静,贾小红,齐庆珍,等.京郊农产品生产基地土壤肥力与有机肥料投入状况的调查与分析[J].北京农业,2008(18):112~115.
    [48]张杰,孙钦平,魏宗强,等.沼渣和沼液对油菜生长及氮素利用率的影响[J].北方园艺,2009(11):26~29.
    [49]赵建生,焦晓燕,杨治平,等.有机肥料使用量对土壤环境、夏甘蓝产量和品质的影响[J].华北农学报,2006,21(5):123~126.
    [50]周启星,唐世荣.健康土壤学-土壤健康质量与农产品安全,北京:科学出版社,2005:172~180.
    [51]赵世杰,刘华山,董新纯.植物生理学实验指导.中国农业科技出版社,1998.
    [52]张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008~1017.
    [53]张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80~87.
    [54]张云贵,刘宏斌,李志宏,等.长期施肥条件下华北平原农田硝态氮淋失风险的研究[J].植物营养与肥料学报,2005,11(6):711~716.
    [55]朱兆良.中国土壤氮素研究[J].土壤学报.2008.45(5):778~783.
    [56]张振贤,周绪元,陈利平.主要蔬菜作物光合与蒸腾特性研究[J].园艺学报,1997,2(42):155~160.
    [57]Andreas Flieβbach, Lucie Gunst, Paul Mader. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming[J]. Agriculture, Ecosystems & Environment,2007,118(1-4):273~284.
    [58]Bshman Eghball, James F. Power. Composted and noncomposted manure application to conventional and no-tillage systems. Agronomy Journal,1999,91 (5):819~825.
    [59]Bahman Eghball. Nitrogen mineralization from land applied beef cattel feedlot manure or compost. Soil Science Society of America Journal,2000,64 (6): 2024~2030.
    [60]Campbell C A, Eentner R P. Soil organic matter as influenced by crop rotation and fertilization. Soil Science of American Journal.1993,57:1034-1040.
    [61]Conyers M K, Mullen C L, Scott B J, Poile G J, Braysher B D. Long-term benefits of limestone applications to soil properties and to cereal crop yields in southern and central New South Wales[J]. Australian Journal of Experimental Agriculture,2003, 43(1):71~78.
    [62]Ewa Rembialkowsk. The nutritive and sensory quality of carrots and white cabbage from organic and conventional farms. (In):Thomas Alfoldi, William Lockeretz and Urs Niggli. Swis:Proceedings "International IFOAM Scientific Conference,2000: 297.
    [63]FAO, World soil resources. An explanatory note on the FAO world soil resources map at 1:25000000 scale, Rome.1993:71.
    [64]Forschungsinstitut fuer Biologischen Landbau (FiBL). Organic farming in Europe-Provisional statistics 2002, Provisional results of a FiBL survey, October 2003.
    [65]Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO). Guidelines for the production, processing, labeling and marketing of organically produced foods (GL 32-1999/2001). Codex Alimentarius, 2001:5~11.
    [66]Franzluebbers A. J., Stuedemann J. A., et al. Bermuda grass management in the southern piedmont USA. II. Soil phosphorus. Soil Science. Society of America Journal,2002,66(1):291~298
    [67]Greene C R. U.S. Organic farming emerges in the 90s:Adoption of certified systems. Agriculture Information Bulletin,2001:770.
    [68]Heckrat h G., Brookes P C, Poulton P R. et al. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment[J]. J. Environ. Qual,1995,24:904~910.
    [69]Herrmann G, Plakolm G.Oekologischer Landbau, Grundwissen fuer die Praxis. Wien, Verlagsunion Agrar.,1991:27-32.
    [70]Hesketh N, Brookes P C. Developement of an indicator for risk of Phosphorus leaching [J]. J. Environ. Qual.,2000,29 (1):105~110.
    [71]IFOAM. The World of Organic Agriculture 2008.IFPAM and FIBL,2008:22~29; 122~129.
    [72]IFOAM (International Federation of Organic Agriculture Movements) and Food and Agriculture Organisation of the United Nations (FAO). Conference conclusions, IFOAM Conference on organic guarantee systems-international harmonization and equivalence on organic agriculture,17-19 February 2002, Nuremberg, Germany, 11-18.
    [73]Johnston A. Nutrients in soil and nutrients for food production [J]. Better Crops with Plant Food,2003 (2):4-51.
    [74]Joachim Ziegler, Strohemerier K, et al. Nitrogen supply of vegetables based on the "KNS system" [J]. Acta Horticultural,1996,428:223~233.
    [75]Klaus Birkhofera, Bezemer T M., Jaap Bloeme, Michael Bonkowski. Long-term organic farming fosters below and aboveground biota:Implications for soil quality, biological control and productivity [J]. Soil Biology and Biochemistry,2008,40(9): 2297~2308.
    [76]Lanpkin N. More on organic foods. J Am Diet Assoc,1990,90(7):920~922.
    [77]Macilwain C. Organic:is it the future of farming?[J]. Nature,2004,428(6985): 792~793.
    [78]May C. New Zealand and the organic market, Inaugural OFA National Organics Conference 2001. Canberra:Rural Industries Research and Development Corporation,2001:109~110.
    [79]Muramoto J. Comparison of nitrate content in leafy vegetables from organic and conventional farms in California [EB/OL]. http://www.agroecology.ory/pepole/joji/ research/leaf nitrate.pdf,1999~06.
    [80]Midmore P, Lampkin N H. Modeling the impact of wide spread conversion to organic farm ing:an overview [A]. In:Lampkin N H, Padel S, et al. The Economics of Organic Farming [C]. UK:CAB International,1994.371~379.
    [81]Malhi S S, Harapiak J T, Nyborg M, et al. Light Fraction Organic N, Ammonium, Nitrate and Total N in a Think Black Chernozemic Soil Under Bromrgrass after 27 Annual Applications of Different N Rates[J]. Nutr Cycling Agroecosyst,2003,65 (2):201~210.
    [82]Oenema O, Velthof GL, Bussink D W, Oremland R S,1993. Emissions of ammonia, nitrous oxide and methane from cattle, slurry. In:Biogeochemistry of global change: radiatively active trace gasses, New York:Chapman & Hall,419~433.
    [83]Parris K. Agricultural nutrient balances as agri-environmental indicators:An OECD perspective [J]. Environ. Poll.,1998,102:219~225.
    [84]Par T, Dinel H, Moulin A P, Townley-Smith L. Organic matter quality and structural stability of a Black Chernozemic soil under different manure and tillage practices [J]. Geothermal,1999,91(3-4):311~326.
    [85]Rigby D, Young T, Burton M. The development and prospects for organic farming in the UK. Food Policy,2001,26:599-613.
    [86]Rinaldi M, Ventrella D, Gagliano C. Comparison of nitrogen and irrigation strategies in tomato using CROPGRO model[J]. A case study from Southern Italy. Agricultural Water Management,2007,87(1):91~105.
    [87]SOEL-FIBL.2008全球有机农业生产调查报告.http://www.pcarrd.dost.gov.ph/phil-organic/market%20files/landarea.htm.
    [88]Stanhill G. The comparative productivity of organic agriculture [J]. Agriculture, Ecosystems & Environment,1990,30(1-2):1~26.
    [89]SchrE der J J, Aarts H FM, ten Berge H FM et al. An evaluation of whole-farm nitrogen balances and related indices for efficient nitrogen use [J]. Eur. J. Agron., 2003,20:33~44.
    [90]Sprent J I,1987. The ecology of nitrogen cycle. Cambridge Univ, Press, Cambridge.
    [91]Stiftung Oekologie & Landbau (SOEL). Organic agriculture worldwide 2000-2002/ statistics and future prospects. SOEL, February 2003.
    [92]Sommer S G, Thomsen I K,1993. Loss of nitrogen from pig slurry due to ammonia volatilization and nitrate leeching. In:Verstegen MWA, den Hartog LA, van Kempen GJ M and Metz J H M (eds), Nitrogen flow in pig production and environmental consequences. Wageningen:Pudoc Scientific Publishers.353~367.
    [93]van Beek CL, Brouwer L, Onenma O. The use of farmgate balances and soil surface balance as estimator for nitrogen leaching to surface water [J]. Nutr. Cycl. Agroecosyst.,2003,67:233~244.
    [94]Vogtmann H. From healthy soil to healthy food:an analysis of the quality of food produced under contrasting agricultural systems [J]. Nutrition Health,1988,6(1): 21~35.
    [95]Viets F G. Water Deficits and Nutrient Availability [A]. Kozlowskit. Water Deficits and Plant Growth[C]. Vol Ⅲ. New York Academic Press 1972,217~236.
    [96]Vida Rutkoviene, Daiva Baltranaityte, Antanas Stacevicius. Integrated research on production systems and products quality. (In):Thomas Alfoldi, William Lockeretz and Urs Niggli Swis:Proceedings 13th International IFOAM Scientific Confernce. 2000:301.
    [97]Williams C M. Nutritional quality of organic food:shades of grey or shades of green? [J] Nutrition Science,2002,61(1):19~24.
    [98]Willer H, Yussefi M.2007. The world of organic agriculture, statistics and emerging trends. Bonn:International Federation of Organic Agriculture Movements (IFOAM).
    [99]X T, C L Kou, F S Zhang, et al. Nitrogen Balance and Groundwater Nitrate Contamination:Comparison among Three intensive Cropping Systems on the North China Plain [J]. Environmental Pollution,2006,143(1):117~125.
    [100]Yussefi M, Willer H. The World of Organic Agriculture—Statistics and Future Prospects,2003. International Federation of Organic Agriculture Movements (IFOAM),2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700