植被恢复对退化红壤易变碳及土壤呼吸的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于大气CO_2浓度不断升高,碳循环研究成为全球关注的热点,而土壤碳库在全球碳循环中起着至关重要的作用。土壤侵蚀导致土壤质量的严重下降和土壤碳库的大量损失,因而侵蚀退化土地的恢复具有较大碳吸存潜力。我国亚热带山地丘陵红壤土壤侵蚀严重,虽然进行了大量的水土保持生态恢复与重建工作,但“碳汇”功能长期以来没有得到相应重视,同时,土壤有机碳在侵蚀退化红壤质量恢复的中心地位亦未明确。本文以侵蚀裸地(作为植被恢复前的对照)、在侵蚀裸地上恢复的马尾松林、板栗园、百喜草地以及当地保存最好的次生林(作为植被恢复后的对照)为研究对象,通过野外定位观测和实验室分析,研究了不同植被恢复类型对土壤碳库、轻组有机碳、微生物生物量碳、可溶性有机碳、有机碳在团聚体中分布以及土壤呼吸的影响。目的是:(1)确定侵蚀退化红壤碳吸存特征与潜力;(2)探讨植被恢复过程中土壤易变碳组分的变化特征及其与土壤有机碳的相互关系;(3)探讨植被恢复、有机碳及其易变碳组分与团聚体稳定性的关系;(4)阐明植被恢复对土壤呼吸的影响机制。本文主要得出了以下结论:(1)植被恢复显著增加了侵蚀退化地的土壤有机碳含量和储量。0-5cm土层有机碳受植被恢复影响最大,而40cm以下土层深度有机碳含量与储量受植被恢复的影响很小。裸地土壤碳吸存潜力约为56 t·hm~(-2)。(2)裸地土壤轻组平均含量低于0.10 g·kg~(-1),轻组有机碳占土壤总有机碳的比例约为1.2~1.3%,无明显季节变化。植被恢复显著提高了侵蚀退化红壤的轻组含量和轻组有机碳占总有机碳的比例,并具有明显的季节波动。轻组在土壤表层富集,随土壤剖面深度增加,轻组含量、轻组有机碳占总有机碳比例均明显下降,植被对轻组垂直分布的影响与植物根系分布深度相对应。轻组有机碳与土壤有机碳有极显著的线性关系,植被恢复后土壤轻组有机碳积累速率比总有机碳积累速率快,轻组有机碳的快速恢复对土壤可持续能力和碳管理具有重要意义。(3)裸地土壤微生物生物量碳平均含量低于83mg·kg~(-1)。植被恢复后土壤微生物生物量碳平均含量分别是裸地的2.3~7.8倍。植被恢复后土壤微生物生物量碳含量夏季最高,冬季最低。土壤微生物生物量碳含量与土壤有机碳含量、轻组有机碳、可溶性有机碳、全氮、全磷、水解性氮、有效磷、全钾和速效钾均有显著的正相关关系,而与土壤容重和土层深度呈负相关关系。植被恢复显著增加了土壤微生物微生物量碳流通量,但不一定能改变微生物生物量碳周转速率和周转时间。微生物生物量碳是指示侵蚀退化红壤有机碳恢复的最好指标。(4)植被恢复显著增加了侵蚀退化红壤的可溶性有机碳含量,主要原因是土壤可溶性有机碳的来源途径得到恢复。植被恢复后土壤可溶性有机碳含量一般
The research about carbon cycle has been a hotspot in global scales because there bas been a continual increase in the atmospheric concentration of carbon dioxide (CO_2) since the industrial revolution. Soil carbon pool plays key role in the global carbon cycle. But soil erosion leads to the severe decline of soil quality and depletion of soil organic carbon pool, therefore, there are higher potential of carbon sequestration through adoption of available restoration practices. There is severe soil erosion in the mountainous and hilly red soil region of subtropical China, and many ecological restoration and rehabilitation practices of soil and water conservation had been applied, but the function of soil carbon sequestration was not to attain enough attention and the central role of soil carbon in the degraded red soil quality was not to be emphasized. In this study, the effect of vegetation restoration on soil organic carbon (SOC), light fraction organic carbon (LFOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC) and their seasonal dynamics, distribution of organic carbon in aggregate, and soil respiration and it's seasonal dynamics has been studied in Hetian town, Changting county, Fujian province by fixing position measurement in field and analyzing in laboratory. Three regeneration ecosystems viz. Pinus massoniana forest (planted in 1981 on severely eroded land), Castanea mollissima plantation (planted in 1999 on severely eroded land) and Paspalum notatum Flugge. grassland (planted in 2000 on severely eroded land), and severely eroded land (bare land) as a control ecosystem before restoration, the secondary forest conserved best in local as the control ecosystem after restoration were involved in this study. The objective of this study is that: (i) carbon sequestration characteristic and potential in eroded red soil;(ii) soil labile carbon fractions characteristic and their relation to soil organic carbon;(iii) effects of vegetation restoration, soil carbon and labile carbon fractions on the stability of soil aggregate;and (iv) illuminates the mechanism of soil respiration affected by vegetation restoration in eroded red soil.Major conclusions were summarized as follows:(1) There was a distinct increase of SOC content and storage after vegetation restoration in eroded degraded land and significant difference was found in the 0-5 cm
    depth, where SOC content in Pinus massoniana forest, Castanea mollissima plantation and Paspalum notatum Flugge grassland were 13.3, 4.2 and 12.8 times higher than that in bare land respectively. SOC content and storage were little affected by vegetation restoration under the depth of 40cm in regeneration ecosystem's soil. Comparing with secondary forest, carbon sequestration in bare land was about 56 t C?hm"2o(2) In bare land average content of light fraction organic carbon (LFOC) was low (< 0.10 g?kg"') and the proportion of LFOC to SOC was from 1.2 to 1.3%. Also, there were no distinct seasonal changes of LFOC in bare land. After vegetation restoration, LFOC increased significantly and distince seasonal pattern was found. Content of LFOC and the proportion of organic C present as LFOC both decreased with depth, corresponding to the distribution of roots. There was significant linear relatinhsip between LFOC and SOC (P < 0.01). In addtion, accumulation rate of LFOC was faster than that of SOC, which was important for soil sustainability and carbon managemnet.(3) Microbial biomass carbon (MBC) in bare land was lower than 83 mg'kg"1. After vegetation was restored, average content of soil MBC was 2.3-7.8 times higher than that of bare land and seasonal pattern of soil MBC content was highest in summer and lowest in winter respectively. MBC had significantly positive correlation to contents of SOC, total N, total P, water soluble N, available P, total K and available K, but negative correlation with soil bulk density and depth. Vegetation restoration increased mean flux of soil MBC significantly, but not for turnover rate and time of MBC.(4) Vegetation restoration increased the content of soil DOC due to restoration of source of soil DOC. Similar to SOC, the content of DOC also decreased with depth. Seasonal dynamics of soil DOC in restored ecosystems was complex because of synthetical impacts of litterfall, precipitation, temperature, moisture and microbe. The effect of soil microorganism on DOC was greater than that of total SOC and significantly positive relation between DOC and MBC was found (P < 0.05).(5) Vegetation restoration facilitated the formation of aggregate and enhanced its stability, imposed significant impact on SOC in the different size-class aggregate, and increased the proportion of SOC in the macroaggregate. In the process of vegetation restoration, the acumulative rate of carbon in the macro-aggregate was higher than that in the micro-aggregate. Stability of soil aggregate was related to SOC, MBC, LFOC and DOC. Further, microbe played the most important role in the formation of aggregate and greatly affected its stability.(6) There was power function relationhip between soil respiration rate measured by IRGA and by alkali absorption method. Overestimation of 77% was for alkali absorption
    method when soil respiration rate was low, whereas alkali absorption method underestimated 41% when soil respiration rate was high.There was no effect of vegetation restoration on daily soil respiration, while significant seasonal change was observed, generally maximum in summer and minimum in winter. The increase in soil respiration rate after vegetation restoration may be due to increase of litterfall, root biomass, contents of SOC and labile organic C, and quantity of soil microorganism, as well as change in soil temperature and moisture. Soil respiraiton could be better simulated by an exponential funciton with soil temperature as the driving variable, especially after vegetation restoration. On the other hand, whether significant increase in mean anuual flux of soil respiration after vegetation restoration would not benefit atmosphere CO2 sequestration, it needed to further analyze ecosystem carbon balance.In summary, vegetation restoration increased content and storage of SOC and its labile fractions. Also, accumulation rates of labile fractions were significantly higher than that of total SOC, which could provide nutrients for plant growth. In addtion, vegetation restoration promoted the generation of soil aggregate and increased its stability, which could protect SOC from erosion. Soil respiration also increased in restored ecosystems and was more sensitive to change of soil temperature. The question whether restored ecosystems functioned as C source or C sink will need further study.
引文
1. 曹裕松,李志安,江远清等.陆地生态系统土壤呼吸研究进展.江西农业大学学报,2004,24(1):138-143
    2. 陈光水,杨玉盛,王小国,谢锦升,高人,李震.格氏栲天然林与人工林根系呼吸季节动态及影响因素.生态学报,2005,25(8):1941-1947
    3. 陈国潮,何振立,黄昌勇.红壤微生物生物量碳周转及其研究.土壤学报,2002,39(2):152-160
    4. 陈全胜,李凌浩,韩兴国等.土壤呼吸对温度升高的适应.生态学报,2004,24(11):2649-2655
    5. 陈全胜,李凌浩,韩兴国等.温带草原11个植物群落夏秋土壤呼吸对气温变化的响应.植物生态学报,2003,27(4):441-447
    6. 陈珊,张常钟,刘东波等.东北羊草草原土壤微生物生物量的季节变化及其与土壤生境的关系,生态学报,1995,15(1):91.94
    7. 陈同斌,陈志军.水溶性有机质对土壤中镉吸附行为的影响.应用生态学报,2002,13(2):183-186
    8. 樊后保,林德喜,苏兵强等.林下套种阔叶树的马尾松林凋落物生态学研究I-凋落物量及其动态.福建林学院学报,2002,22(3):209-212
    9. 樊江文,钟华平,梁用等.草地生态系统碳储量及其影响因素.中国草地,2003,25(6):51-58
    10.方华军,杨学明,张晓平.东北黑土有机碳储量及其对大气CO_2的贡献.水土保持学报,2003,17(3): 9-12, 20
    11.方晰,田大伦.杉木人工林林地CO_2释放量的研究.林业科学,1997,33(sp.2):94-103.
    12.冯宗炜,王效科,吴刚著.中国森林生态系统的生物量和生产力.北京:科学出版社.1999.164-171
    13.高云超,朱文珊,陈文新.土壤微生物生物量周转的估算.生态学杂志,1993,12(6):6-10
    14.管东生.香港草地、芒萁、灌木群落的碳素动态.生态学报,2001,21(3):440-445
    15.郝文英.土壤微生物研究工作的回顾.土壤,1989,21(4):185-191
    16.洪坚平,谢英荷,Markus Kleber等.德国西南部惠格兰牧草区土壤微生物生物量的研究.生态学报,1997,17(5):493-496
    17.黄承才,葛滢,常杰等.中亚热带东部三种主要木本群落土壤呼吸的研究.生态学报,1999,19(3):324-328
    18.黄承才.马尾松林和茶园土壤微生物生物量垂直分布研究.绍兴文理学院学报。2002,22(1):62-65
    19.黄承才.中亚热带东部毛竹林土壤微生物生物量的研究.浙江林业科技,2002,22(4):5-8
    20.黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应.生态学报,2002,22(2):259-269
    21.蒋高明,黄银晓.北京山区辽东栎林土壤释放CO_2模拟实验研究.生态学报,1997,17(5):477-482
    22.解宪丽,孙波,周慧珍等.不同植被下中国土壤有机碳的储量与影响因子.土壤学报,2004,41(5):688-689
    23.李凌浩,陈佐忠.草地群落的土壤呼吸.生态学杂志,1998,17(4):45-51
    24.李凌浩,王其兵.白永飞等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究.植物生态学报,2000,24(6):680-686
    25.李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环.地学前缘,2002,9(2):351-357
    26.廖绵浚,张贤明.水土保持作物百喜草研究.中国水土保持科学,2003,1(2):8-17
    27.林瑞余.森林土壤和枯枝落叶层DOM的研究.福建农林大学硕士论文,2003
    28.林业部科技司.林业标准汇编(三).北京:中国林业出版社.1991
    29.刘东霞.万木林主要群落凋落物的动态研究.福建农林大学硕士论文,2004
    30.刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸.植物生态学报,1998,22(2):119-126.
    31.骆士寿,陈步峰,李意德等.海南岛尖峰岭热带山地雨林土壤和凋落物呼吸研究.生态学报,2001,21(12):2013-2017.
    32.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社.2000
    33.莫江明,孔国辉,Sandra BROWN等.鼎湖山马尾松林凋落物及其对人类干扰的响应研究.植物生态学报,2001,25(6):656-664
    34.彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响.生态学报,2003,23(10):2176-2183
    35.冉景丞,何师意,曹建华等.亚热带喀斯特森林土壤CO_2排放量动态研究.贵州科学,2002,20(2):42-47.
    36.阮伏水,朱鹤建著.福建省花岗岩地区土壤侵蚀与治理.北京:中国农业出版社,1997
    37.邵玉琴,敖晓兰,宋国宝.皇甫川流域退化草地和恢复草地土壤微生物生物量的研究.生态学杂志,2005,24(5):578-580
    38.沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响.土壤学报,2000,37(2):166-173.
    39.苏水金,林开旺,傅锡成等.水土流失区建立草林植被的初步研究.福建农学院学报,1989,18(1):50-55
    40.王连峰,潘根兴,石盛莉等.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布.植物营养与肥料学报,2002,8(1):29-34
    41.王效科,郭然,吴庆标,刘国华,欧阳志云.陆地生态系统固碳技术措施.陈泮勤主编,陆地生态系统碳循环.北京:科学出版社.2004,523-564
    42.王岩,沈其荣,史瑞和等.土壤微生物量及其生态效应.南京农业大学学报,1996,19(4):45-51
    43.吴建国,张小全,王彦辉等.土地利用变化对土壤物理组分中有机碳分配的影响.林业科学,2002。38(4):19-29
    44.吴建国,张小全,徐德应.六盘山林区几种土地利用方式土壤呼吸时间格局.环境科学,2003,24(6):23-32
    45.吴仲民,李意德,曾庆波等.尖峰岭热带山地雨林碳素库及皆伐影响的初步研究.应用生态学报,1998,9(4):341-344.
    46.谢锦升,陈光水,何宗明等.退化红壤不同治理模式马尾松生长过程特点分析.水土保持通报,2001,21(6):24-27
    47.谢锦升,杨玉盛,陈光水等.侵蚀红壤人工恢复的马尾松林水源涵养功能的研究.北京林业大学学报,2002,24(2):48-51
    48.谢锦升,杨玉盛,陈光水,高人.亚热带侵蚀红壤植被恢复后营养元素通量的变化.生态学报.2005,25(9):2312-2319
    49.谢锦升,杨玉盛,解明曙.亚热带花岗岩侵蚀红壤的生态退化与恢复技术.水土保持研究,2004,11(3):154-156
    50.杨玉盛,陈光水,王小国等.中亚热带森林转换对土壤呼吸动态及通量的影响.生态学报,2005a.25(7):1684-1690
    51.杨玉盛,陈光水,李震等.皆伐对杉木人工林土壤呼吸的影响.土壤学报,2005b,42(4):584-590
    52.杨玉盛,董彬,谢锦升等.森林土壤呼吸及其对全球变化的响应.生态学报,2004a,24(3):583-591
    53.杨玉盛,刘艳丽,陈光水等.格氏栲天然林与人工林土壤非保护性有机碳研究.生态学报,2004b,24(1):1-8
    54.杨玉盛,陈光水,董彬等.格氏栲天然林与人工林土壤呼吸对干湿交替的响应.生态学报,2004c,24(5):953-958
    55.杨玉盛,董彬,谢锦升等.林木根系呼吸及其测定方法进展.植物生态学报,2004d,28(3):426-434.
    56.杨玉盛,何宗明,林光耀等.不同治理模式对严重退化红壤抗蚀性影响的研究.土壤侵蚀与水土保持学报,1996,2(2):32-37
    57.杨玉盛,何宗明,林光耀等.退化红壤不同治理模式对土壤肥力的影响.土壤学报,1998,35(2):276-282
    58.杨玉盛,何宗明,邱仁辉等.红壤严重退化生态系统不同恢复和重建措施的植物多样性和地力恢复的研究.生态学报,1999,19(4):490-494
    59.杨玉盛,谢锦升,陈光水等.红壤侵蚀退化地生态恢复后碳吸存量的变化.水土保持学报,2002,16(5):17.19,46
    60.易志刚,蚁伟民,周国逸等.鼎湖山三种主要植被类型土壤碳释放研究.生态学报,2003,23(8):1673.1678
    61.易志刚,蚁伟民.森林生态系统中土壤呼吸研究进展.生态环境,2003,12(3):361-365
    62.殷士学.土壤微生物生物量及其养分循环关系的研究进展.土壤学进展,1993,21(4):1-8.
    63.尹瑞玲.微生物与土壤团聚体.土壤学进展,1985,13(4):24-29
    64.余作岳,彭少麟.热带亚热带退化生态系统植被恢复生态学研究.广州:广东科技出版社,1996
    65.俞慎,李勇,王俊华等.土壤微生物生物量作为红壤质量生物指标的探讨.土壤学报,1999,36(3):413-422
    66.张成娥,陈小莉,郑粉莉.子午岭林区不同环境土壤微生物生物量与肥力关系研究.生态学报,1998,18(2):218-222
    67.张崇邦,施时迪.退化草原碱蓬土壤微生物生物量的季节动态模型.应用与环境生物学报,2001,7(6):588-592
    68.赵其国等著.中国东部红壤地区土壤退化的时空变化、机理及调控.北京:科学出版社,2001
    69.郑华,欧阳志云,王效科等.不同森林恢复类型对土壤微生物群落的影响.应用生态学报,2004,15(11):2019-2024
    70.周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518~522
    71.周志田,成升魁,刘允芬等.中国亚热带红壤丘陵区不同土地利用方式下土壤CO_2排放规律初探.资源科学,2002,24(2):83-87
    72.Lennart Olsson and Jonas Ardo.退化的半干旱农业生态系统土壤碳的积累:危险和潜力.Ambio2002,31(6):471-477
    73.Acea,M.J.,Carballas,T,Principal components analysis of the soil microbial populations of humidzone of Galicia(Spain).Soil Biol.Biochem.1990,22:749-759
    74.Alvarez R,Alvarez C R,Daniel P E,Richter V and Blotta L.Nitrogen distribution in soil densityfractions and its relation to nitrogen mineralisation under different tillage systems.Aust.J.Soil Res. 1998, 36: 247-256
    75. Alvarez R., and C.R. Alvarez. Soil Organic Matter Pools and Their Associations with Carbon Mineralization Kinetics . Soil Science Society of America Journal. 2000. 64(1). 184-189
    76. Anderson J P E, Domsch K H. A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biol. Biochem., 1978,10: 215-221
    77. Andersson S, Nilsson S I, Saetre P. Leaching of dissolved organic carbon and dissolved organic nitrogen in mor humus as affected by temperature and pH. Soil Biol. Biochem., 2000, 32: 1-10
    78. Andrews J A;Harrison K G;Matamala R;Schlesinger W H , Separation of root respiration from total soil respiration using carbon-13 labeling during Free-Air Carbon dioxide Enrichment (FACE). Soil-Science-Society-of-America-Journal. 1999, 63: 5, 1429-1435
    79. Angelika T, N Buchmann, E-D Schulze. Carbon stocks and soil respiration rates during deforestation,grassland use and subsequent Norway Spruce afforestation in the sorthern Alps, Italy. Tree Physiology, 2000,20:849-857
    80. Angers D A and Mehuys G R. Barley and alfalfa cropping effects on carbohydrate contents of a clay soil and its size fractions. Soil Biol. Biochem. 1990,22: 285-288
    81. Angers D A, Recous S and Aita C. Fate of C and nitrogen in water-stable aggregates during decomposition of ~(13)C~(15)N-labbelled wheat straw in situ. Eur. J. Soil Sci. 1997,48,295-300
    82. Arunachalam, A., Arunachalam, Kusum., Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of North-east India. Plant Soil 2000.223,185-193
    83. Atkin O. K... E. J. Edwards and B. R. Loveys. Response of root respiration to changes in temperature and its relevance to global warming. New Phytologist. 2000,147: 141-154
    84. Ayanaba A, Tuckwell S B, Jeninson D S. The effects of clearing and cropping on the organic reserves and biomass of tropical forest soils. Soil Biol. Biochem., 1976, 8: 519-525
    85. Baath E., Soderstrom B., Seasonal and spatial variation in fungal biomass in a forest soil. Soil Biol. Biochem. 1982. 14:53-58
    86. Bajracharya, R.M., Lal, R., Kimble, J.M., Erosion phase effects on CO_2 concentration and CO_2 flux from an Alfisol. Soil Sci. Soc. Am. J. 2000,64, 694-700
    87. Balesdent J, Chenu C and Balabane M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000, 53,215-230
    88. Balesdent J. The significance of organic separates to carbon dynamics and its modeling in some cultivated soils. Eur. J. Soil Sci. 1996,47,485-493
    89. Ball A S, Milne E, Drake B G Elevated atmospheric-carbon dioxide concentration increases soil respiration in a mid-successional lowland forest. Soil Biol. Biochem., 2000, 32: 721-723
    90. Barrios E, Buresh R J and Sprent J I. Nitrogen mineralization in density fractions of soil organic matter from maize and legume cropping systems. Soil Biol. Biochem. 1996,28,185-193
    91. Barrios E, Kwesiga F, Buresh R J and Sprent J I. Light fraction soil organic matter and available nitrogen following trees and maize. Soil Sci. Soc. Am. J. 1997,61, 826-831
    92. Bartoli F., Burtin G, Guerif J., Influence of organic matter on aggregation in Oxisols rich in gibbsite or in goethite II: clay dispersion, aggregate strength and water-stability. Geoderma. 1992, 54:259-274
    93. Bashkin M. A. and Binkley A. Changes in soil carbon following afforestation in Hawaii. Ecologu 1998,79(3): 828-833
    94. Bauchmann N. Biotic and abiotic factors controlling soil respiration rates in Picea abies atands. Soil Biology Biochemistry. 2000, 32:1625-1635
    95. Bauhus J, Pare D, Cote L. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol. Biochem., 1998, 30: 1077-1089
    96. Beare M H, Cabrera M L, Hendrix P F and Coleman D C. Aggregate-protected and unprotected organic matter pools in conventional- and no-tillage soils. Soil Sci. Soc. Am. J. 1994, 58, 787-795
    97. Beck T., R. G Joergensen, E. Kandeler et al., An inter-laboratory comparison of ten different ways of measuring soil microbial biomass carbon. Soil Biol. Biochem. 1997, 29:1023-1032
    98. Bekku Y., H. Koizumi, T.Nakadai and H. Waki. Examination of four methods for measuring soil respiration. Applied Soil Ecology. 1997,5:247-254
    99. Besnard E., C.Chenu, J.Balesdent, P.Poget, D.Arrouays. Fate of particulate organic matter in soil aggregates during cultivation. European Journal of soil science. 1996,47:495-503
    100. Bethlenfalvay GJ. et al. Relationship between soil aggregation and mycorrhizae as influenced by soil biota and nutrition. Biol. Fertil. Soil. 1999,28:356-363
    101. Biederbeck V O, Janzen H H, Campbell C A and Zentner R P. Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biol. Biochem. 1994,26:1647-1656
    102. Boone R D, Sollins P and Cromack K., Stand and soil change along a mountain hemlock death and regrowth sequence. Ecology, 1988, 69: 714-722
    103. Boone R D. Light fraction soil organic matter: origin and contribution to net nitrogen mineralization. Soil Biol. Biochem. 1994,26,1459-1468
    104. Bowden R D, Nadelhoffer K J, Boone R D, et al. Contributions of above ground litter, below ground litter, and root respiration to total soil respriation in a temperate mixed hardwood forest. Can. J. For. Res., 1993b, 23(7): 1402-1407
    105. Bowden RD, Castro MS, Melillo JM, Steudler PA & Aber JD Fluxes of greenhouse gases between soils and the atmosphere in a temperate forest following a simulated hurricane blowdown. Biogeochemistry. 1993a, 21: 61-71
    106. Boyer J N, Groffman P M. Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles. Soil Biol. Biochem., 1996, 28: 783-790
    107. Bremer E, Janzen H H and Johnston A M. Sensitivity of total, light and mineralizable organic matter to management practices in a Lethbridge soil. Can. J. Soil Sci. 1994, 74, 131-138
    108. Bronick C.J. and R. Lal. Soil structure and management: a review. Geoderma. 2005,124:3-22
    109. Brookes P C, Landman A, Pruden G et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem., 1985, 17:837-842
    110. Brown S and Lugo A E. Effects of forest dearing and succession on the carbon and nitrogen content of soils in Puerto Rico and US Virgin Islands. Plant and Soil. 1990, 124:53-64
    111. Burton A J, Pregitzer K S, Rues R W et al. Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes. Oecologia, 2002.131: 559-568
    112. Cambardella C A and Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils.Soil Sci. Soc. Am. J. 1993, 57: 1071-1076
    113. Cambardella C A and Elliott E T. Particulate soil organic matter across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992, 56: 777-783
    114. Caravaca F., A. Lax, J. Albaladejo. Aggregate stability and carbon characteristics of particle-size fractions in cultivated and forested soils of semiarid Spain. Soil and Tillage Research. 2004,78:83-90
    115. Carlyle J C and Than U BA. Abiotic controls of soil respiration beneath an eighteen-year-old pinus radiata stand in south-eastern Australia. Journal of Ecology, 1988, 76: 654-662
    116. Carter M R, Gregorich E G, Angers D A, Beare M H, Sparling G P, Wardle D A, Veroney R P. Interpretation of microbial biomass measurements for soil quality assessment in humid temperate regions. Can. J. Soil Sci., 1999, 79: 507-520
    117. Catroux G and Schnitzer M. Chemical, spectroscopic and biological characteristics of the organic matter in particle size fractions separated from an Aquoll. Soil Sci. Soc. Am. J. 1987, 51: 1200-1207
    118. Chantigny M. H. Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma. 2003,113: 357-380
    119. Cheng W., Q. Zhang, D. C. Coleman, C. R.Carroll and C. A. Hofrnan. Is available carbon limiting microbial respiration in the rhizosphere? Soil Biology and Biochemistry. 1996,28: 1283-1288
    120. Chotte J L, Ladd J N and Amato M. Sites of microbial assimilation and turnover of soluble and particulate ~(14)C-labelled substrates decomposing in a clay soil. Soil Biol. Biochem. 1998, 30: 205-218
    121. Christopher W. Swanston, Bruce A. Caldwell, Peter S. Homann, Lisa Ganio and Phillip Sollins. Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soils. Soil biology and biochemistry. 2002,34(8)1121-1130
    122. Contin M, Corcimaru S, De Nobili M, Brookes P C. Temperature changes and the ATP concentrations of the soil microbial biomass. Soil Biol. Biochem., 2000, 32: 1219-1225
    123. Cortina J, Romanya J, Vallejo V R. Nitrogen and phosphorus leaching from the forest floor of a mature Pinus radiata stand. Geoderma, 1995,66: 321-330
    124. Cramer WP & Solomon AM. Climatic classification and future global redistribution of agricultural land. Clim. Res. 1993,3: 97-110
    125. Cronan C S, Aiken G R. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York. Geochim. Cosmochim. Acta, 1985,49: 1697-1705
    126. Currie W S, Aber J D, McDowell W H, et al. Vertical transport of dissolved organic C and N under long-term amendments in pine and hardwood forests. Biogeochemistry, 1996, 35:471-505
    127. Cynthia Rosenzweig, Daniel Hillel, Soils and global climate change: challenges and opportunities. Soil Science, 2000,165(1): 47-56
    128. Dalai R C and Mayer R J. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. III distribution and kinetics of soil organic carbon in particle-size fractions. Aust. J. Soil Res. 1986a, 24,293-300
    129. Dalai R C and Mayer R J. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. IV Loss of organic carbon from different density functions. Aust. J. Soil Res. 1986b, 24: 301-309
    130. Dalva M, Moore T R. Sources and sinks of dissolved organic carbon in a forested swamp catchment. Biogeochemistry, 1991,15: 1-19
    131.Danuse M., Mikou.F.Kirschbaum, Ross E. Mcmurtrie et al;Dose conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology, 2002,8:105-123
    132. Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 1998,4: 217-227
    133. Davidson-EA;Verchot-LV;Cattanio-JH et al., Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 2000,48: 53-69
    134. Delgado J.A. and R.F. Follett. Carbon and nutrient cycles. Journal of Soil and Water Conservation. 2002.57(6):455-463
    135. Delprat L., Chassin P., Lineres M., Jambert C, Characterization of dissolved organic carbon in cleared forest soils converted to maize cultivation. Eur. J. Agron. 1997. 7: 201-210
    136. Denef K, Six J, Bossuyt H, Frey S D, Elliott E T, Merckx R and Paustian K Influence of wet-dry cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 2001, 33, 1599-1611
    137. Devi N. Bijayalaxmi, P.S. Yadava;Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Applied Soil Ecology 2005 (in press) doi:10.1016/j.apsoil.2005.05.005
    138. Diaz-Ravina, M., Acea, M.J. and Carballas, T., Seasonal changes in microbial biomass and nutrient flush in forest soils. Biol. Fertil. Soils, 1995, 19: 220-226
    139. Dilly O, Blume H P, Sehy U, Jimenez M, Munch J C. Variation of stabilized, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices. Chemosphere, 2003, 52: 557-569
    140. Dinesh R, Chaudhuri S G, Sheeja T E. Soil biochemical and microbial indices in wet tropical forests: Effects of deforestation and cultivation. J. Plant Nutr. Soil Sci., 2004, 167: 24-32
    141. Ding G., J.M. Novak, D. Amarasiriwardena, P.G. Hunt and B. Xing. Soil organic matter characteristic as affected by tillage management. Soil Science Society of America. 2002, 66:421-429
    142. Dixon R. K., S. Brown, R. A. Houghton, A. M. Solomon, M. C. Trexler, J. Wisniewski. Carbon pools and flux of global forest ecosystems. Science. 1994, 263:185-190
    143. Domisch T, Finer L, Lehto T, Smolander A. Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings. Plant and Soil, 2002, 239: 173-185
    144. Easthouse K B, Mulder J, Christophersen N, et al. Dissolved organic carbon fractions in soil and stream water during variable hydrological conditions at Birkenes, Southern Norway. Water Resour. Res., 1992,28: 1585-1596
    145. Edwards M, Benjamin M M, Ryan J N. Role of organic acidity in sorption of natural organic matter (NOM) to oxide surfaces. Colloids Surf., 1996, 107: 297-307
    146. Edwards N.T., Ross-Todd B.M., Soil carbon dynamics in a mixed deciduous forest following clear-cutting with and without residual removal. Soil Sci. Soc. Am. J., 1983,47:1014-1021
    147. Ekblad A, Nordgren A. Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability? Plant and Soil, 2002, 242: 115-122
    148. Ellert, B.H., Gregorich, E.G., Management-induced changes in the actively cycling fractions of soil organic matter. In: McFee, W.W., Kelly, J.M. (Eds.), Carbon Forms and Functions in Forest Soils. Soil Science Society of America, Madison, WI, 1995. pp. 119-138
    149. Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 1986, 50: 627-633
    150. Entry J A, Stark N M, Loewenstein H. Effect of timber harvesting on microbial biomass fluxes in a northern Rocky Mountain forest soil. Can. J. For. Res., 1986, 16: 1076-1081
    151. Evans J A. Effects of dissolved organic carbon and sulfate on aluminum mobilization in forest soil columns. Soil Sci. Soc. Am. J., 1986, 50: 1576-1578
    152. Fang C. and J. B. Moncrief. The dependence of soil CO_2 efflux on temperature. Soil Biology and Biochemistry. 2001, 33:155-165
    153. Fang. C. and J. B. Monerief. An open-top chamber for measuring soil respiration and the influence of pressure difference on CO_2 efflux measurement. Functional Ecology. 1998,12: 319-325
    154. Flessa H, Ludwig B, Heil B, et al. The origin of soil organic C, dissolved organic C and respiration in a long-term experiment in Halle, Germany, determined by ~(13)C natural abundance. Journal of Plant Nutr. Soil Sci., 2000,163: 157-163
    155. Follett R F. CRP and microbial biomass dynamics in temperate climates. In: Lal R. eds. Management of soil carbon sequestration in soil. Advances in Soil Science, CRC Press, Boca Raton, FL. 1997. 305-322
    156. Ford G W. and D. J. Greenland and J. M. Oades. Separation of the light fration from soils by ultrasonic dispersion I. halogenated hydrocarbons containing a surfactant. J soil Sci., 1968, 20:291-296
    157. Foutuna A., R. R. H arwood, and E. A. Paul. The effects of compost and crop rotations on carbon turnover and the particulate organic matter fraction. Soil Science,2003,168(6):434-444
    158. Franzluebbers A J and Arshad M A. Water-stable aggregation and organic matter in four soils under conventional and zero tillage. Can. J. Soil Sci. 1996, 76: 387-393
    159. Franzluebbers A.J., R.L. Haney, C.W. Honeycutt, H.H. Schomberg, and F.M. Hons. Flush of Carbon Dioxide Following Rewetting of Dried Soil Relates to Active Organic Pools . Soil Science Society of America Journal. 2000.64(2): 613-623
    160. Franzluebbers A.J., R.L. Haney, C.W. Honeycutt, M.A. Arshad, H.H. Schomberg and F.M. Hons. Climatic influences on active fractions of soil organic matter . Soil biology and biochemistry. 2001.33(7-8): 1103-1111
    161. Franzluebbers A.J.;Arshad M.A. Particulate organic carbon content and potential mineralization as affected by tillage and texture . Soil Science Society of America Journal. 1997.61(5):1382-1386
    162. Freibauer A, Mark D.A. Rounsevell, Pete Smith, Jan Verhagen. Carbon sequestration in the agricultural soils of Europe. Geoderma. 2004,122:1-23
    163. Freijer J I and W. Bouten. A comparison of field methods for measuring soil carbon dioxide evolution: experiments and simulation. Plant and Soil. 1991,135: 133-142
    164. Fritze H, Smolander A, Levula T, Kitunen V, Malkonen E. Wood-ash fertilization and fire treatments in a Scots pine forest stand: effects on the organic layer, microbial biomass, and microbial activity. Biology and Fertility of Soils, 1994,17: 57-63
    165. Gale W. J., C. A. Cambardella, and T. B. Bailey. Root-derived carbon and the formation and stabilization of aggregates. Soil Sci. Soc. Am. J.2000,64:201-207
    166. Garcia F O, Rice C W. Microbial biomass dynamics in tallgrass prairie. Soil Sci. Soc. Am. J., 1994, 58: 816-824
    167. Gardenas A I. Soil respiration fluxes measured along a hydrological gradient in a Norway spruce stand in south Sweden (Skogaby). Plant and Soil, 2000,221: 273-280
    168. Gestel, M.V., Merckx, R. and Vlassak, K., Microbial biomass and activity in soils with fluctuating water contents. Geoderma, 1993, 56: 617-626
    169. Gleixner G, Poirier N., Bol R., Balesdent J. Molecular dynamics of organic matter in a cultivated soil. Org. Geochem. 2002, 33:357-366
    170. Golchin A, Clarke P, Oades J M and Skjemstad J O. The effects of cultivation on the composition of organic matter and structural stability of soils. Aust. J. Soil Res. 1995, 33:975-993
    171. Golchin A, Oades J M, Skjemstad J O and Clarke P. Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy. Aust. J. Soil. Res. 1994, 32: 285-309
    172. Greenland D J, Ford G W, 1964. separation of partially humified organic materials by ultrasonic dispersion. Eighth International Congress of Soil Science. Transaction 3,137-148
    173. Gregorich E G, Kachanoski R G and Voroney R P. Carbon mineralization in soil size fractions after various amounts of aggregate disruption. J. Soil Sci. 1989,40: 649-659
    174. Gregorich E G, Voroney R P, Kachanoski R G Turnover of carbon through the microbial biomass in soils with different textures. Soil Biol. Biochem., 1991,23: 799-805
    175. Gregorich E. G, M. H. Beare, U. Stoklas. Et al., Biodegradability of soluble organic matter in maize-cropped soils. Geoderma. 2003, 113:237-252
    176. Guggenberger G, Kaiser K, Zech W. Mobilization and immobilization of dissolved organic matter in forest soils. Z. Pflanzenernahr. Bodenk., 1998,161: 401-408
    177. Gulledge J, Schimel J P. Controls on soil carbon dioxide and methane fluxes in a variety of Taiga Forest stands in Interior Alaska. Ecosystems, 2000, 3: 269-281
    178. Guo L.B., R.M.Gifford;Soil carbon Stocks and land use change: a meta analysis. Global Change Biology, 2002,8:345-360
    179. Hanson P J, Edwards N T, Garten C T, Andrews J A. Separating root and microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 2000, 48: 115-146
    180. Hart S C, Stark J M. Nitrogen limitation of the microbial biomass in an old-growth forest soil. Ecoscience, 1997,4:91-98
    181. Hassink J and Whitmore A P. A model of the physical protection of organic matter in soils. Soil Sci. Soc. Am. J. 1997,61,131-139
    182. Hassink J. Decomposition rate constants of size and density fractions of soil organic matter. Soil Sci Soc Am J. 1995.59 : 1631-1635
    183. Hassink J. Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization. Soil Biol. Biochem. 1995, 27: 1099-1108
    184. Hassink J. Effects of soil texture on the size of soil microbial biomass and on the amount of C and N mineralization per unit of microbial biomass in Dutch grassland soil. Soil Biol. Biochem., 1994, 26: 1377-1581
    185. Hassink J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77-87
    186. Haynes. R.J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil biology and biochemistry. 2001.32(2). 211-219
    187. Haynes. R.J. Labile organic matter fractions and aggregate stability under short-term, grass-based leys. Soil biology and biochemistry. 1999.31(13). 1821-1830
    188. Healy. R. W. . R. G. Striegl, T. F. Ruasel. G. L. Hutehinson & G. P. Livingston. Numerical evaluation of static-chamber measurements of soil-atmosphere gas exchange: identification of physical processes. Soil Science Society of America Journal. 1996,60: 740-747
    189. Henrot, J. and Robertson, GP., Vegetation removal in two soils of the humid tropics: Effect on microbial biomass. Soil Biol. Biochem., 1994,26:111 -116
    190. Hinton HJ, Schiff SL& EnglishMC. Sources and flowpaths of dissolved organic carbon during storms in two forested watersheds of the Precambrian Shield. Biogeochemistry. 1998,41: 175-197
    191. Holmes, W.E., Zak, D.R., Soil microbial biomass dynamics and net nitrogen mineralization in
     Northern hardwood ecosystems. Soil Sci. Soc. Am. J. 1994. 58: 238-243
    192. Hope, D., Billett, M.F., Cresser, M.S., A review of the export of carbon in river water: fluxes and processes. Environ. Pollut. 1994. 84: 301-324
    193. Huang W Z, Schoenau J J. Fluxes of water-soluble nitrogen and phosphorous in the forest floor and surface mineral soil of a boreal aspen stand. Geoderma, 1998, 81: 251-264
    194. Hudgens E, Yavitt J B. Land-use effects on soil methane and carbon dioxide fluxes in forests near Ithaca, New York. Ecoscience., 1997,4: 214-222
    195. Hughes S., Reynolds B., Roberts J.D. The influence of land management on concentrations of dissolved organic carbon and its effects on the mobilization of aluminium and iron in podzol soils in Mid-Wales. Soil Use Manage. 1990. 6,137-145
    196. Inskeep W P. Adsorption of sulfate by kaolinite and amorphous iron oxide in the presence of organic ligands. J. Environ. Qual., 1989,18: 379-385
    197. Inubushi K, Brookes P C, Jenkinson D S. Soil microbial biomass C, N and ninhydrin-N in aerobic and anaerobic soils measured by the fumigation-extraction method. Soil Biol. Biochem., 1991, 23: 737-741
    198. IPCC, 2000, Special report on land use, land-use change and forestry.
    199. IPCC. 1990. Climate change: The IPCC scientific assessment.
    200. IPCC. 1996. Climate change impacts on forest.
    201. IPCC. 1997. Revised 1996 IPCC guidelines for national greenhouse gas inventories.
    202. Jandl R, Sollins P. Water-extractable soil carbon in relation to the belowground carbon cycle. Biol. Fertil. Soils., 1997, 25: 196-201
    203. Janzen H H. Soil organic matter characteristics after long-term cropping to various spring wheat rotations. Can. J. Soil Sci. 1987,67: 845-856
    204. Janzen,H.H., CA.Campbell, S.A.Brandt, GP.Lafond, and L.Townley-Smith. light-fration organic matter in soils from long-term crop rotations. Soil Sci. Soc. Am.J. 1992 .56:1799-1806
    205. Jardine P. M., Weber N. L., McCarthy J. F. Mechanisms of dissolved organic carbon adsorption on soil. Soil Sci. Soc. Am. J., 1989, 53: 1378-1385
    206. Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 1996,28: 656-676
    207. Jastrow JD, Boutton TW, Miller RM. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Sci Soc Am J . 1996. 60 :801-807
    208. Jenkinson D S, Ladd J N. Microbial biomass in soil: Measurement and turnover. In: Paul E A, Ladd J N eds. Soil Biochemistry. Marcel Dekker, Inc., New York. 1981.415-471
    209. Jenkinson D S, Powlson D S. The effects of biocidal treatments on metabolism in soil-V. A method for measuring soil biomass. Soil Biol. Biochem., 1976, 8: 209-213
    210. Jensen, L. S. , T. Mueler, K. R. Tate, D. J. Ross, J. Magid&N. E. Nielsen. Soil surface CO_2 fluxes an index of soil respiration in situ: a comparison of two chamber methods. Soil Biology and Biochemistry. 1996,28: 1297-1306
    211. Jocteur Monrozier L, Ladd J N, Fitzpatrick R W, Foster R C and Raupach M. Components and microbial biomass content of size fractions in soils of contrasting aggregation. Geoderma. 1991, 49:37-62
    212. Joergensen R G, Brookes P C, Jenkinson D S. Survival of the microbial biomass at elevated temperatures. Soil Biol. Biochem., 1990,22: 1129-1136
    213. Johnson C E, Driscoll C T, Fahey T J, et al. Carbon dynamics following clear-cutting of a northern
     hardwood forest. In: McFee W W, Kelly J M eds. Carbon Forms and Functions in Forest Soils. Soil Science Society of America, Madison, WI. 1995. 463-488
    214. Jonasson S, Michelsen A, Schmidt I K, Nielsen E V, Callaghan T V. Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake. Oecologia, 1996, 106: 507-515
    215. Kaiser E A, Mueller T, Joergensen R G, Insam H, Heinemeyer O. Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biol. Biochem., 1992, 18: 95-108
    216. Kaiser K, G. Guggenberger, L. Haumaier and W. Zech. Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany. Biogeochemistry, 2001, 55: 103-143
    217. Kaiser K, Guggenberger G, Haumaier L, et al. Dissolved organic matter sorption on subsoils and minerals studied by C-13-NMR and DRIFT spectroscopy. Eur. J. Soil. Sci., 1997,48: 301-310
    218. Kaiser K, Guggenberger G, Haumaier L, et al. The composition of dissolved organic matter in forest soil solutions: changes induced by seasons and passage through the mineral soil. Org. Geochem., 2002, 33: 307-318
    219. Kaiser K, Guggenberger G, Zech W. Sorption of DOM and DOM fractions to forest soils. Geoderma, 1996, 74: 281-303
    220. Kaiser K, Zech W. Rate of dissolved organic matter release and sorption in forest soils. Soil Sci., 1998, 163(9): 714-725
    221. Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci., 2000, 165(4): 277-304
    222. Kalbitz K, Wennrich R. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Sci. Total Environ., 1998, 209(1): 27-39
    223. Kandeler E, Tscherko D, Bardgett R D, Hobbs P J, Kampichler C, Jones T H. The response of soil micro-organisms and roots to elevated CO_2 and temperature in a terrestrial model ecosystem. Plant and Soil, 1998,202:251-262
    224. Kawahigashi M., Hiroaki Sumida, Kazuhiko Yamamoto;Seasonal changes in organic compounds in soil solutions obtained from volcanic ash soils under different land uses. Geoderma, 2003, 113: 381-396
    225. Kaye J P, Hart S C. Competition for nitrogen between plants and soil micro-organisms. TREE, 1997, 12: 139-143
    226. Keith H., K. L. Jacobsen and R. J. Raison. Effects of soil phosphones availability, temperature and moisture on soil respiration and in Eucalyptus pauciflora forest. Plant and Soil. 1997, 190: 127-141
    227. Kelting D L;Burger J A;Edwards G S. Estimating root respiration microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil-Biology-and-Biochemistry. 1998, 30: 7, 961-968
    228. Kennedy AC, Papendick R I. Microbial characteristics of soil quality. J. Soil Water Conserv., 1995, 50(5/6): 243-248
    229. Kieft T L, Sorocer E, Firestone M K. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol. Biochem., 1987, 19: 119-126
    230. Kiem R., Kandeler E., Stabilization of aggregates by the microbial biomass as affected by soil texture and type. Appl. Soil Ecol. 1997, 5:221-230
    231. King J. A. and R.Harrison. Measuring soil respiration in the field: an automated closed chamber system compared with portable IRGA and alkali absorption methods. Communications in Soil Science and Plant Analysis. 2002, 33: 403-423
    232. Kirschbaum M. U. F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry. 1995, 27: 753-760
    233. Kirschbaum M. U. F. Will change in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry. 2000,48: 21-51
    234. Klik A., Investigation of effects of soil conservation measures on carbon sequestration and CO_2-emissions. http://ihlww.boku.ac.at
    235. Koizumi H.,T. Nakadai, Y. Usami, et al., Effects of carbon dioxide concentration on microbial respiration in soil. Ecological Research. 1991,6: 227-232
    236. Kouno K, Lukito H P, Ando T, et al. Microbial biomass P dynamics in soil. Trans. 15th World Congr. Soil Sci. Acapulco, Mexico. 1994. 85-86
    237. Kristensen H. L., K. Debosz, and G W. McCarty. Short-term effects of tillage on mineralization of nitrogen and carbon in soil. Soil Biol. Biochem. 2003, 35:979-986
    238. Kuikman P J, Lekkerkerk L J A, Van Veen J A. Carbon dynamics of a soil planted with wheat under an elevated atmospheric CO_2 concentration. In: Wilson W S eds. Advances in soil organic matter research: The impact on agriculture and the Environment. The Royal Society of Chemistry, Special Publication 90, Cambridge. 1991. 267-274
    239. Kutesch W L, Kappen L. Aspects of carbon and nitrogen cycling in soils of Bornhoved Lake district. II. Modelling the influnce of temperature increase on soil respiration and organic carbon content in arable soils under different managements. Biogeochemistry, 1997, 39: 207-224
    240. Kutsch W L, Staack A, Wotzel J, et al. Field measurements of root respiration and total soil respiration in an alder forest. New Phytol., 2001,150(1): 157-168
    241. Lal R. Soil erosion and the global carbon budget. Environment international 2003,29:437-450
    242. Lal R., Michael Griffin, Jay Apt, Lester Lave M. Granger Morgan. 2004. Managing Soil Carbon. Science, 304:393
    243. Lal. R. Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Progress in Environmental Science. 1999,1(4):307-326
    244. Landgraf D, Klose S. Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. J. Plant Nutr. Soil Sci., 2002,165: 9-16
    245. Lehman R M, Mills A L. Field evidence for copper mobilization by dissolved organic matter. Water Res., 1994,28(12): 2487-2497
    246. Lepisto A, Andersson L, Arheimer B, et al. Influence of catchment characteristics, forestry activities and deposition on nitrogen export from small forested catchments. Water Air Soil Pollut, 1995, 84: 81-102
    247. Liechty H O, Kuuseoks E, Mroz G D. Dissolved organic carbon in northern hardwood stands with differing acidic inputs and temperature regimes. J. Environ. Qual., 1995, 24: 927-933
    248. Luizao, R.C.C., Bonde, T.A. and Rosswall, T., Seasonal variation of soil microbial biomass and the effect of clear felling in a tropical rain forest and establishment of pasture in the Central Amazon. Soil Biol. Biochem., 1992,24: 805-813
    249. Lundquist E J, Jackson L E, Scow K M. Wet-dry cycles affect dissolved organic carbon in two
     California agricultural soils. Soil Biol. Biochem., 1999, 31: 1031-1038
    250. Luo Y., S. Wan, D. Hui and L. L. Wallace. Acclimatization of soil respiration to warming in a tall grass praine. Nature. 2001,413: 622-625
    251. Magid J, Gorissen A and Giller K E. In search of the elusive 'active' fraction of soil organic matter: three size-density fractionation methods for tracing the fate of homogeneously ~(14)C labeled plant materials. Soil Biol. Biochem. 1996,28, 89-99
    252. Magill A H, Aber J D. Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition. Soil Biol. Biochem., 2000, 32:603-613
    253. Maier C A, Kress L W. Soil CO_2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can. J. For. Res. 2000, 30: 347-359
    254. Maithani Kusum, R.S. Tripathi, A. Arunachalam, H.N. Pandey;Seasonal dynamics of microbial biomass C, N and P during regrowth of a disturbed subtropical humid forest in north-east India. Applied Soil Ecology 1996 (4):31-37
    255. Marschner, P., Marino, W., Lieberei, R., Seasonal effects on microorganisms in the rhizosphere of two tropical plants in a polyculture agroforestry system in Central Amazonia, Brazil. Biol. Fertil. Soil. 2002, 35: 68-71
    256. Martin H. Chantigny. Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma, 2003,113: 357-380
    257. McDowell W H, Currie W S, Aber J D, et al. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water Air Soil Pollut., 1998, 105: 175-182
    258. McDowell W H, Likens G E. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol. Monogr., 1988, 58: 177-195
    259. McGill W B, Cannon K R, Robertson J A, Cook F D. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci., 1986,66:1-19
    260. McLauchlan K. K. and Sarah E. Hobbie. Comparison of labile soil organic matter fractionation techniques. Soil Sci. Soc. Am. J, 2004, 68:1616-1625
    261. Meijboom FW, Hassink J and Van Noordwijk M. Density fractionation of soil macroorganic matter using silica suspensions. Soil Biol. Biochem. 1995, 27, 1109-1111
    262. Merckx R, Hartog D A, van Veen J A. Turnover of root-derived material and related microbial biomass formation in soils of different texture. Soil Biol. Biochem., 1985, 17: 565-569
    263. Meyer J L, Tate C M. The effects of watershed disturbance on dissolved organic carbon dynamics of a stream. Ecology, 1983,64(1): 33-44
    264. Michalzik B and Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem. Eur. J. Soil Sci., 1999, 50: 579-590
    265. Michalzik B, Kalbitz K, Park J H, et al. Fluxes and concentrations of dissolved organic carbon and nitrogen - a synthesis for temperate forests. Biogeochemistry, 2001, 52(2): 173-205
    266. Moller J, Miller M, Kjoller A. Fungal-bacterial interaction on beech leaves: Influence on decomposition and dissolved organic carbon quality. Soil Biol. Biochem., 1999, 31: 367-374
    267. Molloy L F and Speir TW. 1977. Studies on a climosequence of soils in tussock grassland. 12. Constituents of the soil light fraction. New Zealand J. Soil Sci. 20,167-177
    268. Moore T R, Dalva M. Some controls on the production of dissolved organic carbon in soils. Soil
     Sci., 2001,166: 38-47
    269. Moore T R, Jackson R J. Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealand, 2. Larry River. Water Resour. Res., 1989, 25: 1331-1339
    270. Mulholland P J and Hill W R. Seasonal patterns in streamwater nutrient and dissolved organic carbon concentrations: Separating catchment flow and in-stream effects. Water Resour. Res. 1997, 33: 1297-1306
    271. Myeong H. Y., J.J.Seung and N. Kauneyuki. Comparison of field methods for measuring soil respiration: a static alkali absorption method and two dynamic closed chamber methods. Forest Ecology an d Management. 2002,170:189-197
    272. Nakadai T., H. Koizumi, Y. Usami, M. Satoh and T. Oikawa. Examination of the methods for measuring soil respiration in cultivated land: effect of carbon dioxide concentration on soil respiration. Ecological Research. 1993,8:65-71
    273. Nay S. M., K. G. Mattson and B. T. Bormann. Biases of chamber methods for measuring soil CO_2 efflux demonstrated with a laboratory apparatus. Ecology. 1994, 75:2460-2463.
    274. Neergaadhe B. and L. Petersen. Influence of arbuscular mycorrhizal fungion soil structure and aggregate stability of vertison. Plant and Soil. 2000,218,173-183
    275. Nelson P N, Dictor M C, Soulas G Availability of organic carbon in soluble and particle-size fractions from a soil profile. Soil Biol. Biochem., 1994,26: 1549-1555
    276. Norman J M, Kucharik C J, Gower S T. A comparison of six methods for measuring soil-surface carbon dioxide fluxes. J. Geophys. Res. 1997,102: 28771-28777
    277. Oades J M, Vassallo A M, Waters A G and Wilson M A. Characterization of organic matter in particle size and density fractions from Red-Brown Earth by solid-state ~(13)C NMR Aust. J. Soil Res. 1987,25:71-82
    278. Oades JM and Waters A G. Aggregate hierarchy in soils. Aust. J. Soil Res. 1991,29, 815-828
    279. Ocio J A, Brookes P C, Jenkinson D S. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N. Soil Biol. Biochem., 1991,23: 171-176
    280. Oechel W. C, G. L. Vourlitis, S. J. Hanstings, R. C. Zulueta, L. Hinzman and D. Kane. Acclimation of ecosystem CO_2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature. 2000,406: 978-981
    281. Overpeck J T, Bartlein P J &Webb T III. Potential magnitude of future vegetation change in eastern North America: Comparisons with the past. Science. 1991, 254: 692-695
    282. Parton W J, Schimel D S, Cole C V and Ojima D S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 1987, 51,1173-1179
    283. Patra, D.D., Brookes, P.C., Coleman, J. and Jenkinson, D.S., Seasonal changes of soil microbial biomass in an arable land and a grassland soil which have been under uniform management for many years. Soil Biol. Biochem., 1990. 22: 739-742
    284. Paul E. A., S. J. Morris, J. Six, K. Paustian and E. G Gregorich. Interpretation of soil carbon and nitrogen dynamics in aggricultureal and afforested soils. Soil Sci. Soc. Am. J. 2003, 67:1620-1628
    285. Paustian K, Six J, Elliott E T and Hunt H W. Management options for reducing CO_2 emissions from agricultural soils. Biogeochemistry. 2000,48: 147-163
    286. Pinheiro E.F.M., M.G. Pereira, L.H.C. Anjos. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in Red Latosol from Brazil. Soil and Tillage Research. 2004: 77:79-84
    287. Pojasok T. and B. D. Kay, Assessment of combination of wet sieving and turbidimetry to
     characterize the structural stability of moist aggregates. Can. J. Soil Sci. 1990, 70:33-42
    288. Polglase P. J., Paul K. I,. Khanna P. K., Change in soil carbon Following afforestation or reforestation: review of experimental evidence and development of a conceptual framework. National carbon accounting system technical report No. 20. Commonwealth of Australia, Canberra. Printed in Australia for the Australian greenhouse office. 1999. 1-119
    289. Post W M, Emanuel Z P J, Bergen S. Soil carbon pools and world life zones. Nature, 1982, 298: 156-159
    290. Post W M, III. Organic carbon in soil and the global carbon cycle. In: Heimann M eds. The Global Carbon Cycle. Springer-Verlag Berlin/Heidelberg. 1993. 277-302
    291. Post W M, K C Kwon. Soil carbon sequestration and land use change: processes and potential. Global Change Biology. 2000, 6:317-327
    292. Puget P, Chenu C and Balesdent J. Total and young organic matter distributions in aggregates of silty cultivated soils. Eur. J. Soil Sci. 1995,46: 449-459
    293. Puget P, Chenu C. Balesdent J.. Dynamics of soil organic matter associated with particle-size fractions of waterstable aggregates. European Journal of Soil Science, 2000. 51: 595-605
    294. Quails R G, Haines B L, Swank W T. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology, 1991, 72: 254-266
    295. Quails R G, Haines B L. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci. Soc. Am. J., 1992, 56: 578-586
    296. Quails RG, Haines BL, SwankWT & Tyler SW. Soluble organic and inorganic nutrient fluxes in clearcut and mature deciduous forests. Soil Sci. Soc. Am. J. 2000, 64: 1068-1077
    297. Raghubanshi A S. Dynamics of soil biomass C, N, and P in a dry tropical forest in India. Biol. Fertil. Soils, 1991, 12: 55-59
    298. Raich J W, Tufekcioglu A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 2000,48: 71-90
    299. Raich J.W. and Potter C.S., Global patterns of carbon dioxiode emissions from soils. Global biogeochemistry cycle. 1995, 9: 23-26
    300. Raich JW & Nadelhoffer KJ. Belowground carbon allocation in forest ecosystems: Global trends. Ecol. 1989,70: 1346-1354
    301. Raich JW & Schlesinger WH. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus. 1992,44B: 81-99
    302. Raich JW. Aboveground productivity and soil respiration in three Hawaiian rain forests. For. Ecol. Managem. 1998, 107: 309-318
    303. Rochette P, Desjardins RL, Gregorich EG, Pattey E & Lessard R. Soil respiration in barley (Hordeum vulgare L.) and fallow fields. Can. J. Soil Sci. 1992,72: 591-603
    304. Rosacker L L, Kieft T L. Biomass and adenylate energy charge of a grassland soil during drying. Soil Biol. Biochem., 1990,22: 1121-1127
    305. Rustad L E, Huntington T G, Boone R D. Controls on soil respiration: Implications for climate change. Biogeochemistry, 2000,48: 1-6
    306. Rustad. L. E. and I. J. Fernandez. Experimental soil warming effects on CO_2 and CH_4 flux from a low elevation spruce-fir forest soil in Main.USA. Global Change Biology. 1998. 4: 597-605
    307. Ryan M G, Lavigne M G, Gower S T. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res., 1997,102(28): 871-883
    308. Salinas-Garcia J R, Hons F M, Matocha J E, et al. Soil carbon and nitrogen dynamics as affected
     by long-term tillage and nitrogen fertilization. Biol. Fertil. Soils, 1997, 25: 182-188
    309. Sarathchandra S.U., Perrott, K.W. and Upsdell, M.P., Microbiological and biochemical characteristics of a range of New Zealand soils under established pastures. Soil Biol. Biochem., 1984.16: 177-183
    310. Saviozzi A., P. BufaLINO, r. Levi-minzi, R. Riffaldi. Biochemical activities in a degraded soil restored by two amendments: a laboratory study. Biol. Fertil. Soils. 2002. 35:96-101
    311. Schlentner R E and Van Cleve K. Relationships between CO_2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can. J. For. Res., 1985,15:97-106
    312. Schlesinger W H., Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 1990, 348: 232-234
    313. Schlesingr W H, Andrews J A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000, 48: 7-20
    314. Schulten H. R. & P. Leinweber. Thermal stability and composition of mineral-bound organic matter in density fractions of soil. European journal of soil science. 1999. 50(2). 237-248
    315. Schutter M. E., Dick R. P., Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Sci. Soc. Am. J. 2002, 66:142-153
    316. Scott M J, Jones M N, Woof C and Tipping E. Concentrations and fluxes of dissolved organic carbon in drainage water from an upland peat system. Environ, Int. 1998,24: 537-546
    317. Sierra J. Nitrogen mineralisation and its error of estimation under field conditions related to the light-fraction soil organic matter. Aust. J. Soil Res. 1996, 34: 755-767
    318. Singh J.S., Raghuvanshi, A.S., Singh, R.S. and Srivastava, S.C., Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 1989, 399:499-500
    319. Six J, Elliott E T and Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 1999, 63: 1350-1358
    320. Six J, Elliott E T and Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000b, 32, 2099-2103
    321. Six J, Paustian K, Elliott E T and Combrink C. Soil structure and soil organic matter: I. Distribution of aggregate size classes and aggregate associated carbon. Soil Sci. Soc. Am. J. 2000a, 64, 681-689
    322. Six J., R. T. Conant, E. A. Paul and K. Paustian, Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil. 2002,241: 155-176
    323. Six J.;Guggenberger G Sources and composition of soil organic matter fractions between and within soil aggregates. European journal of soil science. 2001.52(4): 607-618
    324. Six, J.;Elliott, E.T.;Paustian, K.;Doran, J.W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal. 1998.62(5): 1367-1377
    325. Skjemstad J O, Clarke P, Taylor J A, Oades J M and McClure S G. The chemistry and nature of protected carbon in soil. Aust. J. Soil Res. 1996, 34, 251-271
    326. Smith J L, Paul E A. The role of soil type and vegetation on microbial biomass and activity, In: Mergusar F, Gantar M eds. Perspectives in Microbial Ecology. Slovene Society for Microbial Ecology, Ljubljana, Yugoslavia. 1988. 460-466
    327. Smith P.,Powlson, D. S., Glendining, M. J., Smith J. U., Potential for carbon sequestration in
     European soils: preliminary estimates for five scenarios using results from long-term experiments. Global change biology. 1997,3:67-79
    328. Smith V.R. Moisture, carbon and inorganic nutrient controls of soil respiration at a sub-Antarctic island. Soil biology and biochemistry. 2005, 37: 81-91
    329. Sollins P, Spycher G and Glassman C A. Net nitrogen mineralization from light- and heavy-fraction forest soil organic matter. Soil Biol. Biochem. 1984, 16: 31-37
    330. Solomon D, Lehmann J and Zech W. Land use effects on amino sugar signature of chromic Luvisols in the semi-arid part of northern Tanzania. Biol. Fert. Soils. 2001, 33: 33-40
    331. Solomon D, Lehmann J and Zech W. Land use effects on soil organic matter properties of chromic Luvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates. Agr. Ecosys. Environ. 2000, 78: 203-213
    332. Solomon D., F. Fritzsche, J. Lehmann, M. Tekalign, and W. Zech. Soil Organic Matter Dynamics in the Subhumid Agroecosystems of the Ethiopian Highlands: Evidence From Natural ~(13)C Abundance and Particle-Size Fractionation. Soil Science Society of America Journal. 2002,66(3)969-978
    333. Sparling G P, Feltham C W, Reynolds J, et al. Estimation of soil microbial C by a fumigation-extraction method: use on soils of high organic matter content, and a reassessment of the K_(EC)-factor. Soil Biol. Biochem., 1990, 22: 301-307
    334. Sparling G P, Ross J D. Biochemical methods to estimate soil microbial biomass: current development and applications. In: Mulongoy K, Merkcx R eds. Soil organic matter dynamics and sustainability of tropical agriculture. John Wiley and Sons, Chichester, UK. 1993. 21-37
    335. Spllins P, McCorison F M. Nitrogen and carbon solution chemistry of an old growth coniferous forest watershed before and after cutting. Water Resour. Res., 1981, 17: 1409-1418
    336. Spycher G, Sollins P, Roses S, Carbon and nitrogen in the light fraction of a forest soil: Verticle distribution and seasonal patterns. Soil Science. 1983, 135:79-87
    337. Srivastava S C, Singh J S. Microbial C, N and P in dry tropical forest soils: Effects of alternate land-uses and nutrient flux. Soil Biol. Biochem., 1991, 23: 117-124
    338. Strickland T C and Sollins P, Improved method for separating light and heavy fraction organic material from soil. Soil Sci. Soc. Am. J., 1987. 1390-1393
    339. Strobel B W, Hansen H C B, Borggaard O K, et al. Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type. Biogeochemistry, 2001, 56(1): 1-26
    340. Sun L, Perdue E M, Meyer J L, et al. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnol. Oceanogr., 1997,42: 714-721
    341. Switer G L, Shelton M G. Successional development of the forest floor and soil surface on upland sites of the east gulf coastal plain. Ecology, 1979,60:1162-1171
    342. Tessier L, Gregorich E G, Topp E. Spatial variability of soil microbial biomass measured by the fumigation extraction method, and K_(EC) as affected by depth and manure application. Soil Biol. Biochem., 1998,30:1369-1377
    343. Thibodeau L, Raymond P, Camire C, Munson A D. Impact of precommercial thinning in balsam fir stands on soil nitrogen dynamics, microbial biomass, decomposition, and foliar nutrition. Can. J. For. Res., 2000, 30: 229-238
    344. Tiessen H. and J. W. B. Stewart. Particle-size fractions and their use in studies of soil organic matter:II. Cultivation effects on organic matter composition in size fractions. Soil Sci. Soc. Am. J,1983,47:509-514
    345. Tipping E, Marker A F H, Butterwick C, et al. Organic carbon in the Humber rivers. Sci. Total
     Environ., 1997, 194: 345-355
    346. Tipping E, Woof C, Rigg E, et al. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environ. Int., 1999,25:83-95
    347. Tisdall J. M.,Oades J. M., Organic matter and water-stable aggregates. Journal of Soil Science,1982,33:141-163
    348. Tisdall J.M. Possible role of soil microganisms in aggregation in soil. Soil Science. 1993, 159: 115-121
    349. Tisdall J.M., Smith S.E. and Rengasamy P. Aggregation of soil fungal byphase[J].Aust. J. Soil Sci. 1997,35:55-60
    350. Toland D E and Zak D R. Seasonal patterns of soil respiration in intact and clear-cut northern hardwood forests. Can. J. For. Res. 1994,24: 1711-1716
    351. Tsai-Huei Chen, Chih-Yu Chiu, Guanglong Tian;Seasonal dynamics of soil microbial biomass incoastal s and dune forest. Pedobiologia (in press) doi:10.1016/j.pedobi.2005.06.005
    352. Turchenek L W and Oades J M., Fractionation of Organo-mineral complexes by sedimentation and density techniques. Geoderma, 1979. 21: 311-343
    353. Uselman S M, Quails R G, Thomas R B. Effects of increased atmospheric CO_2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant and Soil, 2000,222: 191-202.
    354. Valentini R., G, Matteuccel, A.J.Dolman et al. Respiration as the main determinant of carbon balance in European forests. Nature,2000,404:861-865
    355. Van Gestel M, Ladd J N, Amato M. Carbon and nitrogen mineralization from two soils of contrasting texture and microaggregate stability: Influence of sequential fumigation, drying and storage. Soil Biol. Biochem., 1991,23: 313-322
    356. Van Veen J A, Ladd J N, Martin J K, Amato M. Turnover of carbon, nitrogen and phosphorus through the microbial biomass in soils incubated with ~(14)C-, ~(15)N- and ~(32)P-labeled bacterial cells. Soil Biol. Biochem., 1987,19: 559-565
    357. Van Veen J A, Merckx R, van de Geijn S C. Plant- and soil related controls of the flow of carbon from roots through the soil microbial biomass. Plant and Soil, 1989,115: 179-188
    358. Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem., 1987, 19(6): 703-707
    359. Vance, E.D., Brookes, P.C. and Jenkinson, D.S., Microbial biomass measurements in forest soils: The use of the chloroform fumigation-incubation method for strongly acid soils. Soil Biol. Biochem., 1987,19: 697-702
    360. Verburg P S J, Van Dam D, Hefting M M, Tietema A. Microbial transformations of C and N in a boreal forest floor as affected by temperature. Plant and Soil, 1999,208: 187-197
    361. Wang F E, Chen Y X, Tian G M, Kumar S, He Y F, Fu Q L, Lin Q. Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China. Nutrient Cycling in Agroecosystems, 2004, 68: 181-189
    362. Wang W. J., R.C. Dalai, P.W. Moody et al. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil biology and biochemistry. 2003,35:273-284
    363. Wang Y, Shen Q R, Yang Z M, et al. Size of microbial biomass in soils of China. Pedosphere, 1996,
     6(3): 265-272.
    364. Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev., 1992, 67: 321-358
    365. Wardle D. A. Controls of temporal variability of the soil microbial biomass: a global-scale synthesis. Soil Biol. Biochem. 1998,30(13): 1627-1637
    366. Weber M.G Forest soil respiration after cutting and burning in immature aspen ecosystems. For. Ecol. Managem. 1990, 31: 1-14
    367. Weber M.G Forest soil respiration in eastern Ontario jack pine ecosystems. Can. J. For.Res. 1985,15: 1069-1073
    368. Weil R. R., K. R. Islam, M. A. Stine et al., Estimating active carbon for soil quality asseeement. A simplified method for laboratory and field use. Am. J. Alternative Agric. 2003, 18:3-7
    369. White A., Melvin G R. Can Nel. CO_2 stabilization, climate change and the terrestrial carbon sink. Global change biology. 2000.6(7): 817-833
    370. Widen B, Majdi H. Soil CO_2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Can. J. For. Res. 2001, 31: 786-796
    371. Wilde S. A. Changes in soil productivity induced by pine plantations. Soil Science, 1964,97: 276-278
    372. Williams B L, Edwards A C. Processes influencing dissolved organic nitrogen, phosphorus and sulphur in soils. Chem. Ecol., 1993, 8: 203-215
    373. Wu J, O'Donnell A G, He Z L, et al. Fumigation-extraction method for the measurement of soil microbial biomass-S. Soil Biol. Biochem., 1994,26: 117-125
    374. Yim M. H., Joo S. J.,Nakane K. Comparison of field methods for measuring soil respiration: a static alkaki absorption method and two dynamic closed chamber methods. Forset Ecology and Management. 2002, 170:189-197
    375. Zech W, Senesi N, Guggenberger G, Kaiser K, Lehmann J, Miano T M, Miltner A, Schroth G Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma, 1997,79: 117-161
    376. Zhang Q, Zak J C. Effects of water and nitrogen amendment on soil microbial biomass and fine root production in a semi-arid environment in west Texas. Soil Biol. Biochem., 1998, 30: 39-45
    377. Zhong L, Yagi K, Sakai H, et al. Influence of elevated CO_2 and nitrogen nutrition on rice plant growth, soil microbial biomass, dissolved organic carbon and dissolved CH_4. Plant and Soil, 2004, 258:81-90
    378. Zogg G P, Zak D R, Pregitzer K S, Burton A J. Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest. Ecology, 2000, 81: 1858-1866
    379. Zoungrana C J, Desjardins R, Prevost M. Influence of remineralization on the evolution of the biodegradability of natural organic matter during ozonation. Water Research, 1998, 32: 1743-1752
    380. Zsolnay A, Steindl H. Geovariability and biodegradability of the water-extractable organic material in an agricultural soil. Soil Biol. Biochem., 1991, 23: 1077-1082

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700