金属有机骨架材料中流体吸附性质的量化计算与分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属有机骨架材料(Metal-Organic Frameworks,MOFs)是一种类似于沸石的新型纳米多孔材料,具有结构组成的多样性、较大的比表面积和孔隙率、热稳定性好、可裁剪性的孔等特点,可应用在气体储存、分离、催化等领域。计算化学(包括量子化学与分子模拟)不仅可以突破传统方法中的局限性,而且还可为最佳吸附材料的设计和最优操作工况的确定提供理论依据,实现从以经验为主向定量、定向制备的转变,从而节省大量繁杂的实验研究。因此,开展对MOFs中流体的吸附、扩散等性质的理论研究,具有非常重要的实际意义。
     本文对MOFs中流体的吸附、分离、扩散等性质,采用量子化学计算与分子模拟两种方法,进行了系统的理论研究。主要内容如下:
     1、基于量子化学计算的方法,对甲烷在IRMOF-1和IRMOF-6中的吸附机理近行了系统的理论研究。得出甲烷在这两种MOF材料中的吸附能分为四个部分:大、小胞孔内的OZn_4簇的角落处和有机连接体苯环面上及侧边位。OZn_4簇是最佳吸附位,吸附最优构型是甲烷中C—H键指向氧或苯环面正上方。增长有机连接体,或在苯环引入给电子基团和含氧等极性官能团,有利于增强甲烷与MOFs的相互作用,从而有利于提高甲烷与MOF材料之间的吸附能。
     2、通过GCMC方法,对甲烷在各种MOFs中的吸附行为进行了模拟,得出影响MOF材料吸附量的主要因素是比表面积(S_(acc))、自由体积份数(V_(free))和无限释稀吸附热(q_(st)~∞)等,并且相互影响。同一系列的MOFs,其吸附规律具有相似性。从压力关系考虑,吸附量明显分为三个区间:在低、中和高压区间,吸附量分别与吸附材料的q_(st)~∞、S_(acc)和V_(free)相关联。
     3、采用GCMC方法研究了Cu-BTC在气体吸附分离中的应用,得出Cu-BTC是一种吸附分离的潜在MOF材料。孔径尺寸的大小、吸附质与吸附剂之间的静电力,是吸附选择性改善的重要原因。
     4、采用量子化学计算与GCMC模拟相结合的方法,研究了具有连锁结构和非连锁结构的MOFs对气体吸附储存、分离的影响。得出在较低压力下,具有连锁结构的MOFs比非连锁结构的MOFs有较高的吸附量,和较好的分离效果。
     5、采用柔性和刚性两种结构模型,通过分子力学与分子动力学相结合的方法,研究了甲醇分子在MOF-E[Ni_2(4,4’-Bipyridine)_3(NO_3)_4]中的吸附、扩散行为。得出每Ni_2结构单元稳定吸附量是2个甲醇分子,多于2个甲醇分子时骨架发生明显变形,出现吸附等温线的梯级现象;柔性模型下的结合能和扩散势垒值更加接近实际,说明宜采用柔性骨架模型模拟计算此类材料。
Metal-Organic Frameworks (MOFs), "soft" analogues of zeolites, is a new class of nanoporous materials. MOFs having extremely high porosities, chemical diversity and tailored materials as robust solids with high thermal stability and well-defined pore sizes are promising materials for gases storage, separation, and catalyst. Computational chemistry, including molecular simulation and quantum chemistry, can not only overcome the limitations of traditional methods, but also provide theoretical guidance for the design of optimal adsorbents and the determinations of optimal industrial operations. It saves a lot of time for complicated experimental work and realizes the transformation from the experimental to quantification. So, theoretical studies of fluid behaviors in MOFs will be very useful for the application of these materials.
     In this work, gas storage, separation and diffusion in MOFs have been carried out using quantum chemical calculations and molecular simulations. The main contents and findings are summarized as follows.
     1. Quantum chemical calculations were used to study the adsorption of methane in IRMOF-1 and IRMOF-6. The results show that there are four adsorption sites including the corners of cell and the sides or upsides of the linkers in MOFs, and the OZn_4 clusters are the preferential adsorption sites. It could be concluded that the adsorption energy between methane and frameworks could be increased by increasing the length of the linkers and introducing electron-donor functional or polar functional groups to the organic linkers.
     2. A systematic Monte Carlo simulation study has been performed on the adsorption of CH_4 in a series of MOFs to confirm the desired characteristics of an optimal adsorbent for methane storage. The simulations show that isosteric heat of adsorption, accessible special area, free volume are all influence properties for a material with adsorption capacity. However, not all these properties are compatible. The same series MOFs have the similar characteristics of gas adsorption from the simulations. The results reveal the existence of three adsorption regimes: at low pressure, methane uptake correlates with the heat of adsorption; at intermediate pressure, methane uptake correlates with the surface area; and at the highest pressures, methane uptake correlates with the free volume.
     3. GCMC simulations were conducted to systematically evaluate the gas adsorption separation in Cu-BTC. The results show that Cu-BTC could be potentially used for the gas purification and separation. Pore sizes in Cu-BTC and the electrostatic actions between adsorbent and absorbate improve the selective adsorption behaviors.
     4. Quantum chemical calculations and GCMC simulations were performed to investigate the effects of catenation on gas storage and separation in IRMOF-9 and IRMOF-10. The results show that the interpenetrating MOFs have higher capacity and selective factor than those non-interpenetrating MOFs at lower pressure or loading.
     5. Adsorption and diffusion behaviors of methanol in MOF-E were obtained with flexible and rigid models by using molecular mechanics and molecular dynamics. The results indicate that per Ni_2 unit can sorb two methanol molecules stably and the structure undergo obvious deformation when the loading is above two molecules, which resulted in methanol adsorption isotherm step. The calculated adsorption energy and diffusion barrier are agreement with the experiment well by flexible model. It could be concluded that flexible model should be considered to study the adsorption and diffusion characterizations of adsorbate in such MOFs.
引文
[1] Young David C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems [M]. John Wiley & Sons Inc.: New Yock, 2001
    [2] Bnmger Axel T, Adams Paul D., Molecular Dynamics Applied to X-ray Structure Refinement [J]. Acc. Chem. Res., 2002, 35: 404-412
    [3] Warshel A, Molecular Dynamics Simulations of Biological Reactions [J]. Ace. Chem. Res., 2002, 35:385-395
    [4] 李以圭,刘金晨.分子模拟与化学工程[J].现代化工.2001.21:10-15
    [5] 刘志平,黄世萍.汪文川.分子计算科学.化学工程新的生长点[J].化工学报,2003,54:464-475
    [6] 朱宇,陆小华,丁皓,王俊,王延儒,时钧.分子模拟在化工应用中的若干问题及思考[J].化工学报,2002,55:1213-1223
    [7] 林之恩,杨国昱.多孔材料化学:从无机微孔化合物到金属有机多孔骨架[J].结构化学,2004,23:1388-1398
    [8] 魏文英,方键,孔海宁,韩金玉,常贺英.金属有机骨架材料的合成及应用[J].化学进展.2005.17:1110--1115
    [9] Kitagawa S, Kitaura R, Nora S. Functional Porous Coordination Polymers [J]. Angew. Chem. Int. Ed., 2004, 43:2334-2375
    [10] James S L. Metal-Organic Frameworks [J]. Chem. Soc. Rev., 2003, 32:276-288
    [11] Chen Banglin, Eddaoudi M, Hyde S T, O'Keeffe M, Yaghi O M. Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores [J]. Science, 2001,291:1021-1023
    [12] Nathaniel L Rosi, Juergen Eckert, Mohamed Eddaoudi, David T Vodak, Jahcon Kim, Michael O'Keeffe, Omar M Yaghi. Hydrogen Storage in Microporous Metal-Organic Frameworks [J]. Science, 2003, 300: 1127-1129
    [13] Hee K Chael, Diana Y Siberio-Pe'rez, Jaheon Kim, YongBok Go, Mohamed Eddaoudi. Adam J Matzger, Michael O'Keeffe, Omar M Yagbi. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals [J]. Nature, 2004, 427:523-527
    [14] Banglin Chen, Nathan W O ckwig, Andrew R Millward, Damacio S Confreres, Omar M Yaghi. High H_2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites [J]. Angew. Chem. Int. Ed., 2005, 44:4745-4749
    [15] Jeong Yong Lee, Long Pan, Sean P Kelly, Jacek Jagiello, Thomas J Emge, Jing Li. Achieving High Density of Adsorbed Hydrogen in Microporous Metal Organic Frameworks [J]. Adv. Mater., 2005, 17:2703-2706
    [16] Banu Kesanli, Yong Cui, Milton R Smith, Edward W Bittner, Bradley C Bockrath, Wenbin Lin. Highly Interpenetrated Metal-Organic Frameworks for Hydrogen Storage [J]. Angew. Chem. Int. Ed., 2005, 44:72-75
    [17] Jorge A R Navarro, Elisa Bare.a, Juan M Salas, Norberto Masciocchi, Simona Galli, Angelo Sironi, Conchi O Ania, Jose B Parra. H_2, N_2, CO, and CO_2 Sorption Properties of a Series of Robust Sodalite-Type Microporous Coordination Polymers [J]. Inorg. Chem., 2006, 45:2397-2399
    [18] Andrew R Millward, Omar M Yaghi. Metal-Organic Frameworks with Exceptionally High Capacily for Storage of Carbon Dioxide at Room Temperature [J]. J. Am. Chem. Soc., 2005, 127, 17998-17999
    [19] Michel Latroche, Suzy Surbl, Christian Serre, Caroline Meliot-Draznieks, Philip L Llewellyn, Jin-Ho Lee, Jeng-San Chang, Sung Hwa Jhung, Gerard Ferey. Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL-100 and MIL-101 [J]. Angew. Chem. Int. Ed., 2006, 45:8227-8231
    [20] Pascal D C Dietzel, Barbara Panell, Michael Hirscher, Richard Bloma, Helmer Fjellvag. Hydrogen Adsorption in a Nickel Based Coordination Polymer with Open Metal Sites in the Cylindrical Cavities of the Desolvated Framework [J]. Chem. Commun., 2006, 959-961
    [21] Mitten Dinca, Anne Dailly, Yun Liu, Craig M Brown, Dan A Neumann, Jeffrey R Long. Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn~(2+) Coordination Sites [J]. J. Am. Chem. Soc., 2006, 128:16876-16583
    [22] Simon M Humphrey, Jong-San Chang, Sung Hwa Jhung, Ji Woong Yoon, Paul T Wood. Porous Cobalt (Ⅱ)-Organic Frameworks with Corrugated Walls: Structurally Robust Gas-Sorption Materials [J]. Angew. Chem. Int. Ed., 2007, 46:272-275
    [23] Danil N Dybtsev, Hyungphil Chun, Sun Hong Yoon, Dongwoo Kim, Kimoon Kim. Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties [J]. J. Am. Chem. Soc., 2004, 126, 32-33
    [24] Xiang Lin, Junhua Jia, Xuebo Zhao, K Mark Thomas, Alexander J Blake, Gavin S Walker, Neil R Champness, Peter Hubberstey, Martin Schroder. High H_2 Adsorption by Coordination-Framework Materials [J]. Angew. Chem. Int. Ed. 2006, 45:7358-7364
    [25] Long Pan, David H Olson, Lauren R Ciemnolonski, Ryan Heddy, Jing Li. Separation of Hydrocarbons with a Microporous Metal-Organic Framework [J]. Angew. Chem. Int. Ed. 2006, 45:616-619
    [26] Michel Latroche, Suzy Surble, Christian Serre, Caroline Mellot-Draznieks, Philip L Llewellyn, Jin-Ho Lee, Jong-San Chang, Sung Hwa Jhung, Gerard Ferey. Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL-100 and MIL-101 [J]. Angew. Chem. Int. Ed. 2006, 45:8227-8231
    [27] Ying Wei Li, Ralph T Yang. Significantly Enhanced Hydrogen Storage in Metal-Organic Frameworks via Spillover [J]. J.Am. Chem. Soc. 2006, 125:726-727
    [28] Jesse L C Rowsell, Omar M Yaghi. Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks [J]. J. Am. Chem. Soc. 2006, 128, 1304-1305
    [29] Long Pan, Brett Parker, Xiaoying Huang, David H Olson, JeongYong Lee, Jing Li. Zn(tbip)(H_2tbip=5-tert-Butyl Isophthalic Acid): A Highly Stable Guest-Free Microporous Metal Organic Framework with Unique Gas Separation Capability [J]. J. Am. Chem. Soc. 2006, 128, 4180-4181
    [30] Antek G Wong-Foy, Adam J Matzger, Omat M Yaghi. Exceptional H_2 Saturation Uptake in Microporous Metal-Organic Frameworks [J]. J. Am. Chem. Soc. 2006, 125, 3494-3495
    [31] Daofeng Sun, Shengqian Ma, Yanxiong Ke, David J Collins, Hong-Cai Zhou. An Interweaving MOF with High Hydrogen Uptake [J]. J. Am. Chem. Soc. 2006, 128: 3896-3897
    [32] Yingwei Li, Ralph T Yang. Hydrogen Storage in Metel-Organic Frameworks by Bridged Hydrogen Spillover [J]. J.Am. Chem, Soc,. 2006, 128:8136-8137
    [33] Mircea Dinca, Ante F Yu, Jeffrey R Long. Microporous Metal-Organic Frameworks Properties [J]. J. Am. Chen. Soc. 2006, 128: 8904-8913
    [34] Mircea Dinca, Anne Dailly, Yun Liu, Craig M Brown, Dan A Neumann, Jeffrey R Long. Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn~(2+) Coordination Sites [J]. J.Am. Chem. Soc. 2006, 128:16876-16883
    [35] Jeffrey T Culp, Christopher Matranga, Milton Smith, Edward W Bittner, Bradley Bockrath. Hydrogen Storase Properties of Metal Nitroprussides M[Fe(CN)_5NO], (M=Co, Ni) [J]. J. Phys. Chem. B 2006, 110:8325-8328
    [36] Anne Daiily, John J Vajo, Channing C Ahn. Saturation of Hydrogen Sorptien in Zn Benzenedicarboxylate and Zn Naphthalenedicarboxylate [J]. J. Phys. Chem. B 2006, 110: 1099-1011
    [37] Hong Peng Jia, Wei Li, Zhan Feng Ju, Jie Zhang. Synthesis, Structure and Magnetism of Metal-Organic Framework Materials with Doubly Pillared Layers [J]. Eur. J. inorg. Chem., 2006, 4264-4270
    [38] Mohamed Eddaoudi, Jaheon Kim, Nathaniel Rosi, David Vodak, Joseph Wachter, Michael OKeeffe, Omar M Yaghi. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage [J]. Science, 2002, 295:469-472
    [39] Jesse L C Rowsell, Omar M Yaghi. Metal-Organic Frameworks: a New Class of Porous Materials [J]. Microporous and Mesoporous Materials, 2004, 73:3-14
    [40] N L Rosi, M Eddaoudi, J Kim, M O'Keeffe, O M Yaghi. Infinite Secondary Building Units and Forbidden Catenation in Metal-Organic Frameworks [J]. Angew. Chem. Int. Ed., 2002, 41:284-287
    [41] S S Y Chui, S M F Lo, J P H Charmant, A G Orpen, I D Williams. A Chemically Functionalizable Nanoporous Material [Cu_3(TMA)_2(H_2O)_3]_n [J]. Science, 1999, 283:1148-1150
    [42] Mitsuru Kondo, Takashi Okubo, Akiko Asami, Shin-ichiro Noro, Tomomichi Yoshitomi, Susumu Kitagawa, Tomohiko Ishii, Hiroyuki Matsuzaka, Kenji Seki. Rational Synthesis of Stable Channel-Like Cavities with Methane Gas Adsorption Properties: [{Cu_2(pzdc)_2(L)}_n] (pzdc = pyrazine-2,3-dicarboxylate; L = a Pillar Ligand) [J]. Angew. Chem. Int. Ed., 1999, 38:140-143
    [43] Shin-ichiro Noro, Susumu Kitagawa, Mitsuru Kondo, Kenji Seki. A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF_6(4,4'bipyridine)_2}_n] [J]. Angew. Chem. Int. Ed., 2000, 39:2081-2084
    [44] Guang Yang, Raphael G Raptis. A Robust, Porous, Cationic Silver(i) 3,5-diphenyl-1,2,4-triazolate Framework with a Uninodal 4~9.6~6 Net [J]. Chem. Commun., 2004, 4:2058-2059
    [45] M Fujita, Y J Kwon, S Washizu, K Ogura. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium (Ⅱ) and 4,4'-bipydine [J]. J.Am.Chem. Soc., 1994, 116:1151-1152
    [46] Cameron J Kepert, Matthew J Rosseinsky. Zeolite-like crystal structure of an empty microporous molecular framework [J]. Chem. Commun., 1999, 375-376
    [47] Ashleigh J Fletcher, Edmund J Cussen, Timothy J Prior, Matthew J Rosseinsky, Cameron J Kepert, K Mark Thomas. Adsorption Dynamics of Gases and Vapors on the Nanoporous Metal Organic Framework Material Ni_2(4,4'-Bipyridine)_3(NO_3)_4: Guest Modification of Host Sorption Behavior [J]. J. Am. Chem. Soc., 2001, 123:10001-10011
    [48] Edmund J Cussen, John B Claridge, Matthew J Rosseinsky, Cameron J Kepert. Flexible Sorption and Transformation Behavior in a Microporous Metal-Organic Framework [J]. J. Am. Chem. Soc., 2002, 124:9574-9581
    [49] Ashleigh J Fletcher, Edmund J Cussen, Darren Bradshaw, Matthew J Rosseinsky, K Mark Thomas. Adsorption of Gases and Vapors on Nanoporous Ni_2(4,4'-Bipyridine)_3(NO_3)_4 Metal-Organic Framework Materials Templated with Methanol and Ethanol: Structural Effects in Adsorption Kinetics [J]. J.Am. Chem. Soc., 2004, 126:9750-9759
    [50] Xuebo Zhao, Bo Xiao, Ashleigh J Fletcher, K Mark Thomas, Darren Bradshaw, Matthew J Rosseinsky. Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks [J]. Science, 2004, 306:1012-1015
    [51] Gregory J Halder, Cameron J Kepert. In Situ Single-Crystal X-ray Diffraction Studies of Desorption and Sorption in a Flexible Nanoporous Molecular Framework Material [J]. J. Am. Chem. Soc., 2005, 127:7891-7900
    [52] Y Dai, C Cheng, D Z Liao, S P Yan, Z H Jiang, G L Wang. A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly [J]. Angew. Chem. Int. Ed., 2003, 42:934-936
    [53] Brett D Chandler, David T Cramb, George K H Shimizu. Microporuns Metal-Organic Frameworks Formed in a Stepwise Manner from Luminescent Building Blocks [J]. J. Am. Chem. Soc., 2006, 128:10403-10412
    [54] X J Zheng, C Y Sun, S Z Lu, F H Liao, S Gao, L P Jin. New Porous Lanthanide-Organic Frameworks: Synthesis, Characterization, and Properties of Lanthanide 2,6-Naphthalenedicarboxylates [J]. Eur. J. Inorg. Chem., 2004, 3262-3268
    [55] X J Zheng, L P Jin, S Z Lu. Hydrothermal Syntheses, Structures and Properties of First Examples of Lanthenide (Ⅲ) 2, 3-Pyrazinedicarboxylates with Three-Dimensional Framework [J]. Eur. J. Inorg. Chem., 2002, 3356-3363
    [56] M J Rosseinsky. Recent Developments in Metal-Organic Framework Chemistry: Design, Discovery, Permanent Porosity and Flexibility [J]. Microporous and Mesoporous MateriaLs, 2004, 73:15-30
    [57] 林梦海.量子化学—计算方法与应用[M].科学出版社:北京,2004
    [58] J P Stewart. In: Reviews in Computational Chemistry, Vol. 1 [C]. Lipkowitz KB and Boyd D B (Eds), New York: VCH, 1990, 45-811
    [59] M Dewar, E G Zoebisch, E F Healy, J J P Stewart. AMI: A New General Purpose Quantum Mechanical Molecular Model [J]. J. Am. Chem. Soc., 1985, 107:3902-39091
    [60] W J Hehre, L Radom, P V R Shleyer, J Pople. Ab Initio Molecular Orbital Theory [M]. Wiley, New York: 1986
    [61] 赫尔曼.理论物理学中的计算机模拟方法(秦克诚,译)[M].北京大学出版社:北京,1996
    [62] A Nagy. Density Functional Theory and Application to Atoms and Molecules [J]. Physics Reports, 1998, 298:1-79
    [63] W Kohn, L J Sham. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev., 1965, 140: A1133-1138
    [64] W Koch, M C Holthausen. A chemist's Guide to Density Functional Theory [M]. WILEY-VCH,: Weinheim, Germany, 2000
    [65] Accelrys, Materials Studio Gerring Started, Release 3.1, Accelrys Software, Inc.: San Diego, 2003
    [66] G Kresse, J Furthmuller. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set [J], Phys. Rev. B, 1996, 54: 11169-11186
    [67] V Milman, B Winkler, J A White, C J Pickard, M C Payne, E V Akhmatskaya, R H Nobes. Electronic Structure, Properties and Phase Stability of Inorganic Crystals: A Pseudopotential Plane-Wave Study [J]. Int. J. Quantum Chem., 2000, 77:895-910
    [68] 吉青,杨小震.分子力场发展的新趋势[J].化学通报,2005,111-116
    [69] Stephen L Mayo, Barry D Olafson, William A Goddard Ⅲ. DREIDING: A Generic Force Field for Molecular Simulations [J]. J. Phys. Chem., 1990, 94:8897-8909
    [70] A K Rappe, C J Casewit, K S Colwell, W A Goddard Ⅲ, W M Skid. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations [J]. J. Am. Chem. Sec., 1992, 114:10024-10035
    [71] H Sun. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationssOverview with Details on Alkane and Benzene Compounds [J]. J. Phys. Chem. B, 1998, 102:7338-7364
    [72] William L Jorgensan, David S Maxwell, Julian Tirado-Rives. Development and Testing of the OPLS All-Atom Force Field on Conformafional Energetics and Properties of Organic Liquids [J]. J. Am. Chem. Soc., 1996, 118:11225-11236
    [73] Alder B J, Wainwright T E. Studies in Molecular Dynamics. Ⅰ: General Methed [J]. J. Chem. Phys., 1959, 31: 459-466
    [74] L V Woodcock. Isothermal Molecular Dynamics Calculalions for Liquid Salts [J]. Chem. Phys. Lett., 1971, 10:257-261
    [75] H C Anderson. Molecular Dynamics Simulation at Constant Ressure and/or Temperature [J]. J. Chem. Phys., 1980, 72:2384-2393
    [76] S A Nose. Unified Formation of the Constant Temperature Molecular Dynamics Methods [J]. J. Chem. Phys., 1984, 81:511-519
    [77] S A Nose. Molecular Dynamics Method for Simulations in the Canonical Ensemble [J]. Mol. Phys., 1984, 52:255-268
    [78] D J Evans. Computer "Experiment" for Nonlinear Thermodynamics of Couette Flow [J]. J. Chem. Phys., 1983, 78:3297-3302
    [79] M P Allen, D J Tildesley. Computer Simulation of Liquids [M]. Clarendon press: Oxford, 1987
    [80] G S Heffelfinger, F Van Vanswol. Diffusion in Lennard-Jones Fluids Using Dual Control Volume Grand Canonical Molecular Dynamics Smulation (DCV-GCMD) [J]. J. Chem. Phys.. 1994, 100:7548-7552
    [81] B J Palmer, C M Lo. Molecular Dynamics Implementation of the Gibbs Ensemble Calculation [J]. J. Chem. Phys., 1994, 101:10899-10907
    [82] P T Cummings, D Evans. Nonequilibrium Molecular Dynamics Approaches to Transport Properties and Non-Newtonian Fluid Rheology [J].J. Ind. Eng. Chem. Res., 1992, 31: 1237-1252
    [83] D Nicholson. Grand ensemble Monte Carlo, CCP5, Quarterly [J]. 1984, 11: 19-24
    [84] C Pangali, M Rao, B J Berne. On a Novel Monte Carlo Scheme for Simulating Water and Aqueous Solutions [J]. Chem. Phys. Lett., 1977, 47:600-602
    [85] J C Owicki, H A Seherage. Preferential Sampling near Solutes in Monte Carlo Calculations on Dilute Solutions [J]. Chem. Phys. Lett., 1977, 47:600-602
    [86] G M Torrie, J P Valleau. Nonphysical Sampling Distributions on Monte Carlo Free-Energy Estimation: Umbrella sampling [J]. J. Comp. Phys., 1977, 23:187-199
    [87] M Mezei. A Cavity-Biased (μVT) Monte Carlo Method for the Computer Simulation of Fluids [J]. Mol. Phys., 1980, 40:901-906
    [88] T Sagara, J Klassen, E Ganz. Computational Study of Hydrogen Binding by Metal-Organis Framework-5 [J]. J. Chem. Phys., 2004, 121: 12543-12547
    [89] Corneliu Buda, Barry D Dunietz Hydrosen Physisorption on the Organic Linker in Metal Organic Frameworks: Ab Initio Computational Study [J]. J. Phys. Chem. B, 2006, 110: 10479-10484
    [90] Silvia Bordiga, Jenny G Vitillo, Gabriele Ricchiardi, Laura Regli, Donato Cocina, Adriano Zecchina, Bjφrnar Arstad, Morten Bjφrgen, Jasmina Hafizovic, Karl Petter Lillerud. Interaction of Hydrogen with MOF-5 [J]. J. Phys. Chem. B, 2005, 109:18237-18242
    [91] T Mueller, G Ceder. A Density Functional Theory Study of Hydrogen Adsorption in MOF-5 [J]. J. Phys. Chem. B, 2005, 109:17974-17983
    [92] T Sagara, J Klassen, J Ortony, E Ganz. Binding Energies of Hydrogen Molecules to Isoreticular Metal-Organic Framework Materials [J]. J. Chem. Phys., 2005, 123: 14701-14704
    [93] T Sagara, J Ortony, E Ganza. New Isoreticular Metal-Organic Framework Materials for High Hydrogen Storage Capacity [J]. J. Chem. Phys., 2005, 123:214707-214712
    [94] Miguel Fuentes-Cabrera, Donald M Nicholson, Bobby G Sumpter, Mike Widom. Electronic Structure and Properties of Isoreticular Metal-Organic Frameworks: The Case of M-IRMOF1 (M=Zn, Cd, Be, Mg, and Ca) [J]. J. Chem. Phys., 2005, 123: 124713-124717
    [95] Daejin Kim, Tae Bum Lee, Sang Beom Choi, Ji Hye Yoon, Jaheon Kim, Seung-Hoon Choi. A Density Functional Theory Study of a Series of Functionalized Metal-Organic Frameworks [J]. Chem. Phys. Lett. 2006, 420:256-260
    [96] Tae Bum Lee, Daejin Kim, Dong Hyun Jung, Sang Beom Choi, Ji Hye Yoon, Jaheon Kim, Kihang Choi, Seung-Hoon Choi. Understanding the Mechanism of Hydrogen Adsorption into Metal Organic Frameworks [J]. Cata. Today, 2007, 120:330-335
    [97] A Vishnyakov, P I Ravikovitch, A V Neimark, M B(?)low, Q M Wang. Nanopore Structure and Sorption Properties of Cu-BTC Metal-Organic Framework [J]. Nano. Lett., 2003, 3: 713-718
    [98] T D(?)ren, L Sarkisov, O M Yaghi, R Q Snuff. Design of New Materials for Methane Storage [J]. Langmuir, 2004, 20:2683-2689
    [99] T D(?)ren, R Q Snuff. Assessment of Isoreticular Metal-Organic Frameworks for Adsorption Separations: a Molecular Simulation Study of Methane/n-Butane Mixures [J]. J. Phys. Chem. B, 2004, 108:15703-15709
    [100] R N Devi, M Edgar, J Gonzalez, A M Z Slawin, D P Tunstall, P Grewal, P A Cox, P A Wright. Structural Studies and Computer Simulation of the Inclusion of Aromatic Hydrocarbons in a Zinc 2,6-Naphthaleue Dicarboxylate Framework Compound [J]. J. Phys. Chem. B, 2004, 108:535-543
    [101] A I Skonlides. Molecular Dynamics Simulations of Gas Diffusion in Metal-Organic Frameworks: Agron in CuBTC [J]. J. Am. Chem. Soc., 2004, 126:1356-1357
    [102] G Garberoglio, A I Skonlidas, J K Johnson. Adsorption of Gases in Metal Organic Materials: Comparison of Simulations and Experiments [J]. J. Phys. Chem. B, 2005, 109:13094-13103
    [103] A I Skoulidas, D S Sholl. Self-Diffusion and Transport Diffusion of Light Gases in Metal-Organic Framework Materials Assessed Using Molecular Dynamics Simulations [J]. J. Phys. Chem. B, 2005, 109:15760-15768
    [104] 阳庆元.多孔材料中吸附与传递现场及可降解型聚合物材料溶蚀过程的分子模拟研究[D].北京:北京化工大学.2005
    [105] Q Yang, C Zhong. Understanding Hydrogen Adsorption in Metal-Organic Frameworks with Open Metal Sites: A Computational Study [J]. J. Phys. Chem. B, 2006, 110:655-658
    [106] A Celzard, V Fierro. Preparing a Suitable Material Designed for Methane Storage: A Comprehensive Report [J]. Energy Fuels, 2005, 19:573-583
    [107] J L C Rowsell, O M Yaghi. Strategies for Hydrogen Storage in Metal-Organic Frameworks [J]. Angew. Chem. Int. Ed., 2005, 44:4670-4679
    [108] M W Ackley, S U Rege, H Saxena. Application of Natural Zeolites in the Purification and Separation of Gases [J]. Micropor. Mesopor. Mat., 2003, 61:25-42
    [109] R Q Snuff, J T Hupp, S T Nguyen. Prospects for Nanoporous Metai-Organic Materials in Advanced Separations Processes [J]. AIChE J.2004, 50:1090-1095
    [110] K Uemuraa, R Matsudab, S Kitagawa. Flexible Microporons Coordination Polymers [J]. J. Solid State Chem., 2005, 178:2420-2429
    [111] A J Fletchera, K M Thomasa, M J Rosseinsky. Flexibility in Metal-Organic Framework Materials: Impact on Sorption Properties [J]. J. Solid State Chem., 2005, 178:2491-2510
    [112] D Lozano-Castelloa, J Alcaniz-Mongea, M A de la Cass-Lillob, D Cazorla-Amorosa, A Linares-Solanoa. Advances in the Study of Methane Storage in Porous Carbonaceous Materials [J]. Fuel, 2002, 81:1777-1803
    [113] A Celzard, V Fierro. Preparing a Suitable Material Designed for Methane Storage: A Comprehensive Report [J]. Energy Fuels, 2005, 19:573-583
    [114] F M Mulder, T J Dingemans, M Wagemaker, G J Kearley. Modelling of Hydrogen Adsorption in the Metal Organic Framework MOF-5 [J]. Chem. Phys., 2005, 317:113-118
    [115] Liu Y, Lund A, Persson P, Lonell S. Density Functional Theory Study of NO Adsorbed in A-Zeolite [J]. J. Phys. Chem. B, 2005, 109:7948-7951
    [116] Lo C, Trout B L. Density-Functional Theory Characterization of Acid Sites in Chabazite [J]. J. Catal., 2004, 227:77-89
    [117] Bandura A V, Kubicki J D. Derivation of Force Field Parameters for TiO_2-H_2O systems from Ab Initio Calculations [J]. J. Phys. Chem. B, 2003, 107: 11072-11081
    [118] Kim C, Choi Y, Lee S, Park J T, Kim B, Lee Y. The Effect of Gas Adsorption on the Field Emission Mechanism of Carbon Nanotubes [J]. J. Am. Chem. Soc., 2002, 124:9906-9911
    [119] Hart S S, Lee H M. Adsorption Properties of Hydrogen on (10,0) Single-Walled Carbon Nanotue through Density Functional Theory [J]. Carbon, 2004, 42:2169-2177
    [120] Wesolowski T A, Parisel O, Ellingler Y, Weber J. Comparative Study of Benzone-X (X=O_2, N_2, CO) Complexes Using Density Functional Theory: the Importance of an Accurate Exchange-Correlation Energy Density at High Reduced Density Gradients [J]. J. Phys. Chem. A, 1997, 101: 7818-7825
    [121] Schimmel H G, Kearley G J, Nijkamp M G, Visser C T, Jong K P, Mulder F M. Hydrogen Adsorption in Carbon Nanostructures: Comparison of Nanotubes, Fibers, and Coals [J]. Chem. Eur. J., 2003, 9:4764-4770
    [122] Ishiwatari R, Tachikawa M. Unrestricted Density Functional Study on the Adsorption of Hydrogen Molecule on Nickel Surface [J]. J. Mol. Stru., 2005, 135:3834-387
    [123] Lee S, An K H, Lee Y H, Seifert G, Frauenheim T. A Hydrogen Storage Mechanism in Single-Walled Carbon Nanotubes [J]. J. Am. Chem. Soc., 2001, 123:5059-5063
    [124] Benco L, Demuth T, Hafer J, Hutschka F, Touihoat H. Adsorption of Linear Hydrocarbons in Zeolites: a Density-Functional Investigation [J]. J. Chem. Phys., 2001, 114:6327-6334
    [125] J P Perdew, W Yue. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy [J]. Phys. Rev. B, 1992, 45:13244-13249
    [126] J P Perdew, K Burke, M Ernzerhof. Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett., 1996, 77:3865-3868
    [127] X Sha, B Jackson. The Location of Adsorbed Hydrogen in Graphite Nanostructures [J]. J. Am. Chem. Soc., 2004, 126:13095-13099
    [128] S Tsuzuki, H P Luthi. Interaction Energies of Van Der Waals and Hydrogen Bonded Systems Calculated Using Density Functional Theory: Assessing the PW91 Model [J]. J. Chem. Phys. 2001, 114:3949-3957
    [129] S Tsuzuki, K Honda, T Uchimaru, M Mikami, K Tanabe. The Magnitude of the CH/π Interaction between Benzene and Some Model Hydrocarbons [J]. J. Am. Chem. Soc. 2000. 122:3746-3753
    [130] L Benco, Th Demuth, J Hafner, F Hutschka, H Toulhnat. Adsorption of Linear Hydrocarbons in Zeolites: A density-Functional Investigation [J]. J. Chem. Phys. 2001. 114:6327-6334
    [131] D Lozano-Castelloa, J Alcaniz-Mongea, M A de la Casa-Lillob, D Cazorla-Amorosa. A Linares-Solanoa, Advances in the Study of Methane Storage in Porous Carbonaceous Materials [J]. Fuel, 2002, 81:1777-1803
    [132] Sing K S W, Everett D H, Haul R A W. Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting Physi-sorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity [J]. Pure Appl. Chem.1985, 57:603-619
    [133] Matranga K R, Myers A L, Glandt E D. Storage of Nature Gas by Adsorption on Activated Carbon [J]. Chem. Eng. Sci., 1991,47:1569-1573
    [134] Menon V C, Komameni S J. Porous Adsorbents for Vehicular Natural Gas Storage: A review [J]. J. Porous Materials, 1998, 5:43-58
    [135] Noro S, Kitaura R, Kondo M, Kitagawa S, Ishii T, Matsuzaka H, Yamashita M. Framework Engineering by Anions and Porous Functionalities of Cu(Ⅱ)/4.4'-bpy Coordination Polymers [J]. J. Am. Chem. Soc. 2002, 124:2568-2583
    [136] Uemura T, Kitaura R, Ohta Y, Nagaoka M, Kitagawa S. Nanochannel-Promoted Polymerization of Substituted Acetylenes in Porous Coordination Polymers [J]. Angew. Chem., Int. Ed. 2006,45:4112-4116
    [137] Martin M G, Siepmann J I. Transferble Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes [J]. J. Phys. Chem. B, 1998 102:2569-2577
    [138] Q Yang, C Zhong. Electrostatic-Field-Induced Enhancement of Gas Mixture Separation in Metal-Organic Frameworks: A Computational Study [J]. Chem. Phys. Chem., 2006, 7: 1417-1421
    [139] Q Yang, C Zhong. Molecular Simulation of Carbon Dioxide/Methane/Hydrogen Mixture Adsorption in Metal-Organic Frameworks [J]. J. Phys. Chem. B, 2006, 110:17776-17783
    [140] R Xiong, X You, B F Abrahams, Z Xue, C Che. Enantioseparation of Racemic Organic Molecules by a Zeolite Analogue [J]. Angew. Chem. Int. Ed., 2001, 40:4422-4425
    [141] O R Evans, H L Ngo, W Lin. Chiral Porous Solids Based on Lamellar Lanthanide Phosphonates [J]. J. Am. Chem. Soc., 2001, 123:10395-10396
    [142] J S Seo, D Whang, H Lee, S I Jun, J Oh, Y J Jeon, K Kim. A Homochiral Metal-Organic Porous Material for Enantioselective Separation and Catalys [J]. Nature, 2000, 404: 982-986
    [143] 高尚愚,陈维 译.活性炭基础与应用[M].中田林业出版社,北京:1984
    [144] Xiong R G, You X Z, Abrahams B F, Xue Z L, Che C M. Enantio-Separation of Racemic Organic Molecules by a Zeolite Analogue [J]. Angew. Chem. Int. Ed. 2001, 40: 4422-4425
    [145] Evans O R, Ngo H L, Lin W B. Chiral Porous Solids Based on Lamellar Lanthanide Phosphonates [J]. J. Am. Chem. Soc., 2001, 123:10395-10396
    [146] L Pen, M B Sander, X Y Huang, J Li, M Smith, E Bittner, B Brockrath, J K Johnson. Microporous Metal Organic Materials: Promising Candidates as Sorbents for Hydrogen Storage [J]. J. Am. Chem. Soc., 2004, 126:1308-1309
    [147] Q M Wang, D Shen, M B(?)low, S G Deng, Frank R Fitch, N O Lemcoff, J Semanscin. Metallorganic Molecular Sieve for Gas Separation and Purification [J]. Microporous and Mesoporous Materials, 2002, 55:217-230
    [148] Mircea Dinca, Jeffrey R Long. Strong H_2 Binding and Selective Gas Adsorption within the Microporous Coordination Solid Mg_3(O_2C-C_(10)H_6-CO_2)_3 [J]. J. Am. Chem. Soc., 2005, 127: 9376-9377
    [149] Jianwen Jiang, Stanley I Sandier. Monte Carlo Simulation for the Adsorption and Separation of Linear and Branched Alkanes in IRMOF-I [J]. Langmuir, 2006, 22: 5702-5707
    [150] Potoff J J, Siepmann J I, Vapor-Liquid Equilibria of Mixtures Containing Alkanes. Carbon Dioxide and Nitrogren [J]. AIChE J., 2001, 47:1676-1682
    [151] Weitz S L, Potoff J J. Effect of Quadrupole Moment on the Phase Behavior of Binary Mixtures Containing Ethene [J]. Fluid Phase Equilibr., 2005, 234:144-150
    [152] Straub J E, Karplus M. Molecular Dynamics Study of the Photo Dissociation of Carbon Monoxide from Myoglobin: Ligand Dynamics in the First 10 ps [J]. Chem. Phys., 1991, 158:221-248
    [153] Zhou J, Zhang Y, Guo X, Song W, Bai H, Zhang A. Removal of C_2H_4 from a CO_2 Stream by Adsorption: a Study in Combination of Ab Initio Calculation and Experimental Approach [J]. Energy Fuels, 2006, 20:778-782
    [154] Zhou J, Zheng Y, Guo X, Zhang A, Fei X. Removal of C_2H_4 from a CO_2 Stream by Using AgNO_3-Modified Y-Zeolites [J]. Ind. Eng. Chem. Res., 2006, 45:6236-6242
    [155] Y S Lin, W Ji, Y Wang. R J Higgins. Cuprous-Chloride-Modified Nanoporous Alumina Membranes for Ethylene-Ethane Separation [J]. Ind. Eng. Chem. Res. 1999, 38: 2292-2298
    [156] Nicholson T M, Bhatia S K. Electrostatically Mediated Specific Adsorption of Small Molecules in Metallo-Organic Frameworks [J]. J. Phys. Chem. B, 2006, 110: 24834-24836
    [157] Newalkar B L, Choudary N V, Turaga U T, Vijayalakshmi R P, Kuma Komarneni P S. Bhat T S G. Adsorption of Light Hydrocarbons on HMS Type Mesoporous Silica [J|. Micropor. Mesopor. Mater., 2003, 65:267-276
    [158] Wu Z, L Y. Study of Adsorption Ethylene/Ethane Separation with Ag~+-Exchanged Resins via-7r-Complexafion [J]. Chin. J. Chem. Eng., 2002, 10:304-310
    [159] Yang. R T, Kikkinides E S. New Sorbents for Olefin/Paraffin Separations by Adsorption via π-Complexation [J]. AIChE J., 1995, 41:509-517
    [160] Dong Hyun Jung, Daejin Kim, Tae Bum Lee, Sang Beom Choi, Ji Hye Yoon, Jaheon Kim. Kihang Choi, Seung-Hoon Choi. Grand Canonical Monte Carlo Simulation Study on the Catenafion Effect on Hydrogen Adsorption onto the Interpenetrating Metal-Organic Frameworks [J]. J. Phys. Chem. B, 2006, 110: 22987-22990
    [161] A Daniel Boese, Nicholas C Handy. A New Parametrisation of Exchange-Correlation Generalised Gradient Approximation Functionals [J]. J. Chem. Phys., 2001, 114: 5497-5503
    [162] Tuma C, Boese A D, Handy N C. Predicting the Binding Energies of H-bonded Complexes: A Comparative DFT Study [J]. Phys. Chem. Chem. Phys.1999, 1:3939-3948
    [163] Singh C U, Kollman P A. An Approach to Computing Electrostatic Charges for Molecules [J]. J. Comput. Chem., 1984, 5:129-145
    [164] Ryo Kitaura, Kentaro Fujimoto, Shin-ichiro Noro, Mitsuru Kondo. Susumu Kitagawa. A Pillared-Layer Coordination Polymer Network Displaying Hysteretic Sorption: [Cu_2pzdc)_2(dpyg)]_n (pzdc=Pyrazine-2,3-dicarboxylate; dpyg=1,2-Di(4-pyridyl)-glycol) [J]. Angew. Chem. Int. Ed., 2002, 41:133-135
    [165] Karin Barthelet, Jerome Marrot, Didier Riou, Gerard Ferey. A Breathing Hybrid Organic-Inorganic Solid with Very Large Pores and High Masnetic Characteristics [J]. Angew. Chem. Int. Ed., 2002, 41:281-284
    [166] Kumar Biradha, Makoto Fujita. A Springlike 3D-Coordination Network That Shrinks or Swells in a Crystal-to-Crystal Manner upon Guest Removal or Readsorption [J]. Angew. Chem. Int. Ed., 2002, 41:3392-3395
    [167] Kazuhiro Uemura, Susumu Kitagawa, Mitsuru Kondo, Koichi Fukui, Ryo Kitaura, Ho-Chol Chang, Tadashi Mizutani. Novel Flexible Frameworks of Porous Cobalt (Ⅱ) Coordination Polymers That Show Selective Guest Adsorption Based on the Switching of Hydrogen-Bond Pairs of Amide Groups [J]. Chem. Eur. J. 2002, 8:3586-3600
    [168] Kenji Seki. Dynamic channels of a porous coordination polymer responding to external stimuli [J]. Phys. Chem. Chem. Phys., 2002, 4:1968-1971
    [169] Ryo Kitaura, Kenji Seki, George Akiyama, Susumu Kitagawa. Porous Coordination-Polymer Crystals with Gated Channels Specific for Supercritical Gases [J]. Angew. Chem. Int. Ed., 2003, 42:428-431
    [170] Tapas Kumar Majl, Kazuhiro Uemura, Ho-Chol Chang, Ryotaro Matsuda, Susumu Kitagawa. Expanding and Shrinking Porous Modulation Based on Pillared-Layer Coordination Polymers Showing Selective Guest Adsorption [J]. Angew. Chem. Int. Ed., 2004, 43:3269-3272
    [171] Lee Suk Joong, Lin Wenbin. A Chiral Molecular Square with Metallo-Corners for Enantioselective Sensing [J]. J. Am. Chem. Soc., 2002, 124:4554-4555
    [172] Susumu Kitagawa, Kazuhiro Uemura. Dynamic Porous Properties of Coordination Polymers Inspired by Hydrogen Bonds [J]. Chem. Soc. Rev., 2005, 34:109-119
    [173] Kazuhiro Uemuraa, Ryotaro Matsudab, Susumu Kitagawa. Flexible Microporous Coordination Polymers [J]. J. Solid State Chem., 2005, 178:2420-2429
    [174] D Bradahaw, J B Claridge, E J Cussen, T J Prior, M J Rosseinsky. Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials [J]. Acc. Chem. Res., 2005, 38: 273-282
    [175] Frisch, M J; Trucks, G. W.; Schlegel, H. B.; Scuseria, G E.; Robb, M. A.; Cheeseman, J.
    R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; lyengar,
    S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N.; Petersson,
    G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,
    M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;
    Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
    Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
    Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G;
    Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabnck, A. D.;
    Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;
    Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin,
    R. L.; Fox, D. J.; Keith, T.; Al-Laharo, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe.
    M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople. J. A.
    Gaussian 03, revision B.01; Gaussian, Inc.: Pittsburgh PA, 2003
    [176] Anthony K Rap, William A Goddard Ⅲ. Charge Equilibration for Molecular Dynamics Simulations [J]. J. Phys. Chem., 1991, 95:3358-3363
    [177] Rajiv Shah, M C Payne, M H Lee, Julian D Gale. Understanding the Catalytic Behavior of Zeolite: A First-Principle Study of the Adsorption of Methanol [J]. Science, 1996, 271: 1395-1397
    [178] Kawakami T, Takamizawa S, Kitagawa Y, Maruta T, Mori W, Yamaguchi K. Theoretical Studies of Spin Arrangement of Adsorbed Organic Radicals in Metal-Organic Nanoporons Cavity [J]. Polyhedron, 2001, 20: 1197-1206
    [179] Chirlian L E, Francl M M. Atomic Charges Derived from Electrostatic Potentials: A Detailed Study [J]. J. Corop. Chem., 1987, 8:894-905
    [180] Breneroan C M, Wiberg K B. Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis [J]. J. Corop. Chem., 1990, 11: 361-373
    [181] Lee, Whitmore, Slater Ben, Richard C, Catlow A. Adsorption of Benzene at the Hydroxylated (111) External Surface of Faujasite [J]. Phys. Chem. Chem. Phys., 2000, 2: 5354-5356
    [182] Ramesh Ch Deka, Rajappan Vetrivel. Adsorption Sites and Diffusion Mechanism of Alkylbenzenes in Large Pore Zeolite Catalysts as Predicted by Molecular Modeling Techniques [J]. J. Catal., 1998, 174:88-97
    [183] Jerzy Szczygie, Bartomiej Szyja. Computer Simulated Diffusion of C, Hydrocarbons in Microporous Materials: Molecular modeling [J]. Microporous and Mesoporous Materials, 2005, 83:85-93
    [184] Timothy R Forester, William Smith. Bluemoon Simulations of Benzene in Silicalite-l Prediction of Free Energies and Diffusion Coefficients [J]. J. Chem. Soe., Faraday Trans., 1997, 93:3249-3257
    [185] Vmihaleva V, Van Santen R A, Jansen A P J, A DFT Study of Methanol Adsorption in 8T Rings of Chabazite [J]. J. Phys. Chem. B, 2001, 105:6874-6879
    [186] Padro J A, Saiz L, Guardia E. Hydrogen Bonding in Liquid Alcohols: A Computer Simulation Study [J]. J. Mol. Struct., 1997, 416:243-248
    [187] Annemidke W C, Stefan T B, Naseem R, Thomas M. Diffusion of Molecular Hydrogen through Porous Materials: The Importance of Framework Flexibility [J]. J. Phys. Chem. B, 2004, 108:5088-5094

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700