不同混交模式对毛竹林土壤有机碳及土壤呼吸的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变化是当前人们所关注的热点问题,近年来特别是19世纪工业革命以来,人类的生产活动对地球系统产生重大的影响,突出表现为大气二氧化碳浓度的升高,生物多样性的减少,生态系统遭到严重的破坏等方面,其中大气二氧化碳浓度的升高是导致全球气候变暖的主要因素。大气二氧化碳浓度的升高主要是由于大量化石燃料的燃烧,森林资源的大量砍伐和土地利用方式的改变造成的。目前土地利用/土地覆盖变化成为人们研究人类活动对全球二氧化碳浓度变化的主要方向。由于人口的增加、人类活动的不断增强,土地利用和土地覆被发生了巨大变化,从而使更多的碳素释放大气中,土地利用变化影响下相应CO2的释放已不容忽视。据报道,每年因土地利用变化所释的CO2约占全球CO2释放量的25%。
     毛竹(Phyllostachys pubesens)是我国南方重要的森林资源之一,分布地域广阔,栽培历史悠久。据不完全统计,中国现有毛竹林总面积300万hm2以上,约占全世界竹林总面积的20%,并且近年来种植面积有不断扩大的趋势。毛竹林不仅为我国提供了大量的商品用材,而且在维护生态平衡方面发挥了重要的作用。本文在福建省建阳市选择了毛竹纯林、毛竹阔叶树混交林、毛竹油茶混交林、毛竹油桐混交林、毛竹杉木混交林五种闽北典型的毛竹林混交类型,通过野外定位观测和实验室分析,研究了混交模式变化对土壤碳库、可溶性有机碳、轻组有机碳、微生物生物量碳以及土壤呼吸的影响。
     主要研究结果如下:
     (1)不同混交模式下土壤有机碳含量总体上随着土壤深度的增加而减少。混交模式变化对表层土壤的影响显著高于底层土壤,0-5cm土层有机碳含量和储量受混交模式变化的影响最大,而20-40cm土层土壤有机碳储量占0-100cm土层的28.1%-49.1%,成为贮存有机碳的主要层次,20cm以下土层有机碳含量与储量受混交模式变化的影响很小。
     (2)0-100cm土层土壤有机碳储量大小顺序为:毛竹阔叶树混交林>毛竹油茶混交林>毛竹杉木混交林>毛竹纯林>毛竹油桐混交林,毛竹阔叶树混交林、毛竹油茶混交林、毛竹杉木混交林的0-100cm土层土壤有机碳含量分别比毛竹纯林提高了27.67%,7.33%和7.31%。但毛竹油桐混交林的土壤含碳量有所降低。
     (3)不同混交模式下土壤可溶性有机碳含量总体上随土层加深而降低,0-5cm土层DOC含量为40-60cm土层的1.2倍左右,在该层次上毛竹阔叶树混交林的可溶性有机碳的含量最高为1274.41mg·kg-1,毛竹油桐的含量最低为523.25mg·kg-1。
     (4)不同混交模式的林分随土壤剖面深度增加,轻组含量、轻组有机碳占总有机碳比例均明显下降,混交模式变化对轻组垂直分布的影响与植物根系分布深度相对应。轻组的碳含量在12.62%-16.25%之间,碳氮比范围约为20.45-34.67,均高于全土的碳含量及碳氮比。轻组在土壤表层富集。
     (5)毛竹阔叶树混交林土壤微生物生物量碳含量最大,各土层间的差异也较大;毛竹油桐混交林含量最小,不同土层间土壤微生物有机碳含量接近,差异较小。毛竹油桐混交林土壤微生物有机碳占土壤总有机碳的比例约在1.24%-4.04%之间,平均比例最大;而毛竹杉木混交林MBC占SOC的比例在1.02%-2.49%之间,所占比例最小且变化幅度较小,随土层加深MBC占SOC的比例变化不明显。
     (6)对轻组含量与土壤容重进行回归分析,轻组含量与土壤容重具有极显著的负相关(R2=0.513,P<0.01)。微生物生物量碳的垂直分布与轻组垂直分布之间有着密切的联系。对轻组含量与微生物生物量碳含量进行了回归分析,微生物量碳的垂直分布对轻组垂直分布具有显著的负相关(R2=0.6903,P<0.05)。因为微生物对轻组的形成具有重要作用,而且也是轻组的来源之一。
     (7) 5种不同混交模式下土壤容重的范围在0.83-1.40g/cm3,其中毛竹油桐混交林各个层次的土壤容重均比其他林分同等层次的土壤容重大,5种不同混交模式下毛竹林的总孔隙度的范围在50.80V%-69.75V%。表层土壤的最大持水量和毛管持水量的平均值呈现出毛竹杉木混交林>毛竹油茶混交林>毛竹阔叶树混交林>毛竹纯林>毛竹油桐混交林的规律。
     (8)不同的混交模式土壤呼吸具有明显的季节变化,一般为夏季>春季>秋季>冬季。总体的规律表现为1到4月份随着气温、地温的升高的趋势,土壤呼吸速率也是逐渐增大。4月份到7月份随着气温继续增大。在7月底达到年呼吸速率的最大值3.12-5.52μmol·m-2·s-1,此后随温度的降低而呈逐渐递减的趋势,直到次年的1月份,达呼吸速率最低值为2.0-2.25μmol·m-2·s-1。
Global chang has become the hot issue which we talk about everyday.In recent years,especially since the Industrial Revolution of the 19th century, human activities have a major impact on the earth system.The outstanding performance is that the increased concentrations of carbon dioxide, the reduction of biological diversity, damage to ecosystems and so on. Most passages show that the increased concentrations of carbon dioxide lead the global warming.As the economy development,we use more and more fossil fuel and lots of forest are felled, we chang the land-use types frequently. All of those human activities deteriorate our living environment.Due to the growth of population and the human’s active, the land use and land cover have been changed greatly. So more carbon was released to atmosphere and people has attached importance to the release of CO2 lead by the change of land use. It was reported that the CO2 released by land use change was about 25% of the globe.
     Phyllostachys edulis is one of the important forest species in South China. It is widely distributed and has a long planting history. Partly estimated, the area of Phyllostachys heterocycla plantation is more than 3.0×106hm~2 in China, accounting for about 20% of the total bamboo forests area all over the world. The cultivated area has been increasing gradually these years, thus not only supplied a lot of commercial timber for the country, but also played an important role in the maintenance of ecological balance.In view of this situation ,background in subtropical area was chosen nearly consistently, Therefore we chose different mixed forests modes including : Phyllostachys heterocycla、mixed forest of Phyllostachys heterocycla and broadleaf tree、mixed forest of Phyllostachys heterocycla and Camellia oleifera、mixed forest of Phyllostachys heterocycla and Vernicia fordii、mixed forest of Phyllostachys heterocycla and Cunninghamia 1anceolata in Jianyang City of Fujian Province. We researched the effect of land use changes on the soil carbon pool、dissoveled organic carbon、light fraction organic carbon、microbial biomass carbon and soil respiration.
     The major results were summarized as follows:
     (1)Soil organic carbon contents decreased with soil depth increasing in different land utilization types, The effect of land use change on the surface layer soil was more significant than on the substrate soil, in which the influence to soil organic content and storage in 0-5cm soil layer is the most great. Soil organic carbon storage in 20-40cm was 28.1%-49.1% in 0-100cm soil layer, so the soil layer of 0-20cm is main. The influence to SOC content and storage below 20cm soil layer is large.
     (2)The order of soil organic storage in 0-100cm soil layer:mixed forest of Phyllostachys heterocycla and broadleaf tree> mixed forest of Phyllostachys heterocycla and Camellia oleifera> mixed forest of Phyllostachys heterocycla and Cunninghamia 1anceolata> Phyllostachys heterocycla> mixed forest of Phyllostachys heterocycla and Vernicia fordii.The storage of Phyllostachys heterocycla is 27.67%、7.33% and 7.33% fewer respectively than mixed forest of Phyllostachys heterocycla and broadleaf tree, mixed forest of Phyllostachys heterocycla and Camellia oleifera, mixed forest of Phyllostachys heterocycla and Cunninghamia 1anceolata. However, the carbon storage of mixed forest of Phyllostachys heterocycla and Vernicia fordii has become lower than the forest of Phyllostachys heterocycla.
     (3)The soil dissolved organic carbon content decreased with soil depth increasing in different different mixed forests,in which the DOC content in 0-5cm was 1.2 times of that in 40-60cm.The DOC content in 0-5cm soil layer of mixed forest of Phyllostachys heterocycla and broadleaf tree was highest (1274.41mg·kg-1) and that of mixed forest of Phyllostachys heterocycla and Vernicia fordii was lowest(523.25mg·kg-1).
     (4)Content of LFOC and the proportion of organic C present as LFOC both decreased with depth, corresponding distribution of roots.In addition,accumulation rate of LFOC was faster than that of SOC, which was important for soil sustainability and carbon management.The content of the LOFC is in the range of 12.62%-16.25%,C/N of soil light fraction is higher than the value of the soil.
     (5)Microbial biomass carbon (MBC) in mixed forest of Phyllostachys heterocycla and broadleaf tree was highest and Microbial biomass carbon (MBC) in mixed forest of Phyllostachys heterocycla and Vernicia fordii was highest.The difference among soil layers was big. The content of MBC in steep farmland was lowest and the different among soil layers was close. The proportion of MBC to SOC in mixed forest of mixed forest of Phyllostachys heterocycla and Vernicia fordii is between 1.24% and 4.04%, of which the average was the biggest and in mixed forest of Phyllostachys heterocycla and Cunninghamia 1anceolata in all land use types and the proportion changed indistinctly with depth.
     (6)There is the most significant positive relationship between LFOC and soil bulk density(R2=0.513,P<0.01)and there is the significant positive relationship between LFOC and MBC(R2=0.6903,P<0.05) Microbial biomass play an important role in the formation of the LFOC,and it is the main source of LFOC.
     (7)The range of the soil bulk densities in different land utilization types is from 0.83 g/cm~3 to 1.40g/cm3,and the soil bulk of mixed forest of Phyllostachys heterocycla and Vernicia fordii is the biggest in all of the levels.Soil total porosity of 5 different mixed modes from 50.80V% to 69.75V%, and non capillary porosity occupied nearly 1/5-2/7 of total porosity.The max moisture capacity, the capillary moisture capacity of the soil were in descensive order as follows: mixed forest of Phyllostachys heterocycla and Cunninghamia 1anceolata> mixed forest of Phyllostachys heterocycla and Camellia oleifera> mixed forest of Phyllostachys heterocycla and broadleaf tree > Phyllostachys heterocycla> mixed forest of Phyllostachys heterocycla and Vernicia fordii.
     (8)The seasonal change of soil respiration speed was significant in all land use types, the order : summer>spring>autumn>winner.The main laws is that the average soil respiration from January to April in these differernt land utilization types increased as the soil temperature increase.In July the soil respiration is the highest ,which is 3.12-5.52 umol / ( m~2·s).As the temperature gradually reduced ,The soil respiration of these minxed forest has reduced.
引文
[1] Atjay G L, P Ketner, P Duvigeaud. Terrestrial primary production and phytomass[J]. The global carbon cycles scopel 3, 1979, 129- 182.
    [2] Cruzten P J, L E Heidt, J Pkrasnec, et al. Biomass burning as a source of the atmospheric gases CO2, H2, N2O, NO, CH3Cl and CO2[J]. Nature, 1979, 282: 253- 256.
    [3] Davidson E A, Lefebvre P A. Estimating regional carbon stocks and spatially covering edaphic factors using maps at three- scale[J].Biogeochemistry, 1993, 22: 107- 131
    [4] Detwiler R P. Land use change and the global carbon cycle:the role of tropical soils[J]. Biogeochemistry, 1986, 2(1): 67- 93.
    [5] Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144): 185- 190.
    [6] Harkness D D, Harrison A F, Bacon P J. The temporal distribution of "bomb" 14 C in a forest soil[J]. Radiocarbon, 1986, 28: 328- 337.
    [7] Malhi Y, Baldocchi D D, Jarvis P G. The carbon balance of tropical,temperate and boreal forests[J]. Plant, soil and Environment, 1999, 22: 715- 740.
    [8] Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of Earth's ecosystems[J]. Science, 1997, 277: 494-499.
    [9] Rodhe H. A comparison of the contribution of various gases to the greenhouse effect[J]. Science, 1990, 248: 1217- 219.
    [10] Lan R, Noble, Rodolfo D. Forest as Human-Dominated Ecosystems[J]. Science, 1997, 277: 522- 525.
    [11] Lai R. Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effects[J]. Progress in Environment Science, 1999, 1(4): 307- 326.
    [12] Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycle, 1995, 9: 23- 36.
    [13] Sedjo R A. The carbon cycle and global forest ecosyetem[J]. Water, Air and Soil Pollution, 1993, 70: 295- 307.
    [14]聂道平,徐德应,王兵.全球碳循环与森林关系的研究-问题与进展[J].世界林业研究, 1997. 34- 40.
    [15]陶波,葛全胜,李克让,等.陆地生态系统碳循环研究进展[J].地理研究, 2001, 20 (5): 564- 575.
    [16]徐德应.人类经营活动对森林土壤碳的影响[J].世界林业研究, 1994, 7(5): 26- 31.
    [17]徐德应,刘世荣.温室效应、全球变暖与林业[J].世界林业研究, 1992, (1): 25- 31
    [18] Keeling C D, Whorf T P. Atmospheric CO2 concentrations- Mauna Loa Observatory[D]. Hawaii,1958-1997. 1998(revised August 2000). NDP- 001. Carbon Dioxide Information AnAlysis Center. Oak Rideg National Laboratory. Oak Rideg.
    [19] Melillo J M, Prentice I C, Farquhar G D, et al. Terrestrial biotic responses to environmental change and feedbacks to climate. The Science of Climate Change [C].Cambrideg University Press, 1996, 449-481.
    [20] Collins H P, Eliott E T, Paustian K, et al. Soil carbon pools and fluxes in long- term corn belt agroeco-systems[J]. Soil Biology &Biochemistry, 2000, 32: 157- 168.
    [21] Vlieto H P, Faaija P C. Forestry projects under the clean development mechanism: Modeling of uncertainties in carbon mitigation and related costs of plantation forestry projects[J]. Climatic Change, 2003, 61: 123- 156.
    [22] Paul K I, Polglase P J, et al. Change in soil carbon following afforestion[J], Forest Ecology and Management, 2002, 168: 241- 257.
    [23] Brown S, Lugo A E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle[J]. Biotropia, 1982, 14 (4): 161- 187.
    [24] Clark D F, Kneeshaw D D, Burton P J. Coarse woody debris in subboreal spruce forests of west- central British Columbia[J]. Canadian Journal of Forest Research, 1998, 28(2): 284- 290.
    [25] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus. 1992, 44B: 81- 99.
    [26]周广胜,王玉辉.全球变化生态学[M].北京:气象出版社, 2003, 12.
    [27] IPCC.Special report on land use, land- use change and forestry[R]. London: Cambridge University Press, 2000.
    [28] Parton W J, Schimel D S, Cole C V et al. Analysis of factors controlling soil organic matter levels in Great Plains Grassland[J]. Soil Sci. Soc. 1987, 51: 1173- 1179.
    [29] Hassink J. Decomposition rate constants of size and density fractions of soil organic matter[J]. Soil Sci Soc Am J, 1995, 59: 1631- 1635.
    [30] Haynes R J. Labile organic matter fractions and aggregate stability under short-term, grass- based leys[J]. Soil biology and biochemistry, 1999,31(13): 1821- 1830.
    [31] McLauchlan K K, Sarah E, Hobbie. Comparison of labile soil organic matter fractionation techniques[J]. Soil Sci. Soc. Am. J, 2004, 68: 1616- 1625.
    [32] Christopher W S, Bruce A C, et al. Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soils[J]. Soil biology and biochemistry, 2002, 34(8): 1121- 1130.
    [33] Solomon D F, Fritzsche J L, et al. Soil Organic Matter Dynamics in the Subhumid Agroecosystems of the Ethiopian Highlands: Evidence From Natural 13C Abundance and Particle-Size Fractionation[J].Soil Science Society of America Journal, 2002, 66(3):969- 978.
    [34] Franzluebbers A J,Haney C W, Honeycutt H H, et al. Flush of carbon Dioxide following rewetting of dried soil relates to active organic pools[J]. Soil Science Society of America Journal, 2000, 64(2): 613- 623.
    [35]郭起荣,杨光耀,杜天真,等.中国竹林的碳素特征[J].世界竹藤通讯, 2005, 3(3): 25- 28.
    [36]周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布[J].林业科学, 2004, 40(6): 20- 24.
    [37]张国防,缪碧华.毛竹经营管理的研究进展[J].福建林学院学报, 2000, 20(4): 375- 379.
    [38]江泽慧.世界竹藤[M].沈阳:辽宁科学技术出版社, 2002.
    [39]周芳纯.竹林培育和利用[M].南京林业大学《竹类研究》编委会, 1998, 125-126.
    [40]周东雄,陈善治.沙县毛竹低产林改建笋竹两用丰产林培养模式[J].福建林学院学报,1994,12(2): 176- 179.
    [41]沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库竹理指数的影响[J].土壤学报,2000, 37(2): 166- 173.
    [42]姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报, 2003, 20(1): 8- 11.
    [43]姜培坤,周国模,徐秋芳.雷竹高效栽培措施对土壤碳库的影响[J].林业科学, 2002, 38(6):6- 10.
    [44]柳云龙,吕军.低丘红壤复垦后土壤微生物研究[J].水土保持学报, 2001, 15(2): 64- 67.
    [45]龙健,王昌勇,腾应,等.我国南方红壤矿山复垦土壤的微生物特征研究[J].水土保持学报, 2002, 16(2): 126- 128.
    [46]周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展, 2005, 20(l): 99- 105.
    [47] Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming[J]. Biogeochemistry, 2000, 48: 21- 51.
    [48]汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志, 1999,18(5):29-35.
    [49] Post W M, Emanuel Z P J, Bergen S. Soil carbon pools and world life zones[J]. Nature, 1982, 298: 156- 159.
    [50] Houghton R A, Hobble J E, Meliilo J M, et al. Changes in carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atrnosphere[J]. Ecol Monogr, 1983, 53: 235- 262.
    [51] Houghton R A, SKole K L, Lefkowitz D S. Changes in the landscape of Latin America between 1850 and 1985 I.Net release of CO2 to the atmophere[J]. For Ecol Manage, 1991, 38: 173- 199.
    [52] Zhao Q G, Li Z, Xia Y F. Organic carbon storage in soils of southeast China[J]. Nutr Cycl Agroecosyst, 1997, 49(3): 229- 234.
    [53]甘海华,吴顺辉,范秀丹.广东土壤有机碳储量及空间分布特征[J].应用生态学报, 2003, 14(9): 1499- 1502.
    [54]潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报, 1999, 15(5): 330-332.
    [55]陈庆强,孙彦敏,沈承德.华南亚热带山地土壤有机质更新特征定量研究[J].地理科学, 2002,22(2):196-200.
    [56]吴金水,童成立,刘守龙.亚热带和黄土高原区耕作土壤有机碳对全球气候变化的响应[J].地球科学进展, 2004,19(1):131-137.
    [57] Jenkinson D S. Studies on the decomposition of plantmaterial in soil V. The effects of plant cover and soil type on the loss of carbon from 14C labelled ryegrass decomposingunder field conditions[J] Soil Sci, 1977,28(3): 424- 434.
    [58] Six J, Elliot E T, Paustian K, et al. Aggregation and soil organicmatter accumulation in cultivated and native grassland soils[J]. Soil Sci Soc Am J, 1998, 62(5): 1367- 1377.
    [59] Kucharik C J, Foley J A, Delire C, et al. Testing the performance of a dynamic global ecosystem model Water balance, carbo balance and vegetation structure[J]. Glob Biogeochem cycle, 2000, 14(3): 795-825.
    [60] Dalal R C, Chan K Y. Soil organic matter in rain-fed cropping systems of the Australian Cereal Belt. Aust[J]. Soil Res, 2001,39: 435- 464.
    [61] Elzein A, Balesdent J. Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils[J]. Soil Sci Soc Am J, 1995, 59: 1328- 1335.
    [62] Huggins D R, Clapp C E, Allmaras R R, et al. Carbon dynamics com-soybean sequences as estimated from natural carbon-13 abundance[J]. Soil Sci Soc Am J, 1998, 62(1): 195- 203.
    [63]徐明岗,于荣,王伯仁.土壤活性有机碳的研究进展[J].土壤肥料, 2000, (6): 3-7.
    [64]辛刚,颜丽,汪景宽,关连珠.不同开垦年限黑土有机质变化的研究[J].土壤通报,2002, 33(5): 332-335.
    [65]吴建国,张小全,徐德应.六盘山林区几种土地利用方式土壤活性有机碳的比较[J].植物生态学报, 2004, 28(5): 657- 664.
    [66]王清奎,汪思龙,冯宗炜.土壤活性有机质及其与土壤质量的关系[J].生态学报, 2005, 25(3):513- 519.
    [67]赵鑫,宇万太,李建东,姜子绍.不同经营管理条件下土壤有机碳及其组分研究进展[J].应用生态学报, 2006, 17(11), 2203- 2209.
    [68] Conteh A, Blair G J. The distribution and relatives losses of soil organic carbon fraction in aggregate size fractions from cracking clay soils under cotton production[J]. Aust J Soil Res, 1998, 36(2): 257- 271.
    [69] Jenkinson D S. The determination of mierobial biomass carbon and nitrogen In Advanees in Nitrogen Cyeling in Agrieultural Eeosystem[J]. International Symposium. Brishane, Australia, 1987, 5: 11- 17.
    [70]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤, 1997,(2): 61- 67.
    [71] Paul E A, Clark F E. Soil Mierobiology and Bioehemistry. Academi[M]. Press, New York, USA 1996.
    [72] Wardle D A. A comparative assessment of factors which influence mierobia biomass carbon and nitrogen levels in soil[J]. Biological Reviews, 1992, 67: 321- 358.
    [73]余慎,李振高.熏燕提取法测定土坡微生物量研究进展[J].土壤学进展, 1994, 22(6): 42- 50.
    [74]陶水龙,林启美,赵小蓉,等.土壤微生物量研究方法进展[J].土壤肥料, 1998, (5): 15- 18.
    [75]张成娥,陈小莉等.子午岭不同环境土壤微生物生物量与肥力关系研究[J].生态学报, 1998, 18(2): 218- 222.
    [76]任天志.持续农业中的生物指标研究[J].中国农业科学, 2000, 33(l): 68- 75.
    [77] Powlson D S, Brookespe, Christensen BT. Measurement of soil microbial biomass provide an Early indieation of changes in total soil organie matter due to straw incorporation[J]. Soil Biol. Bioechem 1987, 19: 159- 164.
    [78]俞益武,徐秋芳.天然林改为经济林后土壤微生物量的变化[J].水土保持学报, 2003, 17(5): 103- 113.
    [79]黄承才.马尾松林和茶园土壤微生物生物量垂直分布研究[J].绍兴文理学院学报, 2002, 22(l): 62- 65.
    [80]王国兵.北亚热带次生栎林与火炬松人工林土壤碳动态研究[D].南京林业大学,2008.
    [81] Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem[J]. Eur. J. Soil Sci. , 1999, 50: 579- 590.
    [82] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review[J]. Soil Sci. , 2000, 165(4): 277- 304.
    [83] Flessa H, Ludwig B, Heil B, et al. The origin of soil organic C, dissolved organic C and respiration in a long-term experiment in Halle, Germany, determined by 13C natural abundance[J]. Journal of Plant Nutr. Soil Sci. , 2000,163: 157- 163.
    [84] Evans J A. Effects of dissolved organic carbon and sulfate on aluminum mobilization in forest soil columns[J]. Soil Sci. Soc. Am. J. , 1986, 50: 1576- 1578.
    [85] Magill A H, Aber J D. Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition[J]. Soil Biol. Biochem. , 2000, 32: 603- 613.
    [86] Qualls R Q, Haines B L, Swank W T. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest[J]. Ecology, 1991, 72: 254- 266.
    [87]黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应[J].生态学报, 2002. 22(2): 259- 269.
    [88] Lehman R M, Mills A L. Field evidence for copper mobilization by dissolved organic matter[J]. Res., 1994, 28(12): 2487- 2497.
    [89] Kalbitz K, Wennrich R. Mobilization of heavy metals and arsenic in polluted wetland soils and itsdependence on dissolved organic matter[J]. Sci. Total Environ, 1998, 209(1): 27- 39. [ 90 ] Moller J, Miller M, Kjoller A. Fungal-bacterial interaction on beech leaves: Influence on decomposition and dissolved organic carbon quality[J]. Soil Biol. Biochem, 1999, 31: 367- 374.
    [91]陈同斌,陈志军.水溶性有机质对土壤中锡吸附行为的影响.应用生态学报, 2002,13(2): 183- 186.
    [92]谢锦升.植被恢复对退化红壤易变碳及土壤呼吸的影响[D].北京林业大学,2005.
    [93] Madhun Y A, Young J L, Freed V H. Binding of herbicides by water-soluble organic materials from soil[J]. Environ Qual, 1986, 15: 64- 68.
    [94] Kuiters A T, Mulder W. Water-soluble organic matter inforest soils.I.Complexing properties and implications for soil equilibria[J]. Plant and Soil, 1993, 152: 215- 224.
    [95] Liang B C, Mackenzie A F, Schnitzer M, et al. Managenment induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biol Fertil Soils, 1998, 26: 88- 94.
    [96] Essaa S N, Anderson D W, Chatson B. Cultivation effects on the nature of organic matter in soils and water extracts using CP/MAS 13C NMR spectroscopy[J]. Plant and Soil, 1996, 184: 207- 217.
    [97] Leenher J A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters[J]. Environ Sci Technol, 1981, 15: 578- 587.
    [98]倪进治,徐建民,等.土壤水溶性有机碳的研究进展[J].生态环境, 2003, 12(1): 71- 75.
    [99] Greenland D J, Ford G W. Separation of partially humified organic materials by ultrasonic dispersion[C]. Eighth International Congress of Soil Science, 1964, 3: 137- 148.
    [100] Strickland T C, Sollins P. Improved method for separating lightand heavy fraction organic material from soil[J]. SoilScience Society ofAmerica Journa, 1987, 51: 1390- 1393.
    [101]谢锦升,杨玉盛,谢明曙,等.土壤轻组碳有机质研究进展[J].福建林学院学报, 2006, 26 (3): 281- 288.
    [102] Haynes R J. Liable organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand[J]. Soil Biol. Biochem, 2002, 32: 211- 219.
    [103] Dalal R C, Mayer R J. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland III distribution and kinetics of soil organic carbon in particle-size fractions[J]. Australia Journal SoilResearch, 1986, 24: 293- 300.
    [104] Besnard E, Chenu C, Balesdent J, et al. Fate of particulate organic matter in soil aggregates during cultivation[J]. European Journal of Soil Science, 1996, 47: 495- 503.
    [105] Dalal R C, Mayer R J. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. IV. Loss of organic carbon from different density functions[J]. Australia Journal of Soil Research, 1986, 24: 301- 309.
    [106] Molloy L F, Speir T W. Studies on a climosequence of soils in tussock grassland 12C on stituents ofthe soil light fraction[J]. New Zealand Journal of Soil Science, 1977, 20: 167- 177.
    [107] Schulten H R, Leinweber P. Thermal stability and composition of mineral-bound organic matter in density fractions of soil [J]. European journal of soil science, 1999, 50: 237- 248. [ 108 ] Boone R D. Light fraction soil organic matter: origin and contribution to net nitrogen mineralization[J]. Soil Biology and Biochemistry, 1994, 26: 1459- 1468.
    [109]谢锦升,杨玉盛,陈光水,等.严重侵蚀红壤封禁管理后土壤性质的变化[J].福建林学院学报, 2002, 22(3): 236- 239.
    [110]杨玉盛,杨伦增,俞新妥.杉木林取代杂木林后土壤腐殖质组成及特性变化的研究[J].福建林学院学报, 1996, 16(2): 97- 100.
    [111] Bremer E, Janzen H H, Johnston A M. Sensitivity of total light and mineralizable organic matter to management practices in a Lethbridge soil[J]. Canadian Journal of Soil Science, 1994, 74: 131- 138.
    [112] Six J, Conant R T, Paul E A, et al. Stabilization mechanisma of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soi, 2002, 241: 155- 176.
    [113] Roscoe R, Buurman P. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol[J]. Soil and Tillage Research, 2003, 70: 107- 119.
    [114]李月梅,王跃思,曹广民,等.开垦对高寒草甸土壤有机碳影响的初步研究[J].地理科学进展, 2005, 24(6): 61- 67.
    [115]张金波,宋长春,杨文燕.三江平原沼泽湿地开垦对表土有机碳组分的影响[J].土壤学报, 2005, 42(5): 155- 157
    [116]于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社. 2003.
    [117] Macfadyen A. Simple methods for measuring and maintaining the proportion of carbon dioxide in air, for use in ecological studies of soil respiration[J]. Soil Biology and Biochemistry, 1970, (2): 9-18.
    [118]陈泮勤.地球系统碳循环[M].北京:科学出版社. 2004.
    [119] Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems [J]. The Botanical Review, 1997, (43): 449- 528.
    [120]易志刚,蚁伟民.森林生态系统中土壤呼吸研究进展[J].生态环境, 2003, 12(3): 361- 36.
    [121]周涛,史培军,孙睿德,等.气候变化对净生态系统生产力的影响[J].地理学报, 2004, 59(3): 357- 365.
    [122]龚辉.建阳市森林结构调整的建模及仿真研究[J].福建林业科技, 2007, 27(2): 66- 69.
    [123]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社. 2000.
    [124]占新华,周立祥.土壤溶液和水体中水溶性有机碳的比色测定[J].中国环境科学, 2002, 22(5): 433- 437.
    [125] Janzen H H, C A Campbell, S A Brandt, G P Lafond. Light-fration organic matter in soils from long-term crop rotations[J]. Soil Sci. Soc. Am.J,1992,56:1799-1806.
    [126]董元社,彭公炳,李俊.温带森林土壤CO2、CH4、N2O时空特征[J].地理学报, 1996, (51) (增刊): 120- 128.
    [127]金会军,吴杰,程国栋.青藏高原湿地CH4排放评估[J].科学通报, 1999, 44(16): 1578- 1761.
    [128] Macfadyen A. Simple methods for measuring and maintaining the proportion of carbon dioxide in air, for use in ecological studies of soil respiration[J]. Soil Biology and Biochemistry, 1970,(2): 9- 18.
    [129] Carlyle J C , Than U B A. A biotic control of soil respiration between an eighteen-year-old Pinus rediata stand in South-eastern,Australia[J]. Journal of Ecology,1988, (76): 654-662.
    [130] Nakayarna F S. Soil respiration[J]. Remote Sensing Rcvicws, 1990, (5): 311- 321.
    [131] Reich J W, Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles, 1995,(9): 23-36.
    [132]李玉娥,林而达.天然草地利用方式改变对土壤排放CO2和吸收CH4的影响[J].农村生态环境,2000, (16) :14- 16.
    [133]刘允芬,欧阳华,曹广民,等.青藏高原东部生态系统土壤碳排放[J].自然资源学报, 2001, 16(2): 152- 159.
    [134]罗辑,杨忠,杨清伟.贡嘎山东坡峨眉冷杉林区土壤CO2排放[J].土壤学报, 2000, 37(3): 402-409.
    [135]曹广明,张金霞.嵩草草甸的土壤营养及其物质循环[M].北京:中国科学出版社, 2001.
    [136]刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸[J].植物生态学报, 1998, 22(2): 119- 126.
    [137]杨玉盛,陈光水,林鹏,等.格氏栲天然林与人工林细根生物量、季节动态及净生产力[J].生态学报, 2003, 23(9): 1719- 1730.
    [138]吴建国,等.土地利用变化对土壤有机碳的影响-理论、方法和实践[M].北京:中国林业出版社. 2004 .
    [139]吴仲民,曾庆波,李意德,等.尖峰岭热带森林土壤C储量和排放量德初步研究[J].植物生态学报, 1997, 21(5): 416- 423.
    [140]樊江文,钟华平,梁用,等.草地生态系统碳储量及其影响因素[J].中国草地, 2003, 25 (6): 51- 58.
    [141]杨少红.土地利用变化对土壤有机碳和土壤呼吸的影响[M].福建农林大学, 2006.
    [142] Dixan R K, Houghton R A, et al. Carbon pools and flux of global forest cosystems[J], Science. 1994, 263: 185-190.
    [143]杨玉盛,谢锦升,王义样,刘艳丽,等.杉木观光木混交林碳库与碳吸存[J].北京林业大学学报, 2003,25(5): 10-14.
    [144]何宗明,王义祥,邹双全,等. 33年生福建柏人工林C库与C吸存研究[J].山地学报,2003, 21(3): 298- 303.
    [145]李正才.土地利用变化对土壤有机碳的影响[M].中国林业科学研究院,2006.
    [146]方晰,田大伦,项文化,等.杉木人工林土壤有机碳的垂直分布特征[J].浙江林学院学报, 2004, 21(4): 418- 423.
    [147] Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetatation[J]. Ecology APPlied, 2002, 10(2): 423- 436.
    [148] Smolander A, Kitunen V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species[J]. Soil Biol. Biochern, 2002, 34(5): 651- 660.
    [149] David M B, Mitchell M J. Transformations of organic and inorganic sulfur: Importance to sulfate flux in and Adirondock forest soil[J]. Journal of the Air pollution control Association. 1987, 46: 847- 852.
    [150]陶澎,曹军.山地土壤表层水溶性有机物淋溶动力学模拟研究[J].中国环境科学, 1996, 16: 410- 414.
    [151] Hagedom F, Blaser P, Siegwolf R. Elevated atmospheric CO2 and increased N deposition effects on dissolved organic carbon-clues from 13C signature[J]. Soil.Biol.Biochem., 2002. 34(3): 355- 366.
    [152] Beck T R G, Joergensen E, Kandeler et al, An inter-laboratory comparison of tendifferent ways of measuring soil microbial biomass carbon[J]. Soil Biol.Biochem, 1997, 29:1023- 1032.
    [153]林瑞余.森林土壤和枯枝落叶层DOM的研究[M]. 2003,福建农林大学.
    [154]王连峰,潘根兴,石盛莉等.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布[J].植物营养与肥料学报, 2002, 8(1): 29- 34.
    [155]王清奎,汪思龙,高洪,等.土地利用方式对土壤有机质的影响[J].生态学杂志, 2005, 24(4): 360-363.
    [156]徐秋芳,姜培坤.不同森林植被下土壤水溶性有机碳研究[J].水土保持学报, 2004, 18(6): 84- 87.
    [157] McDowell W H, Likens G E Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley[J]. Ecol. Monogr, 1988, 58: 177- 195.
    [158] Zsolnay A, Steindl H. Geovariability and biodegradability of the water- extractable organic material in an agricultural soil[J]. Soil Biol. Biochem, 1991, 23: 1077- 1082.
    [159] Huang W Z, Schoenau J J. Fluxes of water-soluble nitrogen and phosphorous in the forest floor and surface mineral soil of a boreal aspen stand. Geoderma, 1998, 81: 251- 264.
    [160]姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学, 2005, 41(1): 10- 13.
    [161]殷士学.土壤微生物生物量及其养分循环关系的研究进展.土壤学进展, 1993, 21(4): 1- 8.
    [162] Dalal R C , Mayer R J. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland.III distribution and kinetics of soil organic carbon in particle-size fractions[J]. Aust. J. Soil Res. 1986, 24:293- 300.
    [163] Oades J M, Vassallo A M, Waters A G, Wilson M A. Characterization of organic matter in particle sizeand density fractions from Red- Brown Earth by solid- state 13C N.M.R[J]. Aust. J. Soil Res,1987, 25: 71- 82.
    [164] Spycher G, Sollins P, Roses S. Carbon and nitrogen in the light fraction of a forest soil: Verticle distribution and seasonal patterns[J]. Soil Science, 1983, 135: 79- 87.
    [165] Turchenek L W, Oades J M. Fractionation of Organo-mineral complexes by sedimentation and density techniques[D]. Geoderma, 1979, 21: 311- 343.
    [166] Chotte J L, Ladd J N, Amato M. Sites of microbial assimilation and turnover of soluble and particulate 14C-labelled substrates decomposing in a clay soil[J]. Soil Biol.Biochem,1998, 30: 205- 218.
    [167] Jocteur Monrozier L, Ladd J N, Fitzpatrick R W, Foster R C, Raupach M. Components and microbial biomass content of size fractions in soils of contrasting aggregation[D]. Geoderma. 1991, 49: 37- 62.
    [168] Solomon D, Lehmann J , Zech W. Land use effects on amino sugar signature of chromic Luvisols in the semi-arid part of northern Tanzania[J]. Biol. Fert. Soils, 2001, 33: 33- 40.
    [169] Sollins P, Spycher G, Glassman C A. Net nitrogen mineralization from light and fraction forest soil organic matter[J]. Soil Biol. Biochem. 1984,16, 31- 37.
    [170]范广阔.更新方式对杉木林土壤有机碳质量和土壤呼吸的影响[M],福建农林大学,2008.
    [171] Barrios E, Kwesiga F, Buresh R J , Sprent J I. Light fraction soil organic matter and available nitrogen following trees and maize[J]. Soil Sci. Soc. Am. J. 1997. 61, 826- 831.
    [172]李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报, 2002, 20(5): 548- 552.
    [173]徐秋芳.森林土壤活性有机碳的研究[D].浙江大学. 2003.
    [174] Alvarez R, Alvarez C R. Soil organic matter pools and their associations with mineralization kinetics[J]. Soil Science of Society America Journal, 2000, 64: 184- 189.
    [175]何电源.中国哪方土壤肥力与栽培植物施肥[D].北京:科学出版社, 1994.
    [176]黄敏.亚热带丘陵区土壤有机碳、磷变异特征及驱动因子研究[D].华中农业大学, 2005.
    [177]郭静,姚孝友.不同生态修复措施下鲁中山区土壤的水文特征[J].浙江林学院学报, 2008, 25(3): 342- 349.
    [178]秦嘉海,金自学.祁连山不同林地类型对土壤理化性质和水源涵养功能的影响[J].水土保持学报, 2007, 21(1): 92~94.
    [179]安兴琴,陈玉春.浅议西北地区生态环境建设的气候效应[J].干旱地区农业研究, 2002, 20(1):116- 119.
    [180]田大伦,陈书军.樟树人工林土壤水文-物理性质特征分析[J].中南林学院学报, 2005, 25(2):1-6.
    [181]杨弘,李忠.长白山北坡阔叶红松林和暗针叶林的土壤水分物理性[J].应用生态学报, 2007, 18(2): 272- 276.
    [182]张希彪,上官周平.人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J].生态学报, 2006, 26(11): 3685- 3695.
    [183]郝占庆,王力华.辽东山区主要森林类型林地土壤涵蓄水性能的研究[J].应用生态学报, 1998, 9(3): 237- 241.
    [184]杨澄,刘建军.桥山森林土壤水分物理性质的分析[J].陕西林业科技, 1998, 1: 24- 27.
    [185]李鸿博,史馄,孙咏红,等.三种林下土壤浅剖面有机碳研究[J].生态学杂志, 2005, 24(10): 1230- 1333.
    [186]陈亮中.三峡库区主要森林植被类型土壤有机碳研究[M].北京林业大学, 2007.
    [187]周涛,史培军.土地利用变化对中国土壤碳储量变化的间接影响[J].地球科学进展, 2006, 21(2):138- 143.
    [188] Saggars, Yeates G W, Shepherd T G. Cultivation effeets on soil biological properties, micro-fauna and organie matter dynamics in Eutrie Gleysoland Gleyie Luvisol soil in New Zealand[J]. Soil Tillage Res. , 2001, 58: 55- 68.
    [189]张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境, 2003, 12(4): 500- 504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700