稀土金属有机羧酸骨架材料的制备、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis, Structure and Properties of Metal Organic Carboxylate Frameworks Based on Rare Earth Elements
  • 作者:郭晓丹
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2006
  • 导师:裘式纶
  • 学科代码:070301
  • 学位授予单位:吉林大学
  • 论文提交日期:2006-04-25
摘要
本论文致力于构筑多功能的金属有机骨架材料,并研究金属中心和开放骨架结构赋予这些材料在光学、磁学以及吸附分离方面的性能。考虑到稀土元素在光学和磁学方面的特殊性能,选择稀土金属作为功能性的金属中心与刚性羧酸类有机配体(对苯二甲酸、均苯三甲酸、联苯二甲酸)构筑了新型稀土金属有机羧酸骨架材料。从稀土元素的配位习惯和构筑开放骨架的具体合成条件出发,选择中低温溶剂挥发法合成具有开放骨架的金属有机骨架材料,因为稀土元素在倾向于形成较高的配位数,特别时在水热和溶剂热体系中,不利于形成开放骨架和多孔结构。
     由于稀土元素配位方式的多样性,获得的金属有机骨架材料表现了非常丰富的骨架结构。在第二章中,介绍了六核棒状次级结构单元[RE_6(CO_2)_(18)]构筑三维金属有机骨架结构。第三章介绍了一系列具有ABW分子筛拓扑的三维金属有机骨架材料,这一结构是目前报道的具有ABW分子筛拓扑结构的骨架材料中唯一一个以稀土元素作为金属中心的结构。在第四章,通过拓展的直线型有机配体(联苯二羧酸)构筑了具有Paddle-wheel次级结构单元的三维金属有机骨架结构,这一结构包含25.15×17.09(?)~2的一维直孔道,是目前报道的由稀土元素构筑的非贯穿结构中孔道最大的。第五章介绍的三维结构具有螺旋的一维孔道,孔道中的客体分子和骨架上指向孔道的端基水分子可以通过灼烧过程除去,表现了非常优秀的热稳定性和气体储存能力。在合成第一章介绍的骨架材料时,改变体系酸度可以获得一系列二重贯穿的三维结构(第六章)。
     本论文详细的阐述了上述金属有机骨架材料的合成条件和方法、结构特点、荧光性质、磁学性质以及吸附性质和气体储存性质,并研究了结构之间转化的可能性。在丰富金属有机骨架材料合成化学和结构化学的同时,为定向合成积累了有价值的实验事实。
Metal-organic frameworks, a kind of functional molecular materials, have attracted much attention for their flexible tailoring, various topologies and promising application in ion-exchange, adsorption, molecular recognization, catalysts along with optics, electrics, magnetism and enantioselective separation. Metal-organic frameworks with rigid open frameworks not only possess porous crystaline structures similar to those of inorganic microporous materials, zeolites, but also exhibit extra-large pores in the mesopore range, which are assembled through the extension of organic functional groups and the design of topologies. Along with the design and preparation of MOFs of larger channels and cavities, much attention has turned to synthesize metal-organic frameworks with the promising applications in optics, electric, magnetism, enantioselective separation and catalysis by selecting functional metal ions and organic ligands with specific groups.New materials with rare earth element are of great interests due to their amazing optical and magnetic properties arising from 4f electrons. In recent years, many research groups have choosen rare earth elements as metal centers to assemble metal
    organic frameworks and a number of novel frameworks have been synthesized. However, it is really difficult to obtain open frameworks with permanent porositis for their high-coordination number and flexible coordination geometry compared with traditional metals, especially under hydrothermal conditions. Considering the functions of metal-organic frameworks and the synthesis conditions, we designed and synthesized five serials of metal-organic frameworks based on rare earths by choosing rigid organic ligands with carboxylate groups, H2BDC, H3BTC, H2bpdc, and using mild solvent vapor conditions. We also investigated their optical and magnetic properties coming from rare earth metal centers.The first series of microporous lanthanide metal organic carboxylate frameworks, Tb3(BDC)4.5(DMF)2(H2O)3-(DMF)(H2O) (1), Ln3(BDC)4.5(DMF)2 -(H20)3-(DMF)(C2H5OH)o.5(H20)o.5 (Ln = Dy (2), Ho (3), Er (4)) and Y3(BDC)4.5(DMF)2(H2O)3-(DMF)2 (5) have been synthesized under mild conditions. X-ray diffraction analyses reveal that they are extreme similar in structure and crystallized in triclinic space group P-l. An edged-sharing metallic dimmer and four metallic monomers are assembled by eighteen carboxylate groups to form discrete inorganic rod-shaped building units (Ln6(CO2)i8), which link each other through phenyl groups to lead to three-dimensional open frameworks with approximately 4 x 6 A rhombic channels along the [0 -1 1] direction. Water sorption isotherm proves that guest molecules in the framework of complex 1 can be removed to produce permanent microporosity and about four water molecules per formula unit can be adsorbed into the micropores. These complexes exhibit blue fluorescence and complex 1 shows Tb3+characteristic emission in the range of 450 ~ 650 nm.The second serial of metal organic carboxylate frameworks based on rare earth elements, RE(BTC)(DMF)(DMSO) [RE = Tb (6), Dy (7), Ho (8), Er (9), Yb (10), Y
    (11)] with zeolite ABW topology have been synthesized for the first time under mild conditions. They exhibit a same three-dimensional (3D) architecture and crystallize in monoclinic symmetry space group P2i/n. Their structures are built up from inorganic and organic 4-connected building units, whose vertex symbols are 44-6-6-6-8. The building units link each other to generate approximate 5 x 8 A2 channels along the [1 0 0] direction. The luminescent and magnetic properties of these compounds are investigated and the results reveal that they could be anticipated as potential antiferromagnetic materials and fluorescent materials.The third serie of three-dimensional (3D) novel metal organic carboxylate frameworks, RE(bpdc)i.5(H20>(DMF)o.5 [RE = Tb (12), Ho (14), Er (15), Y (18)], Ln(bpdc)1.5(DMF)-(H2O) [Ln = Dy (13), Tm (16), Yb (17)] have been synthesized by reaction of the rare earth ions (M3+) with 4,4'-biphenyldicarboxylic acid (H2bpdc) in a mixed solution of DMF and C2H5OH. They possess the same 3D architectures and crystallize in monoclinic space group C2/c. Two seven-coordinated metal centers and four dimonodentate bpdc groups construct a paddle-wheel building block. These building blocks connect with two carboxyl groups to lead to one-dimensional inorganic chain, —M-O-C-O-M—, along the [001] direction. The inorganic chains are linked with two biphenyl groups to form 25.15 A x 17.09 A rhombic channels along c axis without interpenetration. These complexes exhibit strong fluorescence in the visible region and complex 3 shows Er3+ characteristic emission in the range of 1450-1650 nm at room temperature. These complexes could be anticipated as potential fluorescent probes and an IR-emitter, respectively.The forth serial of lanthanide metal organic carboxylate frameworks with excellent thermal stability, Ln(BTC)(H2O>(DMF) [Ln = Sm (19), Eu (20), Tb (21), Dy (22)] have been synthesizd under mild conditions. The terminal water molecules
    of compound 20 could be removed to yield a new microporous compound, Eu(BTC) (20A). X-ray diffraction analyse reveals that compound 20 is crystallized in a chiral space group P4\22. The homochirality of compound 20 can be obtain through adding chiral auxiliary during the synthesis process, which could be examined by the VCD spectrum. Compound 20A shows a high BET surface area, 665 m2/g, a narrow pore size distribution and could be anticipated as gas storage materials to take up hydrogen and carbon dioxide. The metal centers of compound 20A is available Lewis acid metal sites for they are coordinative unsaturation.Finally, a serial of metal organic carboxylate frameworks based on rare earth elements, Ln(BDC)i.5(DMF)(H2O)-(H2O) [Ln = Tb (23), Dy (24), Er (25), Tm (26)], are synthesized which shows two-fold interpenetration structure..
引文
[1] T. Sun, J. Y. Ying, Nature 1997, 389, 704-706.
    [2] W.H. Baur, Nature Materials 2003, 2, 17-18.
    [3] G. Wirnsberger, P. Yang, B. J. Scott, B. F. Chmelka, G. D. Stucky, Spectro-chim. Acta A 2001, 57, 2049.
    [4] C.T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710-712.
    [5] F. Schuth, W. Schmidt, Adv. Mater., 2002, 14, 629-638.
    [6] J. Ying, C. Mehnert, M. Wong, Angew. Chem. Int. Ed. 1999, 38, 56.
    [7] T. Maschmeyer, F. Rey, G. Sankar, J. Thomas. Nature 1995, 378, 159.
    [8] R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita Nature 2005, 436, 238-241.
    [9] J.S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. Jin, K. Kim, Nature 2000, 404, 982.
    [10] M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319-330.
    [11] J.L.C. Rowsell, O. M. Yaghi, Micro. Meso. Mater. 2004, 73, 3-14.
    [12] A. F. Wells, Three Dimensional Nets and Polyhedra, New York, 1977.
    [13] A.F. Wells, Structrual Inorganic Chemistry, 5th ed., Oxford Univ. Press, 1983.
    [14] O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature, 2003, 423, 705-714.
    [15] S.R. Batten. R. Robson, Angew. Chem. Int. Ed., 1998, 37, 1460-1494.
    [16] S.R. Batten, B. F. Hoskins, B. Moubaraki, K. S. Murray, R. Robson, J. Chem. Soc, Dalton Trans., 1999, 2977-2986.
    [17] M. J. Plater, M. R. St. J. Foreman, T. Gelbrich, M. B. Hursthouse, J. Chem.Soc, Dalton Trans., 2000, 1995-2000.
    [18] J. L. C. Rowsell, O. M. Yaghi, Micro. Meso. Mater. 2004, 73, 3-14.
    [19] N. W. Ockwig, O. Delgado-Friedrichs, M. O'Keeffe, O. M. Yaghi, Acc. Chem. Res. 2005, 38, 176-182.
    [20] S. Hu, J. C. Chen, M. L. Tong, B. Wang, Y. X. Yan, S. R. Batten, Angew. Chem. Int. Ed, 2005, 44, 5471.
    [21] O. Ohmori, M. Kawano, M. Fujita, Angew. Chem. Int. Ed, 2005, 44, 1962.
    [22] S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science, 1999, 283, 1148-1150.
    [23] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276-279.
    [24] M. Eddaoudi, J. Kim, N. Rsi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science, 2002, 295, 469-472.
    [25] H. K. Chae, D. Y Siberio-perez, J. Kim. Y Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, O. M. Yaghi, Nature, 2004, 427, 323-527.
    [26] G. Ferey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surble, J. Dutour, I. Margiolaki, Angew. Chem. Int. Ed. 2004, 43, 2-7.
    [27] G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, Science 2005, 309, 2040-2042.
    [28] N. L. Rosi, J. Eckert, M. Eddaoudi, David. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi, Science, 2003, 300, 1127-1129.
    [29] J. L. C. Rowsell, A. R. Millward, K. S. Park, O. M. Yaghi, J. Am. Chem. Soc, 2004,126, 5666-5667.
    [30] J. L. C. Rowsell, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4670-4679.
    [31] J. L. C. Rowsell, O. M. Yaghi, J. Am. Chem. Soc. 2006,128, 1304-1315.
    [32] H. Chun, D. N. Dybtsev, H. Kim, K. Kim Chem. Eur. J. 2005,11, 3521-3529.
    [33] T. Duren, L. Sarkisov, O. M. Yaghi, R. Q. Snurr, Langmuir, 2004, 20, 2683-2689.
    [34] A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc, 2005,127, 17998-17999.
    [35] E. Manousakis, Rev. Mod. Phys. 1991, 63, 1-62.
    [36] K. R. Dunbar, J. Solid State Chem. 2001, 159, 251-252.
    [37] E. Coronado, J. R. Galan-Mascaros, C. J. Gomez-Garcia, V. Laukhin, Nature 2000, 408, 447-449.
    [38] S. R. Batten, B. F. Hoskins, B. Moubaraki, K. S. Murray, R. Robson, Dalton Trans. 1999, 2977-2986.
    [39] B. Moulton, J. J. Lu, R. Hajndl, S. Harkkharan, M. J. Zaworotko, Angew. Chem. Int. Ed, 2002, 41, 2821-2824.
    [40] J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. CortEs, L. Lezama, T. Rojo, Coord. Chem. Rev., 1999,193-195, 1027.
    [41] R. CortEs, L. Lezama, J. L. Pizarro,M. I. Arriortua, X. Solans, T. Rojo, Angew. Chem. Int. Ed, 1994, 33, 2488.
    [42] T. F. Liu, D. Fu, S. Gao, Y. Z. Zhang, H. L. Sun, G. Su, Y.J. Liu, J. Am. hem. Soc, 2003,125,13976.
    [43] E. Q. Gao, S. Q. Bai, Z. M.Wang, C. H. Yan, J. Am. Chem. Soc, 2003, 125, 4984.
    [44] C. M. Liu, S. Gao, D. Q. Zhang, Y. H. Huang, R. G. Xiong, Z. L. Liu, F. C. Jiang, D. B. Zhu, Angew. Chem. Int. Ed, 2003, 43, 990-994.
    [45] X-Y. Wang, L. Wang, Z-M. Wang, S. Gao, J. Am. Chem. Soc, 2006, 128, 674-675.
    [46] S. J. Lee, W. Lin, J. Am. Chem. Soc, 2002,124, 1554-1555.
    [47] G. seeber, A. L. Pickering, D. Long, L. Cronin, Chem. Commu., 2003, 2002-2003.
    [48] C. Parlsen. B. B. Amabilino. J. Veciana, Angew. Chem. Int. Ed, 2002, 41, 586-589.
    [49] U. Siemeling, I. Scheppelmann, B. Neumann, A. Stammler, H. G. Stammler, J. Frelek, Chem. Commun., 2003, 2236-2237.
    [50] K. Inoue, K. Kikuchi, M. Ohba, H. Okawa, Angew. Chem. Int. Ed, 2003, 42 4810-4813.
    [51] R. Xiong, X. You, B. F. abrahams, Z. Xue, C. Che, Angew. Chem. Int. Ed, 2001,40,4422-4425.
    [52] O. R. Evans, H. L. Ngo, W. Lin, J. Am. Chem. Soc, 2001,123, 10395-10396.
    [53] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature, 2000, 404, 982-986.
    [54] W. Lin, J. Solid State Chem., 2005,178, 2486-2490.
    [55] S. Y. Yu, Z. X. Zhang, E. C .C. Cheng, Y. Z. Li, V. W. W. Yam, H. P. Huang, R. Zhang, J. Am. Chem. Soc, 2005,127, 17994-17995.
    [56] G. Tian, G. Zhu, X. Yang, Q. Fang, M. Xue, Qiu SL, Chem. Commun., 2005, 1396-1398.
    [57] C.J. Kepert, T.J. Prior, M.J. Rosseinsky, J. Am. Chem. Soc, 2000,122, 5158.
    [58] D. Bradshaw, T.J. Prior, E.J. Cussen, J.B. Claridge, M.J. Rosseinsky, J. Am. Chem. Soc, 2004, 126, 6106.
    [59] O. R. Evans, H. L. Ngo, W. Lin, J. Am. Chem. Soc, 2001,123, 10395.
    [60] O. R. Evans, D. R. Manke, W. Lin, Chem. Mater, 2002,14, 2002, 3866.
    [61] Y. Cui, O. R. Evans, L. H. Ngo, P. S. White, W. Lin, Angew. Chem. Int. Ed, 2002, 41 1159.
    [62] H. L. Ngo, W. Lin, J. Am. Chem. Soc., 2002, 124, 14298.
    [63] Y. Cui, S. J. Lee, W. Lin, J. Am. Chem. Soc., 2003, 125, 6014.
    [64] H. L. Ngo, A. Hu, W. Lin, J. Mol. Catal. A. Chem., 2004, 215, 177.
    [65] A. Hu, H. L. Ngo, W. Lin, Angew. Chem., Int. Ed., 2003, 42, 6000.
    [66] A. Hu, H. L. Ngo, W. Lin, J. Am. Chem. Sot., 2003, 125, 11490.
    [67] C.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Sot., 2005, 127, 8940.
    [68] J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kimoon, Nature, 2000, 404, 982.
    [69] T. M. Reineke, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Angew. Chem. Int. Ed. 1999, 38, 2590-2594.
    [70] T. Devic, C. Serre, N. Audebrand, J. Marrot, G. Ferey, J. Am. Chem. Sot., 2005, 127, 12788-12789.
    [71] J. Perles, M. Iglesias, M.-A. Martin-Luengo, M. A. Monge, C. Ruiz-Valero, N. Snejko, Chem. Mater., 2005, 17, 5837-5842.
    [72] Hayakawa, T.;Furuhashi, K.;Nogami, M. J. Phys. Chem. B. 2004, 108, 11301.
    [73] Serre, C.;Millange, F.;Marrot, J.;Ferey, G. Chem. Mater. 2002, 14, 2409.
    [74] Ma, L.;Evans, O. R.;Foxman, B. M.;Lin W. Inorg. Chem. 1999, 38, 5837.
    [75] de Zea Bermudez, V.;Ostrovskii, D.;Goncalves, M. C.;Lavoryk, S.;Carlos, L. D.;Sa Ferreira, R. A. J. Phys. Chem. B. 2005, 109, 7110.
    [76] B. Zhao, X. Y. Chen, P. Cheng, D. Z. Liao, S. P. Yan, Z. H. Jiang, J. Am. Chem. Soc. 2004, 126, 15394.
    [77] T. M. Reineke, M. Eddaoudi, M. Fehr, D. Kelley, O. M. Yaghi, J. Am. Chem. Soc. 1999, 121, 1651.
    [78] G. Mancino, A. J. Ferguson, A. Beeby, N. J. Long, T. S. Jones, J. Am. Chem. Soc., 2005,127, 524-525.
    [79] C. Benelli, D. Gatteschi, Chem. Rev, 2002,102, 2369-2387.
    [80] H. H. Zhao, M. J. Bazile, J. R. Galane-Mascaros, K. R. Dunbar, Angew. Chem. Int. Ed., 2003, 42, 1015-1018.
    [81] B.-Q. Ma, S. Gao, G. Su, G.-X. Xu, Angew. Chem. Int. Ed. Engl, 2001, 40, 434.
    [82] H. Z. Kou, S. Gao, B. W. Sun, J. Zhang, Chem. Mater., 2001,13, 1432.
    [83] H. Z. Kou, S. Gao, X. Jin, Inorg. Chem. 2001, 40, 6295.
    [84] S. Gao, G. Su, T. Yi, B. Q. Ma, Phys. Rev. B 2001, 62, 054431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700