土地利用变化对土壤有机碳和土壤呼吸的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球土壤有机碳库约为1550Pg,约是陆地植被总碳储量的3倍、大气碳库的2倍。土壤每年以土壤呼吸形式向大气排放的60~80PgC,是人类燃烧化石能源排放到大气的12~16倍。由于人口的增加、人类活动的不断增强,土地利用和土地覆被发生了巨大变化,从而使更多的碳素释放到大气中,土地利用变化影响下相应CO_2的释放已不容忽视。据报道,每年因土地利用变化所释放的CO_2约占全球CO_2释放量的25%。
     我国亚热带山地丘陵红壤区山高坡陡、降雨量大且集中。由于人口密集,加上经济快速发展,人类活动已使本区域的土地利用方式发生了巨大的变化。大面积天然林经皆伐、炼山和整地后改为人工林、次生林、经济林和农田。红壤区由于土壤有机碳库储量不高,土壤有机质含量的变化是红壤区域土壤质量与土壤持续能力的重要表征。本地区土地利用的变化引起了人们的高度关注,鉴此本文在福建建瓯市选择了细柄阿丁枫天然林、木荷和杉木人工林、封山育林地、锥栗林、柑橘园和坡耕地七种闽北典型的土地利用方式,通过野外定位观测和实验室分析,研究了土地利用变化对土壤碳库、可溶性有机碳、轻组有机碳、微生物生物量碳以及土壤呼吸的影响。
     研究结果表明:
     (1)不同土地利用方式土壤有机碳含量总体上随着土壤深度的增加而减少。其中天然林、人工林、次生林整体上比经济林和坡耕地下降的幅度大。土地利用变化对表层土壤的影响显著高于底层土壤,0~5cm土层有机碳含量和储量受土地利用变化的影响最大,而0~20cm土层土壤有机碳储量占0~100cm土层的30.43%~40.86%,成为贮存有机碳的主要层次,40cm以下土层有机碳含量与储量受土地利用变化的影响很小。
     (2)0~100cm土层土壤有机碳储量大小顺序为:细柄阿丁枫天然林>杉木人工林>柑橘园>锥栗林>木荷人工林>封山育林地>坡耕地,其中细柄阿丁枫天然林SOC储量分别比木荷人工林、杉木人工林、封山育林地、锥栗林、柑橘园和坡耕地的高55.17%、36.53%、75.44%、45.91%、44.07%和86.10%。
     (3)不同土地利用方式土壤可溶性有机碳含量总体上随土层加深而降低,0~5cm土层DOC含量为40~60cm土层的2倍左右。其中细柄阿丁枫天然林0~5cm土层的DOC含量最高1682.08mg·kg~(-1)。锥栗林的最低(904.19mg·kg~(-1))。
     (4)不同土地利用方式随土壤剖面深度增加,轻组含量、轻组有机碳占总有机碳比例均明
The soil organic carbon pool is about 1550Pg, which is 3 times of vegetation's carbon storage, 2 times of atmosphere. The soil let 60~80Pg C to atmosphere with the soil respiration annually, which is 12~16 times of the burn of fossil energy. Due to the growth of population and the human's active, the land use and land cover have been changed greatly. So more carbon was released to atmosphere and people has attached importance to the release of CO_2 lead by the change of land use. It was reported that the CO_2 released by land use change was about 25% of the globe.
    The mountains are high and steep in the red soil region of sub-tropic in China. The rainfall is great and concentrates. As a result of high population's density and the quickly development of economy, human' s action have greatly changed the mode of land use. Many natural forests which were clean-cut 、slash burned and land prepared, were changed to plantation forests, secondary forests, orchards and steep farmlands. The storage of organic carbon in red soil region is low, so the content of soil organic matter is important symbolization of the soil quality and sustainability. People have attended to the change of land use. Therefore we chose different land uses mode including :the Altingia gracilipes natural forest、 the Schima superba and Cunninghamia lanceolata plantation forest, secondary forest、Castanea henryi and Citrus aurantium orchards and steep farmland in Jianou City of Fujian Province. We researched the effect of land use changes on the soil carbon pool, dissoveled organic carbon、light fraction organic carbon、microbial biomass carbon and soil respiration.
    The major results were summarized as follows:
    (1) Soil organic carbon contents decreased with soil depth increasing in different land utilization types, in which the drop extent of natural forest, plantation forest and secondary forest was bigger than orchard and steep farmland. The effect of land use change on the surface layer soil was more significant than on the substrate soil, in which the influence to soil organic content and storage in 0~5cm soil layer is most great. Soil organic carbon storage in 0~20cm was 30.43%~40.86% of that in 0~ 100cm soil layer, so the soil layer of 0~20cm is main. The influence to SOC content and storage in 0~40cm soil layer was few.
    (2) The order of soil organic storage in 0~ 100cm soil layer : Altingia gracilipes natural forest> Cunninghamia lanceolata plantation forest > Citrus aurantium orchard > Castanea henryi orchard > Schima superba plantation forest > the closing land for reforestation>steep farmland. The SOC storage of Altingia gracilipes is 55.17%, 36.53%, 75.44%, 45.91 %, 44.07% and 86.10% higher respectively than Schima superba, Cunninghamia lanceolata forest plantation, the land closing for
引文
1. IPCC, 1996, Climate change 1995, The science of climate change, Cambridge University Press
    2. Raich JW & Schlesinger WH. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus. 1992, 44B: 81-99
    3.周广胜等.全球变化生态学.北京:气象出版社,2003,12
    4. IPCC, 2000, Special report on land use, land-use change and forestry
    5. Parton W J, Schimel D S, Cole C V and Ojima D S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J, 1987, 51: 1173-1179
    6. Hassink J. Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization. Soil Biol. Biochem, 1995, 27: 1099-1108
    7. Haynes. R. J. Labile organic matter fractions and aggregate stability under short-term, grass-based leys. Soil biology and biochemistry., 1999, 31(13): 1821-1830
    8. McLauchlan K. K. and Sarah E. Hobbie. Comparison of labile soil organic matter fractionation techniques. Soil Sci. Soc. Am. J, 2004, 68: 1616-1625
    9. Christopher W. Swanston, Bruce A. Caldwell, Peter S. Homann, Lisa Ganio and Phillip Sollins. Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soils. Soil biology and biochemistry. 2002, 34(8): 1121-1130
    10. Franzluebbers A. J., R. L. Haney, C. W. Honeycutt, H. H. Schomberg, and F. M. Hons. Flush of Carbon Dioxide Following Rewetting of Dried Soil Relates to Active Organic Pools. Soil Science Society of America Journal. -2000. 64(2): 613-623
    11. Raich J. W. and Potter C. S., Global patterns of carbon dioxiode emissions from soils. Global biogeochemistry cycle. 1995, 9: 23-26
    12. Schlesingr W H, Andrews J A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000, 48: 7-20.
    13. Fang C. and J. B. Moncrief.. The dependence of soil CO2 ettlux on temperature. Soil Biology and Biochemistry. 2001, 33: 155-165.
    14. Stewart R & Hirst C T. 1914. Nitrogen and organic matter in dry farm soils. J. Am. Soc. Agron, 6(2): 49-56
    15. Salter R M& Green T C. J. Amer. Soc. Agron, 25: 622
    16. Plass G N. The carbon dioxide theory of climate change. 1955. Tellus, 8: 140-154
    17. Revelle R & Sues H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmosphere CO_2 during past decades. Tellus, 9: 118-127
    18.吴建国等.土地利用变化对土壤有机碳的影响—理论、方法和实践.北京:中国林业出版社.2004
    19.吴仲民,曾庆波,李意德等.尖峰岭热带森林土壤C储量和排放量德初步研究.植物生态学报,1997,21(5) 416-423
    20. Schlesinger W H, Carbon balance in terrestrial detritus. Ann. Rev. Ecol. Syst. 1997, 8: 51-81
    21. Brown S, Tropical forests and the globl carbon cycle: estimating state and change in biomass denity. In Forest Management and the Global Carbon Cycle, M. J. Apps and D. T. Price(eds.) Proceedings of a NATO Advanced Research Workshop, NATO ASI Series I, Vol.40, Springer—Verlag, Berlin: 1996, 135—144
    22. Lugo A E, Sanchez A J, Brown Set aL Land use and organic carbon content of some subtropical soils. Plant and Soil, 1986, 96: 185-196
    23. Alaan D H, Effects of nutrient accumulation by aspen, spruce and pine on soil properties. Soil Sci. Soc. Am. J, 1982, 46: 853-861
    24. Turner J & Meyer W B, Effects of radiata pine on soil chemical characteristics. For. Ecol. Manage, 1985, 11: 257-970
    25.王艳芬等.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响.植物生态学报,1998,22(6):545-551
    26.李忠佩等.红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟.应用生态学报,1998,9(4):65-370
    27. Gregorich E. G., M. H. Beare, U. Stoklas. et al., Biodegradability of soluble organic matter in maize-cropped soils. Geoderma. 2003, 113: 237-252
    28. Alvarez R., and C. R. Alvarez. Soil Organic Matter Pools and Their Associations with Carbon Mineralization Kinetics. Soil Science Society of America Journal. 2000. 64(1). 184-189
    29. Kristensen H. L., K. Debosz, and G. W. McCarty. Short-term effects of tillage on mineralization of nitrogen and carbon in soil. Soil Biol. Biochem. 2003, 35: 979-986
    30. Beck T., R. G. Joergensen, E. Kandeler et al., An inter-laboratory comparison of ten different ways of measuring soil microbial biomass carbon. Soil Biol. Biochem. 1997, 29: 1023-1032
    31. Michalzik B and Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem. Eur. J. Soil Sci., 1999, 50: 579-590
    32. Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci., 2000, 165(4): 277-304
    33. Flessa H, Ludwig B, Heil B, et al. The origin of soil organic C, dissolved organic C and respiration in a long-term experiment in Halle, Germany, determined by ~(13)C natural abundance. Journal of Plant Nutr. Soil Sci., 2000, 163: 157-163
    34. Johnson C E, Driscoll C T, Fahey T J, et al. Carbon dynamics following clear-cutting of a northern hardwood forest. In: McFee W W, Kelly J M eds. Carbon Forms and Functions in Forest Soils. Soil Science Society of America, Madison, WI. 1995. 463-488
    35. Kalbitz K, Properties of organic matter in soil solution in a german fen area as dependent on land use and depth. Geoderma, 2001, 104: 203-214
    36. Kalbitz K & Geyer S. Different effects of peat degradation on dissolved organic carbon and nitrogen. Organic Geochemistry, 2002, 33:319-326
    
    37. Neff J C& Hopper D U, Vegetation and climate controls on potential CO_2, DOC and DON production in northern latitude soils. Global Change Biology, 2002, 8: 872-884
    
    38. Michalzik B, Kalbitz K, Park J H, et al. Fluxes and concentrations of dissolved organic carbon and nitrogen - a synthesis for temperate forests. Biogeochemistry, 2001, 52(2): 173-205
    
    39. Dixon R K, Houghton R A, et al. Carbon pools and flux of global forest ecosystems, Science, 1994, 263:185-190
    
    40. Fang, J.Y., GH.Liu, S.L.Xu. Soil carbon pool in China and its global significance. Journal of Environmental Science (China). 1996, 8:249-254
    
    41. Greenland D J, Ford G W, separation of partially humified organic materials by ultrasonic dispersion. Eighth International Congress of Soil Science. Transaction 1964, 3, 137-148
    
    42. Scheffer B. Stabilization of organic matter in sand mixed cultures. In Soil organic matter studies, Int. Atomic Energy Agency, Vienna, Austria, 1984, 2: 359-363
    
    43. Spycher G, Sollins P, Roses S, Carbon and nitrogen in the light fraction of a forest soil: Verticle distribution and seasonal patterns. Soil Science. 1983,135:79-87
    
    44. Gregorich E G & Ellert B H, Light fraction and macroorganic matter in mineral soils. In: soil sampling and methods of analysis (ed by M.R.Carter). Canadian Society of Soil Science, 1993, 115:137-157
    
    45. Cambardella, C.A., & E.T.Elliott. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci.Soc.AmJ, 1992, 56:777-782
    
    46. Janzen H H, Campbell C A, Brandt S A. Light-fraction organic matter in soils from long-term crop rotations. Soil Sci. Soc. Am. J, 1992, 56: 1799-1806
    
    47. Kanazawa S, Filip Z. Distribution of microorganisms, total biomass, and enzyme activities in different particles of brown soil. Microb. Ecol, 1986, 12: 205-215
    
    48. Skjenstad J O, Taylor J A, Janik L J et al. Soil organic carbon dynamics under long term sugarcane monoculture. Australian Soil Research, 1999, 37: 151-164
    
    49. Zogg G P, Zak D R, Pregitzer K S, Burton A J. Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest. Ecology, 2000, 81: 1858-1866
    
    50. Dilly O, Blume H P, Sehy U, Jimenez M, Munch J C. Variation of stabilized, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices. Chemosphere, 2003, 52: 557-569
    
    51.王岩,沈其荣,史瑞和等.土壤微生物量及其生态效应.南京农业大学学报,1996,19(4):45-51
    
    52. Zech W, Senesi N, Guggenberger G Kaiser K, Lehmann J, Miano T M, Miltner A, Schroth G Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma, 1997, 79: 117-161
    
    53. Haynes. R.J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil biology and biochemistry, 2001. 32(2). 211-219
    54.沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响.土壤学报,2000,37(2):166-173
    55. Wang F E, Chen Y X, Tian G M, Kumar S, He Y F, Fu Q L, Lin Q. Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China. Nutrient Cycling in Agroecosystems, 2004, 68: 181-189
    56. Jenkinson D S, Powlson D S. The effects of biocidal treatments on metabolism in soiI-V. A method for measuring soil biomass. Soil Biol. Biochem, 1976, 8: 209-213
    57.何振立.土壤微生物量的测定方法:现状和展望.土壤学报,1994,22(4),36-44
    58. Vance, E. D., Brookes, P. C. and Jenkinson, D. S., Microbial biomass measurements in forest soils: The use of the chloroform fumigation-incubation method for strongly acid soils. Soil Biol. Biochem, 1987.19: 697-702
    59. Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem., 1985, 17: 837-842
    60. Wu J, O'Donnell A G, He Z L, et al. Fumigation-extraction method for the measurement of soil microbial biomass-S. Soil Biol. Biochem., 1994, 26: 117-125
    61. Sparling G P, Feltham C W, Reynolds J, et al. Estimation of soil microbial C by a fumigation-extraction method: use on soils of high organic matter content, and a reassessment of the K~(EC)-factor. Soil Biol. Biochem., 1990, 22: 301-307
    62. Inubushi K, Brookes P C, Jenkinson D S. Soil microbial biomass C, N and ninhydrin-N in aerobic and anaerobic soils measured by the fumigation-extraction method. Soil Biol. Biochem., 1991, 23: 737-741
    63. Sparling G P, Ross J D. Biochemical methods to estimate soil microbial biomass: current development and applications. In: Mulongoy K, Merkcx R eds. Soil organic matter dynamics and sustainability of tropical agriculture. John Wiley and Sons, Chichester, UK. 1993. 21-37
    64. Carter M R, Gregorich E G, Angers D A, Beare M H, Sparling G P, Wardle D A, Veroney R P. Interpretation of microbial biomass measurements for soil quality assessment in humid temperate regions. Can. J. Soil Sci., 1999, 79: 507-520
    65. Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem., 1987, 19(6): 703-707
    66. Henrot, J. and Robertson, G. P., Vegetation removal in two soils of the humid tropics: Effect on microbial biomass. Soil Biol. Biochem., 1994. 26: 111-116
    67. Arunachalam, A., Arunachalam, Kusum. Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of North-east India. Plant Soil 2000, 223, 185-193
    68. Smith J L, Paul E A. The role of soil type and vegetation on microbial biomass and activity. In: Mergusar F, Gantar M eds. Perspectives in Microbial Ecology. Slovene Society for Microbial Ecology, Ljubljana, Yugoslavia. 1988. 460-466
    69. Srivastava S C, Singh J S. Microbial C, N and P in dry tropical forest soils: Effects of alternate land-uses and nutrient flux. Soil Biol. Biochem., 1991, 23: 117-124
    70.黄承才.中亚热带东部毛竹林土壤微生物生物量的研究.浙江林业科技,2002,22(4):5-8
    71. Ayanaba A, Tuckwell S B, Jeninson D S. The effects of clearing and cropping on the organic reserves and biomass of tropical forest soils. Soil Biol. Biochem, 1976, 8: 519-525
    72. Salinas-Garcia J R, Hons F M, Matocha J E, et al. Soil carbon and nitrogen dynamics as affected by long-term tillage and nitrogen fertilization. Biol. Fertil. Soils, 1997, 25: 182-188
    73.郝文英.土壤微生物研究工作的回顾.1989,21(4):185-191
    74. Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev., 1992, 67: 321-358
    75. Raich JW & Nadelhoffer KJ. Belowground carbon allocation in forest ecosystems: Global trends. Ecol. 1989, 70: 1346-1354
    76. Zech W, Senesi N, Guggenberger G, Kaiser K, Lehmann J, Miano T M, Milmer A, Schroth G. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma, 1997, 79: 117-161
    77. Hougton RA. Changes in the storage of terrestrial carbon since 1850. Soil and Global Change, 1995, 45~65
    78. Aselmam T, Choudhary M A & Saggar S. Influence of land-use management on CO_2 emissions from a silt loam soil in new Zealand. Agriculture, Ecosystems and Enviroment, 2000. 77: 257-262
    79. Raich J W & Potter C S. Global patterns of carbon dioxide emission from soil. Global Biogeochem Cycle, 1995, 9: 23-26
    80. Rey A, Pegoraro E, Tedeschi V, et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy, Global Change Biol., 2002, 8(9): 851-866.
    81. Besnard E., C. Chenu, J. Balesdent, P. Poget, D. Arrouays. Fate of particulate organic matter in soil aggregates during cultivation. European Journal of soil science. 1996, 47, 495-503
    82.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社.2000
    83.杨玉盛,陈光水,林鹏等.格氏栲天然林与人工林细根生物量、季节动态及净生产力.生态学报,2003,23(9):1719-1730
    84.王清奎,江思龙,高洪等.土地利用方式对土壤有机质的影响.生态学杂志,2005,24(4):360-363
    85.李跃林,彭少麟,赵平等.鹤山几种不同土地利用方式的土壤碳储量研究.山地学报,2002,20(5):548-552
    86.谢锦升.植被恢复对退化红壤易变碳及土壤呼吸的影响.北京林业大学博士论文.2005
    87.徐秋芳,姜培坤.不同森林植被下土壤水溶性有机碳研究.水土保持学报,2004,18(6):84-87
    88. Knops J M H & Tilman D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology, 2000, 81(1): 88-98
    89. Murty D, Kirschbaum M U F, Mcmurtrie R E. et al.. Dose conversion of forest to agricultural land change soil carbon and nitrogen. Global Change Bioligy, 2002, 8: 105-123
    90.周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518-522
    91.王效科,郭然,吴庆标等.陆地生态系统固碳技术措施.2004
    92.陈泮勤主编.地球系统碳循环.北京:科学出版社,2004,523-564
    93. Freibauer A, Mark D. A. Rounsevell, Pete Smith, Jan Verhagen. 2004. Carbon sequestration in the agricultural soils of Europe. Geoderma. 122: 1-23
    94.林瑞余.森林土壤和枯枝落叶层DOM的研究,2003,福建农林大学硕士论文
    95.王连峰,潘根兴,石盛莉等.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布,植物营养与肥料学报,2002,8(1):29-34
    96.徐秋芳,姜培坤.不同森林植被下土壤水溶性有机碳研究.水土保持学报,2004,18(6)84-87
    97.谢锦升,杨玉盛,陈光水等.侵蚀红壤人工恢复的马尾松林水源涵养功能的研究,北京林业大学学报,2002,24(2):48-51
    98. McDowell W H, Likens G E. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol. Monogr., 1988, 58: 177-195
    99. Zsolnay A, Steindl H. Geovariability and biodegradability of the water-extractable organic material in an agricultural soil. Soil Biol. Biochem., 1991, 23: 1077-1082
    100. Quails R. G, Haines B L, Swank W T. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology, 1991, 72: 254-266
    101. Huang W Z, Schoenau J J. Fluxes of water-soluble nitrogen and phosphorous in the forest floor and surface mineral soil of a boreal aspen stand. Geoderma, 1998, 81: 251-264
    102. Six J, Guggenberger G. Sources and composition of soil organic matter fractions between and within soil aggregates. European journal of soil science. 2001. 52(4): 607-618
    103.杨玉盛,刘艳丽,陈光水等.格氏栲天然林与人工林土壤非保护性有机C研究,生态学报,2004,24(1):1-8
    104. Sollins P, Spycher G and Glassman C A. 1984. Net nitrogen mineralization from light- and heavy-fraction forest soil organic matter. Soil Biol. Biochem. 16, 31-37
    105. Barrios E, Kwesiga F, Buresh R J and Sprent J I 1997 Light fraction soil organic matter and available nitrogen following trees and maize. Soil Sci. Soc. Am. J. 61, 826-831
    106.殷士学.土壤微生物生物量及其养分循环关系的研究进展.土壤学进展,1993,21(4):1-8
    107.黄承才,葛滢,常杰等.中亚热带东部三种主要木本群落土壤呼吸的研究.生态学报,1999,19(3):324-328
    108.刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸.植物生态学报,1998,22(2):119-126
    109.蒋高明,黄银晓.北京山区辽东栎林土壤释放CO_2模拟实验研究.生态学报,1997,17(5):477-482
    110.罗辑解宪丽,孙波,周慧珍等.不同植被下中国土壤有机碳的储量与影响因子.土壤学报,2004,41(5):688-689
    111.杨玉盛,陈光水,王小国等.中亚热带森林转换对土壤呼吸动态及通量的影响.生态学报,2005,25(7):1684-1690
    112.周志田,成升魁,刘允芬等.中国亚热带红壤丘陵区不同土地利用方式下土壤CO_2排放规律初探.资源科学,2002,24(2):83-87
    113.易志刚,蚁伟民.森林生态系统土壤呼吸的研究进展.生态环境,2003,12(3):361-365
    114.杨玉盛,何宗明,林光耀等.退化红壤不同治理模式对土壤肥力的影响.土壤学报,1998,35(2):276-282
    115.杨玉盛,何宗明,邱仁辉等.红壤严重退化生态系统不同恢复和重建措施的植物多样性和地力恢复的研究.生态学报,1999,19(4):490-494
    116. Raich J W, Tufekcioglu A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 2000, 48: 71-90
    117.陈光水,杨玉盛,王小国等.格氏栲天然林与人工林根系呼吸季节动态及影响因素.生态学报,2005,25(8):1941-1947
    118. Ryan M G, Lavigne M G, Gower S T. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res., 1997, 102(28): 871-883
    119. Bowden R D, Nadelhoffer K J, Boone R D, et al. Contributions of aboce ground litter, below ground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Can, J. For. Res., 1993, 23 (7): 1402-1407
    120.杨玉盛,董彬,谢锦升等.森林土壤呼吸及其对全球变化的响应.生态学报,2004,24(3):583-591
    121. Keith H., K. L. Jacobsen and R. J. Raison. Effects of soil phosphones availability, temperature and moisture on soil respiration and in Eucalyptus pauciflora forest. Plant and Soil. 1997, 190: 127-141
    122. Luo Y., S. Wan, D. Hui and L. L. Wallace. 2001. Acclimatization of soil respiration to warming in a tall grass praine. Nature. 413: 622-625
    123. Rustad. L. E. and I. J. Fernandez. Experimental soil warming effects on CO_2 and CH_4 flux from a low elevation spruce-fir forest soil in Main, USA. Global Change Biology. 1998, 4: 597-605
    124. Cheng W., Q. Zhang, D. C. Coleman, C. R. Carroll and C. A. Hofman. Is available carbon limiting microbial respiration in the rhizosphere? Soil Biology and Biochemistry. 1996, 28: 1283-1288
    125.李凌浩,王其兵,白永飞等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究.植物生态学报,2000,24(6):680-686
    126.陈全胜,李凌浩,韩兴国等.温带草原11个植物群落夏秋土壤呼吸对气温变化的响应.植物生态学报,2003,27(4):441-447

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700