联合近红外光谱术的多生理参数监测及运动能力评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进行有氧运动能力(AEC)评估,可获得最大摄氧量(.V O_(2max))、乳酸阈(LT)、通气阈(GET)、心率阈(HRT)等全身性AEC指标。它们对运动员选材、训练等有重要指导意义。然而,这些指标通常是利用全身性生理监测技术(如心肺功能监测、血液分析技术等)获得的,测量时需要配戴面罩或者采血,会使被试感觉不适或为有损测量。另外,仅利用全身性监测技术仍不能解释某些运动生理现象,例如:拥有相似AEC指标的群体,其运动成绩却有显著差别;高运动水平人群的机能效率反而低下。近红外光谱术(NIRS)和表面肌电技术(sEMG)可以分别无损、实时地监测局部肌肉氧代谢过程和神经电活动。考虑到复杂运动有多块肌肉参与,且肌肉间贡献可能不一样。本文联合局部和全身生理监测,在不同的被试类型、运动模式中,监测和分析多块局部肌肉和全身性运动生理参数变化,更全面地对AEC进行评估。
     本文联合NIRS、sEMG和全身性生理监测技术,测量8名划船运动员、31名蹼泳运动员及20名散打运动员在递增运动测试(IET)中的局部肌肉和全身性生理参数响应情况,并分析肱二头肌(BB)、股外侧肌(VL)、腓肠肌外侧头(GL)、股直肌(RF)、股内侧肌(VM)中的一块或多块肌肉的氧代谢能力及其与全身性AEC指标之间的联系。
     划船运动员在划船IET中的BB和VL处反映肌肉氧代谢能力的肌氧拐点(Bp)(BpBB:45(3.8)%.V O_(2max),BpVL:55.6(2.4)%.V O_(2max))均与全身性AEC指标显著相关(r>0.81, p <0.05)。在高水平运动员中,BpBB和BpVL出现更晚,而且两者的出现时间更接近。即高水平运动员局部肌肉的氧利用能力更高,而且肌群间不同肌肉氧利用能力的匹配程度更高,这从局部肌氧的角度给出了高水平运动员能够取得更好运动成绩的生理原因。
     蹼泳运动员在自行车IET中的BpVL(57.7(1.4)%.V O_(2max))和GL处的Bp(BpGL,65.7(1.7)%.V O_(2max))均与全身性AEC指标显著相关(r>0.839, p <0.01)。但是BpVL早于BpGL出现,这可能是由于VL在自行车IET中贡献更多,但氧化性肌纤维比例比GL低而导致的。分别利用BpVL和BpGL跟AEC指标进行线性拟合,发现BpVL的拟合优度高于BpGL的拟合优度(p <0.05),表明BpVL预测AEC指标的能力更好,说明利用NIRS获取Bp并进行AEC评估时,需要注意肌肉差异。高水平运动员在IET中机能效率低,即摄氧量随功率增加而增加的速率更快于低水平运动员(p<0.05)。与之对应的是,高水平运动员的肌氧下降速率更慢(p <0.05),这从局部肌氧的角度给出了高水平运动员的机能效率反而低的生理原因。
     散打运动员在递增静力性伸膝IET中,VL、RF和VM处的Bp分别在45.0(1.7)、46.6(2.1)和45.3(2.2)最大自主收缩力量百分比(%MVC)处出现,VL、RF和VM处的sEMG阈(EMGT)分别在45.3(1.9)、49.5(2.2)和49.2(1.9)%MVC处出现,三块肌肉处的Bp、EMGT均与HRT之间没有显著差异(p>0.05),表明在涉及肌肉少的静力性伸膝IET中,局部肌肉的生理阈值(Bp、EMGT)与全身性生理阈值之间没有显著差异,这可能是由于此时全身性生理响应主要是由少量肌肉收缩所致。当比较肌群内不同肌肉Bp和EMGT的差异时,没有发现肌群内肌肉间的显著差异(p>0.05)。这表明肌群内不同肌肉间的氧利用能力差异与肌群间不同肌肉之间的氧利用能力差异,可能存在不一样的规律,但这需要进一步研究。
     综上所述,联合NIRS、sEMG及全身性生理监测技术,能够从局部到全身的角度进行更全面的AEC评估。
Aerobic exercise capacity (AEC) indices [e.g., maximal oxygen uptake (.V O_(2max)),lactate threshold (LT), gas exchange threshold (GET) and heart rate threshold (HRT)] aregenerally obtained during incremental exercise tests (IET) and instructive for athleteselection, exercise training, and so on. These indices are determined from systemicphysiological monitoring techniques (e.g., blood analysis and cardiopulmonary test),however, these techniques are either invasive (blood sample collection) or uncomfortable(involving breathing masks during the cardiopulmonary test). These disadvantages havelimited the use of related techniques during the assessment of AEC indices. Additionally,some exercise physiological phenomena were still incompletely explained by systemicphysiological monitoring. For example, the difference in exercise performance amongindividuals with similar AEC indices; the lower mechanical efficiency during IET ingroups with higher exercise performance. Combination of systemic and local monitoringtechniques might provide further insight into these phenomena. Near infraredspectroscopy (NIRS) and surface electromyography (sEMG) can monitor local muscularoxygenation and neural electric activity noninvasively and in real time. In this study, bothlocal and systemic physiological responses were monitored to evaluate AEC morecomprehensively, in different types of subjects, exercise modes and muscles. CombiningNIRS, sEMG and systemic physiological monitoring techniques, local muscular andsystemic physiological responses were simultaneously measured in8rowers,31finswimmers, and20free combat players during IET. The local oxidative capacities in oneor more of the following muscles: biceps brachii (BB), vastus latearlis (VL),gastrocnemius lateralis (GL), rectus femoris (RF) and vastus medialis (VM), together withthe systemic AEC indices were analyzed.
     During rowing IET, breakpoints (Bp) of muscle oxygenation at both BB [BpBB,45(3.8)%.V O_(2max)] and VL [BpVL,55.6(2.4)%.V O_(2max)] in trained rowers were highlycorrelated with systemic AEC indices (r>0.81, p <0.05). In the rowers with higherexercise performance, the BpBB and BpVL appeared at higher work intensity, and theBpBB occurred nearer to the BpVL. These results indicated that the rowers with higherexercise performance owned higher local muscle oxidative capacities, and better matchingof muscular oxidative capacities between BB and VL. A further explanation for the higherexercise performance was provided from the view of local muscle oxygenation.
     During cycling IET, both the BpVL and the Bp at GL (BpGL) in finswimmers werehighly correlated with systemic AEC indices (r>0.839, p <0.01). Meanwhile, the BpVLoccurred earlier than the BpGL, which might be due to lower percentage of oxidativefibres and higher contribution during crank cycles in VL than in GL. Both the BpVL andBpGL were separately used as a regressor to predict AEC indices, better goodness-of-fitwere found in the BpVL (p <0.05), which indicated better assessment (predictive) abilityof the BpVL for AEC indices and that the muscular difference should be consideredduring AEC evaluation by NIRS. In finswimmers with higher exercise performance, moreincrement of oxygen uptake was needed to meet the same increment of work rate (lowermechanical efficiency), coincidently, the muscle oxygenation index decreased slower. Thisresult explained the low mechanical efficiency in athletes with high exercise performancefrom the view of local muscle oxygenation.
     During incremental static knee extensions, the muscle oxygenation Bp at threecomponents of quadriceps femoris (VL, RF and VM) in free combat players occurred at45.0(1.7),46.6(2.1) and45.3(2.2)%MVC respectively, and sEMG threshold (EMGT) inVL, RF and VM appeared at45.3(1.9),49.5(2.2) and49.2(1.9)%MVC respectively. Boththe Bp and EMGT at VL, RF and VM appeared at similar work intensity as HRT did, this indicated that local and systemic physiological thresholds would be similar when onlyseveral muscles were involved during IET. There was no significant difference in thephysiological thresholds (Bp and EMGT) among VL, RF and VM. This result indicatedthe coordination among muscles from the same muscle group might be different from thatamong muscles from different muscle groups during IET.
引文
[1]姚泰,吴博成.生理学.(第六版).北京:人民卫生出版社,2004.
    [2]王瑞元.运动生理学.(第一版).北京:人民体育出版社,2002.
    [3] Brooks, G., Fahey, T., Baldwin, K. Exercise Physiology: Human Bioenergetics andIts Applications.(4th Edition). New York: McGraw-Hill Companies,2005.
    [4] Arena, R., Myers, J., Guazzi, M. The Clinical Significance of Aerobic ExerciseTesting and Prescription: From Apparently Healthy to Confirmed CardiovascularDisease. Am J Lifestyle Med.2008,2:519-536.
    [5] Joyner, M. J., Coyle, E. F. Endurance exercise performance: the physiology ofchampions. J Physiol-london.2008,586(1):35-44.
    [6] Bentley, D. J., Newell, J., Bishop, D. Incremental exercise test design and analysis-Implications for performance diagnostics in endurance athletes. Sports Med.2007,37(7):575-586.
    [7] Froelicher, V. F., Jr., Thompson, A. J., Jr., Davis, G., Stewart, A. J., et al. Predictionof maximal oxygen consumption. Comparison of the Bruce and Balke treadmillprotocols. Chest.1975,68(3):331-336.
    [8] Bader, D. S., Maguire, T. E., Balady, G. J. Comparison of ramp versus step protocolsfor exercise testing in patients> or=60years of age. Am J Cardiol.1999,83(1):11-14.
    [9] Treacher, D. F., Leach, R. M. Oxygen transport-1. Basic principles. BMJ.1998,317(7168):1302-1306.
    [10] Lucia, A., Hoyos, J., Chicharro, J. L. Physiology of professional road cycling. SportsMed.2001,31(5):325-337.
    [11] Faria, E. W., Parker, D. L., Faria, I. E. The science of cycling-Physiology andtraining-Part1. Sports Med.2005,35(4):285-312.
    [12] Saunders, P. U., Pyne, D. B., Telford, R. D., Hawley, J. A. Factors affecting runningeconomy in trained distance runners. Sports Med.2004,34(7):465-485.
    [13] Wasserman, K., Beaver, W. L., Whipp, B. J. Gas exchange theory and the lacticacidosis (anaerobic) threshold. Circulation.1990,81(1Suppl): II14-30.
    [14] Hollmann, W., Prinz, J. P. Ergospirometry and its history. Sports Med.1997,23(2):93-105.
    [15] Levine, B. D. V-O2,V-max: what do we know, and what do we still need to know? JPhysiol-london.2008,586(1):25-34.
    [16] Wasserman, K., Whipp, B. J., Koyl, S. N., Beaver, W. L. Anaerobic threshold andrespiratory gas exchange during exercise. J Appl Physiol.1973,35(2):236-243.
    [17] Beaver, W. L., Wasserman, K., Whipp, B. J. Improved detection of lactate thresholdduring exercise using a log-log transformation. J Appl Physiol.1985,59(6):1936-1940.
    [18] Beaver, W. L., Wasserman, K., Whipp, B. J. A new method for detecting anaerobicthreshold by gas exchange. J Appl Physiol.1986,60(6):2020-2027.
    [19] Morgan, D. W., Craib, M. Physiological aspects of running economy. Med SciSports Exerc.1992,24(4):456-461.
    [20] Gladden, L. B. Muscle as a consumer of lactate. Med Sci Sports Exerc.2000,32(4):764-771.
    [21] Brooks, G. A. Cell-cell and intracellular lactate shuttles. J Physiol.2009,587(Pt23):5591-5600.
    [22] Wang, J. Amperometric biosensors for clinical and therapeutic drug monitoring: areview. Journal of Pharmaceutical and Biomedical Analysis.1999,19(1–2):47-53.
    [23] Nikolaus, N., Strehlitz, B. Amperometric lactate biosensors and their application in(sports) medicine, for life quality and wellbeing. Microchimica Acta.2008,160(1):15-55.
    [24] Romero, M. R., Garay, F., Baruzzi, A. M. Design and optimization of a lactateamperometric biosensor based on lactate oxidase cross-linked with polymericmatrixes. Sensors and Actuators B: Chemical.2008,131(2):590-595.
    [25] Davis, J. A., Rozenek, R., DeCicco, D. M., Carizzi, M. T., et al. Comparison of threemethods for detection of the lactate threshold. Clin Physiol Funct Imaging.2007,27(6):381-384.
    [26] Bhambhani, Y. N. Muscle oxygenation trends during dynamic exercise measured bynear infrared spectroscopy. Can J Appl Physiol.2004,29(4):504-523.
    [27] Hamaoka, T., McCully, K. K., Quaresima, V., Yamamoto, K., et al. Near-infraredspectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolismin healthy and diseased humans. J Biomed Opt.2007,12(6):062105.
    [28] Ferrari, M., Mottola, L., Quaresima, V. Principles, techniques, and limitations ofnear infrared spectroscopy. Can J Appl Physiol.2004,29(4):463-487.
    [29] Ferrari, M., Muthalib, M., Quaresima, V. The use of near-infrared spectroscopy inunderstanding skeletal muscle physiology: recent developments. Philos Transact AMath Phys Eng Sci.2011,369(1955):4577-4590.
    [30] Hermens, H. J., Freriks, B., Disselhorst-Klug, C., Rau, G. Development ofrecommendations for SEMG sensors and sensor placement procedures. JElectromyogr Kinesiol.2000,10(5):361-374.
    [31] Soderberg, G. L., Kuntson, L. M. A guide for use and interpretation of kinesiologicelectromyopraphic data. Phys Ther.2000,80(5):485-498.
    [32] Jobsis, F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygensufficiency and circulatory parameters. Science.1977,198(4323):1264-1267.
    [33] Sassaroli, A., Fantini, S. Comment on the modified Beer-Lambert law for scatteringmedia. Phys Med Biol.2004,49(14): N255-257.
    [34] Maikala, R. V., Hargens, A. R. Application of near-infrared spectroscopy (NIRS) inergonomics and exercise. Int J Ind Ergon.2010,40(2):123-124.
    [35] Bhambhani, Y. N., Buckley, S. M., Susaki, T. Detection of ventilatory thresholdusing near infrared spectroscopy in men and women. Med Sci Sports Exerc.1997,29(3):402-409.
    [36] Burden AM. Surface electromyography. in: Payton CJ and Bartlett RM, editors.Biomechanical evaluation of movement in sport and exercise, London: Routledge;2008.
    [37] Hug, F., Laplaud, D., Lucia, A., Grelot, L. EMG threshold determination in eightlower limb muscles during cycling exercise: A pilot study. Int J Sports Med.2006,27(6):456-462.
    [38] Candotti, C. T., Loss, J. F., Melo, M. D. O., La Torre, M., et al. Comparing thelactate and EMG thresholds of recreational cyclists during incremental pedalingexercise. Can J Physiol Pharmacol.2008,86(5):272-278.
    [39] Steven, L. J., Brian, W. P. Tutorial on diffuse light transport. J Biomed Opt.2008,13(4):041302.
    [40] Cheong, W. F., Prahl, S. A., Welch, A. J. A review of the optical properties ofbiological tissues. IEEE J Quantum Electron.1990,26(12):2166-2185.
    [41] Leff, D. R., Orihuela-Espina, F., Elwell, C. E., Athanasiou, T., et al. Assessment ofthe cerebral cortex during motor task behaviours in adults: a systematic review offunctional near infrared spectroscopy (fNIRS) studies. Neuroimage.2011,54(4):2922-2936.
    [42] Pellicer, A., Bravo Mdel, C. Near-infrared spectroscopy: a methodology-focusedreview. Semin Fetal Neonatal Med.2011,16(1):42-49.
    [43] Conway, J. M., Norris, K. H., Bodwell, C. E. A new approach for the estimation ofbody composition: infrared interactance. Am J Clin Nutr.1984,40(6):1123-1130.
    [44] Cui, W., Kumar, C., Chance, B. Experimental study of migration depth for thephotons measured at sample surface. in: Chance, B., editor. Los Angeles, CA, USA:SPIE, vol.1431,1991.180-191.
    [45] Delpy, D. T., et al. Estimation of optical pathlength through tissue from direct timeof flight measurement. Phys Med Biol.1988,33(12):1433.
    [46]柏树令,应大君.系统解剖学.(第五版).北京:人民卫生出版社,2001.
    [47] Shiga, T., Yamamoto, K., Tanabe, K., Nakase, Y., et al. Study of an algorithm basedon model experiments and diffusion theory for a portable tissue oximeter. J BiomedOpt.1997,2(2):154-161.
    [48] De Blasi, R. A., Cope, M., Elwell, C., Safoue, F., et al. Noninvasive measurement ofhuman forearm oxygen consumption by near infrared spectroscopy. Eur J ApplPhysiol Occup Physiol.1993,67(1):20-25.
    [49] Millet, G. Y., Aubert, D., Favier, F. B., Busso, T., et al. Effect of acute hypoxia oncentral fatigue during repeated isometric leg contractions. Scand J Med Sci Sports.2009,19(5):695-702.
    [50] Miles, D. S., Cox, M. H., Bomze, J. P. Cardiovascular responses to upper bodyexercise in normals and cardiac patients. Med Sci Sports Exerc.1989,21(5Suppl):S126-131.
    [51] Sawka, M. N. Physiology of upper body exercise. Exerc Sport Sci Rev.1986,14:175-211.
    [52] Secher, N. H., Volianitis, S. Are the arms and legs in competition for cardiac output?Med Sci Sports Exerc.2006,38(10):1797-1803.
    [53] Schneider, D. A., McLellan, T. M., Gass, G. C. Plasma catecholamine and bloodlactate responses to incremental arm and leg exercise. Med Sci Sports Exerc.2000,32(3):608-613.
    [54] Jensen-Urstad, M., Ahlborg, G., Sahlin, K. High lactate and NH3release during armvs. leg exercise is not due to beta-adrenoceptor stimulation. J Appl Physiol.1993,74(6):2860-2867.
    [55] Bhambhani, Y., Maikala, R., Buckley, S. Muscle oxygenation during incrementalarm and leg exercise in men and women. Eur J Appl Physiol.1998,78(5):422-431.
    [56] Secher, N. H., Clausen, J. P., Klausen, K., Noer, I., et al. Central and regionalcirculatory effects of adding arm exercise to leg exercise. Acta Physiol Scand.1977,100(3):288-297.
    [57] Richardson, R. S., Kennedy, B., Knight, D. R., Wagner, P. D. High muscle bloodflows are not attenuated by recruitment of additional muscle mass. Am J Physiol.1995,269(5Pt2): H1545-1552.
    [58] Volianitis, S., Krustrup, P., Dawson, E., Secher, N. H. Arm blood flow andoxygenation on the transition from arm to combined arm and leg exercise in humans.J Physiol.2003,547(Pt2):641-648.
    [59] Ogata, H., Yunoki, T., Yano, T. Effect of arm cranking on the NIRS-determinedblood volume and oxygenation of human inactive and exercising vastus lateralismuscle. Eur J Appl Physiol.2002,86(3):191-195.
    [60] Chance, B., Luo, Q., Nioka, S., Alsop, D. C., et al. Optical investigations ofphysiology: a study of intrinsic and extrinsic biomedical contrast. Philos Trans RSoc Lond B Biol Sci.1997,352(1354):707-716.
    [61] Myers, D. E., Anderson, L. D., Seifert, R. P., Ortner, J. P., et al. Noninvasive methodfor measuring local hemoglobin oxygen saturation in tissue using wide gap secondderivative near-infrared spectroscopy. J Biomed Opt.2005,10(3):034017.
    [62] Hamaoka, T., Katsumura, T., Murase, N., Nishio, S., et al. Quantification ofischemic muscle deoxygenation by near infrared time-resolved spectroscopy. JBiomed Opt.2000,5(1):102-105.
    [63] Valentina, Q., Marco, F., Maria Angela, F., Matthew, L. H., et al. Spatial distributionof vastus lateralis blood flow and oxyhemoglobin saturation measured at the end ofisometric quadriceps contraction by multichannel near-infrared spectroscopy. JBiomed Opt.2004,9(2):413-420.
    [64] Wolf, M., Ferrari, M., Quaresima, V. Progress of near-infrared spectroscopy andtopography for brain and muscle clinical applications. J Biomed Opt.2007,12(6):062104.
    [65] Belardinelli, R., Barstow, T. J., Porszasz, J., Wasserman, K. Changes in skeletalmuscle oxygenation during incremental exercise measured with near infraredspectroscopy. Eur J Appl Physiol.1995,70(6):487-492.
    [66] Grassi, B., Quaresima, V., Marconi, C., Ferrari, M., et al. Blood lactate accumulationand muscle deoxygenation during incremental exercise. J Appl Physiol.1999,87(1):348-355.
    [67] Chance, B., Dait, M. T., Zhang, C. D., Hamaoka, T., et al. Recovery fromexercise-induced desaturation in the quadriceps muscles of elite competitive rowers.Am J Physiol.1992,262(3): C766-C775.
    [68] Legrand, R., Marles, A., Prieur, F., Lazzari, S., et al. Related trends in locomotor andrespiratory muscle oxygenation during exercise. Med Sci Sports Exerc.2007,39(1):91-100.
    [69] Ferreira, L. F., Hueber, D. M., Barstow, T. J. Effects of assuming constant opticalscattering on measurements of muscle oxygenation by near-infrared spectroscopyduring exercise. J Appl Physiol.2007,102(1):358-367.
    [70] Frank P. Primiano, J. Measurements of the Respiratory System. in: Webster, J. G.,editors. MEDICAL INSTRUMENTATION Application and Design, Hoboken: JohnWiley&Sons, Inc.;2008.
    [71] Macfarlane, D. J. Automated metabolic gas analysis systems: a review. Sports Med.2001,31(12):841-861.
    [72] Amann, M., Subudhi, A. W., Walker, J., Eisenman, P., et al. An evaluation of thepredictive validity and reliability of ventilatory threshold. Med Sci Sports Exerc.2004,36(10):1716-1722.
    [73] Sorensen, V. B., Wroblewski, H., Galatius, S., Haunso, S., et al. Assessment ofcontinuous skeletal muscle blood flow during exercise in humans. Microvasc Res.2000,59(2):301-309.
    [74] Radegran, G. Limb and skeletal muscle blood flow measurements at rest and duringexercise in human subjects. P Nutr Soc.1999,58(4):887-898.
    [75] Brooks, G. A. Intra-and extra-cellular lactate shuttles. Med Sci Sports Exerc.2000,32(4):790-799.
    [76] Stringer, W., Wasserman, K., Casaburi, R., Porszasz, J., et al. Lactic acidosis as afacilitator of oxyhemoglobin dissociation during exercise. J Appl Physiol.1994,76(4):1462-1467.
    [77] Wasserman, K., Hansen, J., Sue, D. Facilitation of oxygen consumption by lacticacidosis during exercise. News Physiol Sci.1991,6(1):29-34.
    [78] Yoshida, T., Takeuchi, N., Suda, Y. Arterial versus venous blood lactate increase inthe forearm during incremental bicycle exercise. Eur J Appl Physiol Occup Physiol.1982,50(1):87-93.
    [79] Wasserman, K. Determinants and detection of anaerobic threshold and consequencesof exercise above it. Circulation.1987,76(6Pt2): VI29-39.
    [80] Miller, A. E., MacDougall, J. D., Tarnopolsky, M. A., Sale, D. G. Gender differencesin strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol.1993,66(3):254-262.
    [81] Bottinelli, R., Reggiani, C. Human skeletal muscle fibres: molecular and functionaldiversity. Prog Biophys Mol Biol.2000,73(2-4):195-262.
    [82] Juel, C., Halestrap, A. P. Lactate transport in skeletal muscle-role and regulation ofthe monocarboxylate transporter. J Physiol.1999,517(Pt3):633-642.
    [83] Hagerman, F. C. Applied physiology of rowing. Sports Med.1984,1(4):303-326.
    [84] Secher, N. H. Physiological and biomechanical aspects of rowing. Implications fortraining. Sports Med.1993,15(1):24-42.
    [85] Celik, O., Kosar, S. N., Korkusuz, F., Bozkurt, M. Reliability and validity of themodified Conconi test on concept II rowing ergometers. J Strength Cond Res.2005,19(4):871-877.
    [86] Shimoda, M., Fukunaga, T., Higuchi, M., Kawakami, Y. Stroke power consistencyand2000m rowing performance in varsity rowers. Scand J Med Sci Sports.2009,19(1):83-86.
    [87] Lakomy, H. K., Lakomy, J. Estimation of maximum oxygen uptake fromsubmaximal exercise on a Concept II rowing ergometer. J Sports Sci.1993,11(3):227-232.
    [88] Baquet, G., van Praagh, E., Berthoin, S. Endurance training and aerobic fitness inyoung people. Sports Med.2003,33(15):1127-1143.
    [89] Jones, A. M., Carter, H. The effect of endurance training on parameters of aerobicfitness. Sports Med.2000,29(6):373-386.
    [90] Thin, A. G., Linnane, S. J., McKone, E. F., Freaney, R., et al. Use of the gasexchange threshold to noninvasively determine the lactate threshold in patients withcystic fibrosis. Chest.2002,121(6):1761-1770.
    [91] Hug, F., Decherchi, P., Marqueste, T., Jammes, Y. EMG versus oxygen uptake duringcycling exercise in trained and untrained subjects. J. Electromyogr. Kinesiol.2004,14(2):187-195.
    [92] Demello, J. J., Cureton, K. J., Boineau, R. E., Singh, M. M. Ratings of perceivedexertion at the lactate threshold in trained and untrained men and women. Med SciSports Exerc.1987,19(4):354-362.
    [93] Barstow, T. J., Jones, A. M., Nguyen, P. H., Casaburi, R. Influence of muscle fibretype and fitness on the oxygen uptake/power output slope during incrementalexercise in humans. Exp Physiol.2000,85(1):109-116.
    [94] Salerno, M. Multi-modality imaging of diastolic function. J Nucl Cardiol.2010,17(2):316-327.
    [95] Oddone, M., Granata, C., Vercellino, N., Bava, E., et al. Multi-modality evaluationof the abnormalities of the aortic arches in children: techniques and imagingspectrum with emphasis on MRI. Pediatr Radiol.2005,35(10):947-960.
    [96] Zhai, J., Li, T., Zhang, Z., Gong, H. Hemodynamic and electrophysiological signalsof conflict processing in the Chinese-character Stroop task: a simultaneousnear-infrared spectroscopy and event-related potential study. J Biomed Opt.2009,14(5):054022.
    [97] Zhang, Z., Wang, B., Gong, H., Xu, G., et al. Comparisons of muscle oxygenationchanges between arm and leg muscles during incremental rowing exercise withnear-infrared spectroscopy. J Biomed Opt.2010,15(1):017007.
    [98] Hiroyuki, H., Hamaoka, T., Sako, T., Nishio, S., et al. Oxygenation in vastus lateralisand lateral head of gastrocnemius during treadmill walking and running in humans.Eur J Appl Physiol.2002,87(4-5):343-349.
    [99] Bhambhani, Y. N., Kennedy, M. D., Maikala, R. V. Cardiorespiratory and vastuslateralis oxygenation-blood volume responses during incremental and modifiedWingate tests. Int J Ind Ergon.2010,40(2):197-205.
    [100] Miura, H., Araki, H., Matoba, H., Kitagawa, K. Relationship among oxygenation,myoelectric activity, and lactic acid accumulation in vastus lateralis muscle duringexercise with constant work rate. Int J Sports Med.2000,21(3):180-184.
    [101] Quaresima, V., Franceschini, M.-A., Fantini, S., Gratton, E., et al. Difference in legmuscle oxygenation during treadmill exercise by a new near-infraredfrequency-domain oximeter. in: Photon Propagation in Tissues III, Proceedings Of.San Remo, Italy: SPIE, vol.3194,1998.116-120.
    [102] So, R. C. H., Ng, J. K. F., Ng, G. Y. F. Muscle recruitment pattern in cycling: areview. Phys Ther Sport.2005,6(2):89-96.
    [103] Bijker, K. E., de Groot, G., Hollander, A. P. Differences in leg muscle activity duringrunning and cycling in humans. Eur J Appl Physiol.2002,87(6):556-561.
    [104] Cochrane, D. J. Alternating hot and cold water immersion for athlete recovery: areview. Phys Ther Sport.2004,5(1):26-32.
    [105] Kostianev, S., Terziyski, K., Marinov, B. Exercise recovery phase: unrecovered partof the recommendations. Eur Resp J.2007,30(1):181-182.
    [106] Levinger, I., Varley, M., Jerums, G., Hare, D. L., et al. Oxygen (O2) kinetics duringearly recovery from peak exercise in patients with Type2diabetes. Diabetic Med.2011,28(5):612-617.
    [107] Lacasse, M., Maltais, F., Poirier, P., Lacasse, Y., et al. Post-exercise heart raterecovery and mortality in chronic obstructive pulmonary disease. Resp Med.2005,99(7):877-886.
    [108] Nanas, S., Sakellariou, D., Kapsimalakou, S., Dimopoulos, S., et al. Heart raterecovery and oxygen kinetics after exercise in obstructive sleep apnea syndrome.Clin Cardiol.2010,33(1):46-51.
    [109] Borsheim, E., Bahr, R. Effect of exercise intensity, duration and mode onpost-exercise oxygen consumption. Sports Med.2003,33(14):1037-1060.
    [110] Perrey, S., Candau, R., Borrani, F., Millet, G. Y., et al. Recovery kinetics of oxygenuptake following severe-intensity exercise in runners. J Sports Med Phys Fit.2002,42(4):381-388.
    [111] Sedlock, D. A. Effect of exercise intensity on postexercise energy expenditure inwomen. Br J Sports Med.1991,25(1):38-40.
    [112] Whipp, B. J., Rossiter, H. B., Ward, S. A., Avery, D., et al. Simultaneousdetermination of muscle31P and O2uptake kinetics during whole body NMRspectroscopy. J Appl Physiol.1999,86(2):742-747.
    [113] Yoshida, T., Watari, H. Effect of circulatory occlusion on human muscle metabolismduring exercise and recovery. Eur J Appl Physiol Occup Physiol.1997,75(3):200-205.
    [114] Harris, R. C., Edwards, R. H., Hultman, E., Nordesjo, L. O., et al. The time courseof phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man.Pflugers Arch.1976,367(2):137-142.
    [115] Kemp, G. J., Roberts, N., Bimson, W. E., Bakran, A., et al. Mitochondrial functionand oxygen supply in normal and in chronically ischemic muscle: A combined P-31magnetic resonance spectroscopy, and near infrared spectroscopy study in vivo. JVasc Surg.2001,34(6):1103-1110.
    [116] Takahashi, H., Inaki, M., Fujimoto, K., Katsuta, S., et al. Control of the rate ofphosphocreatine resynthesis after exercise in trained and untrained humanquadriceps muscles. Eur J Appl Physiol Occup Physiol.1995,71(5):396-404.
    [117] Haseler, L. J., Hogan, M. C., Richardson, R. S. Skeletal muscle phosphocreatinerecovery in exercise-trained humans is dependent on O-2availability. J Appl Physiol.1999,86(6):2013-2018.
    [118] Ichimura, S., Murase, N., Osada, T., Kime, R., et al. Age and activity status affectmuscle reoxygenation time after maximal cycling exercise. Med Sci Sports Exerc.2006,38(7):1277-1281.
    [119] Wang, L. X., Yoshikawa, T., Hara, T., Nakao, H., et al. Which common NIRSvariable reflects muscle estimated lactate threshold most closely? Appl Physiol NutrMetab.2006,31(5):612-620.
    [120] Wang, B., Tian, Q., Zhang, Z., Gong, H. Comparisons of local and systemic aerobicfitness parameters between finswimmers with different athlete grade levels. Eur JAppl Physiol.2012,112(2):567-578.
    [121] Rao, R. P., Danduran, M. J., Frommelt, P. C., Ghanayem, N. S., et al. Measurementof Regional Tissue Bed Venous Weighted Oximetric Trends During Exercise byNear Infrared Spectroscopy. Pediatr Cardiol.2009,30(4):465-471.
    [122] Moalla, W., Dupont, G., Berthoin, S., Ahmaidi, S. Respiratory muscle deoxygenationand ventilatory threshold assessments using near infrared spectroscopy in children.Int J Sports Med.2005,26(7):576-582.
    [123] Belardinelli, R., Georgiou, D., Barstow, T. J. Near infrared spectroscopy andchanges in skeletal muscle oxygenation during incremental exercise in chronic heartfailure: a comparison with healthy subjects. G Ital Cardiol.1995,25(6):715-724.
    [124] Karatzanos, E., Paradisis, G., Zacharogiannis, E., Tziortzis, S., et al. Assessment ofventilatory threshold using near-infrared spectroscopy on the gastrocnemius muscleduring treadmill running. Int J Ind Ergon.2010,40(2):206-211.
    [125] Adam, G., Kalaitzoglidis, Y., Tsalis, G. Developments in Finswimming. InquiriesSport Phys Educ.2005,3(1):48-54.
    [126] Gautier, J., Baly, L., Zanone, P. G., Watier, B. A kinematic study of finswimming atsurface. J Sports Sci Med.2004,3(2):91-95.
    [127] Zamparo, P., Pendergast, D. R., Termin, B., Minetti, A. E. How fins affect theeconomy and efficiency of human swimming. J Exp Biol.2002,205(17):2665-2676.
    [128] Amann, M., Subudhi, A., Foster, C. Influence of testing protocol on ventilatorythresholds and cycling performance. Med Sci Sports Exerc.2004,36(4):613-622.
    [129] Nanas, S., Nanas, J., Kassiotis, C., Nikolaou, C., et al. Early recovery of oxygenkinetics after submaximal exercise test predicts functional capacity in patients withchronic heart failure. Eur J Heart Fail.2001,3(6):685-692.
    [130] Cohen-Solal, A., Laperche, T., Morvan, D., Geneves, M., et al. Prolonged kinetics ofrecovery of oxygen consumption after maximal graded exercise in patients withchronic heart failure. Analysis with gas exchange measurements and NMRspectroscopy. Circulation.1995,91(12):2924-2932.
    [131] Belluzo, M., Ribone, M., Lagier, C. Assembling Amperometric Biosensors forClinical Diagnostics. Sensors.2008,8(3):1366-1399.
    [132] Pyne, D. B., Boston, T., Martin, D. T., Logan, A. Evaluation of the Lactate Pro bloodlactate analyser. Eur J Appl Physiol.2000,82(1-2):112-116.
    [133] Mc Naughton, L. R., Thompson, D., Philips, G., Backx, K., et al. A comparison ofthe lactate Pro, Accusport, Analox GM7and Kodak Ektachem lactate analysers innormal, hot and humid conditions. Int J Sports Med.2002,23(2):130-135.
    [134] Zhang, Z., Wang, B., Nie, Q., Luo, Q., et al. Portable muscle oxygenation monitorbased on near infrared spectroscopy. Front Optoelectron China.2009,2(3):248-252.
    [135] Hoffman, J. R., Im, J., Kang, J., Ratamess, N. A., et al. The effect of a competitivecollegiate football season on power performance and muscle oxygen recoverykinetics. J Strength Cond Res.2005,19(3):509-513.
    [136] Yamada, E., Kusaka, T., Miyamoto, K., Tanaka, S., et al. Relationships betweenchanges in oxygenation during exercise and recovery in trained athletes. Opt Rev.2003,10(5):436-439.
    [137] Ferreira, L. F., Townsend, D. K., Lutjemeier, B. J., Barstow, T. J. Muscle capillaryblood flow kinetics estimated from pulmonary O-2uptake and near-infraredspectroscopy. J Appl Physiol.2005,98(5):1820-1828.
    [138] Grassi, B., Pogliaghi, S., Rampichini, S., Quaresima, V., et al. Muscle oxygenationand pulmonary gas exchange kinetics during cycling exercise on-transitions inhumans. J Appl Physiol.2003,95(1):149-158.
    [139] DeLorey, D. S., Kowalchuk, J. M., Paterson, D. H. Relationship between pulmonaryO2uptake kinetics and muscle deoxygenation during moderate-intensity exercise. JAppl Physiol.2003,95(1):113-120.
    [140] Pereira, M. I. R., Gomes, P. S. C., Bhambhani, Y. N. Acute effects of sustainedisometric knee extension on cerebral and muscle oxygenation responses. ClinPhysiol Funct Imaging.2009,29(4):300-308.
    [141] Mizuno, M., Tokizawa, K., Iwakawa, T., Muraoka, I. Inflection points ofcardiovascular responses and oxygenation are correlated in the distal but not theproximal portions of muscle during incremental exercise. J Appl Physiol.2004,97(3):867-873.
    [142] Lin, Y. Q., Lech, G., Nioka, S., Intes, X., et al. Noninvasive, low-noise, fast imagingof blood volume and deoxygenation changes in muscles using light-emitting diodecontinuous-wave imager. Rev Sci Instrum.2002,75(7):2485-2485.
    [143] Bassett, D. R., Howley, E. T. Limiting factors for maximum oxygen uptake anddeterminants of endurance performance. Med Sci Sports Exerc.2000,32(1):70-84.
    [144] Rossiter, H. B., Kowalchuk, J. M., Whipp, B. J. A test to establish maximum O2uptake despite no plateau in the O2uptake response to ramp incremental exercise. JAppl Physiol.2006,100(3):764-770.
    [145] Day, J. R., Rossiter, H. B., Coats, E. M., Skasick, A., et al. The maximally attainableVO2during exercise in humans: the peak vs. maximum issue. J Appl Physiol.2003,95(5):1901-1907.
    [146] Saltin, B., Astrand, P. O. Maximal oxygen uptake in athletes. J Appl Physiol.1967,23(3):353-358.
    [147] Gaskill, S. E., Ruby, B. C., Walker, A. J., Sanchez, O. A., et al. Validity andreliability of combining three methods to determine ventilatory threshold. Med SciSports Exerc.2001,33(11):1841-1848.
    [148] Dickhuth, H. H., Yin, L., Niess, A., Rocker, K., et al. Ventilatory, lactate-derived andcatecholamine thresholds during incremental treadmill running: relationship andreproducibility. Int J Sports Med.1999,20(2):122-127.
    [149] Simon, J., Young, J. L., Blood, D. K., Segal, K. R., et al. Plasma lactate andventilation thresholds in trained and untrained cyclists. J Appl Physiol.1986,60(3):777-781.
    [150] Jones, A. M., Campbell, I. T., Pringle, J. S. M. Influence of muscle fibre type andpedal rate on the VO2-work rate slope during ramp exercise. Eur J Appl Physiol.2004,91(2-3):238-245.
    [151] Scheuermann, B. W., Tripse McConnell, J. H., Barstow, T. J. EMG and oxygenuptake responses during slow and fast ramp exercise in humans. Exp Physiol.2002,87(1):91-100.
    [152] Pedersen, P. K., Sorensen, J. B., Jensen, K., Johansen, L., et al. Muscle fiber typedistribution and nonlinear VO(2)-power output relationship in cycling. Med SciSports Exerc.2002,34(4):655-661.
    [153] Jones, A. M., Carter, H. Oxygen uptake-work rate relationship during twoconsecutive ramp exercise tests. Int J Sports Med.2004,25(6):415-420.
    [154] Boone, J., Koppo, K., Barstow, T. J., Bouckaert, J. Pattern of deoxy[Hb+Mb] duringramp cycle exercise: influence of aerobic fitness status. Eur J Appl Physiol.2009,105(6):851-859.
    [155]Boone, J., Koppo, K., Barstow, T. J., Bouckaert, J. Aerobic fitness, muscle efficiency,and motor unit recruitment during ramp exercise. Med Sci Sports Exerc.2010,42(2):402-408.
    [156] Mogensen, M., Bagger, M., Pedersen, P. K., Fernstrom, M., et al. Cycling efficiencyin humans is related to low UCP3content and to type I fibres but not tomitochondrial efficiency. J Physiol.2006,571(Pt3):669-681.
    [157] Bearden, S. E., Moffatt, R. J. Leg electromyography and the VO2-powerrelationship during bicycle ergometry. Med Sci Sports Exerc.2001,33(7):1241-1245.
    [158] Edgerton, V. R., Smith, J. L., Simpson, D. R. Muscle fibre type populations ofhuman leg muscles. Histochem J.1975,7(3):259-266.
    [159] Hamaoka, T., Mizuno, M., Osada, T., Ratkevicius, A., et al. Changes in oxygenationand phosphocreatine during exercise and recovery in relation to fiber types andcapillary supply in human skeletal muscle. in: Photon Propagation in Tissues III,Proceedings Of. San Remo, Italy: SPIE, vol.3194,1998.478-484.
    [160] Staron, R. S., Hagerman, F. C., Hikida, R. S., Murray, T. F., et al. Fiber typecomposition of the vastus lateralis muscle of young men and women. J HistochemCytochem.2000,48(5):623-629.
    [161] Tamaki, H., Kitada, K., Akamine, T., Murata, F., et al. Alternate activity in thesynergistic muscles during prolonged low-level contractions. J Appl Physiol.1998,84(6):1943-1951.
    [162] Houmard, J. A., Weidner, M. L., Gavigan, K. E., Tyndall, G. L., et al. Fiber type andcitrate synthase activity in the human gastrocnemius and vastus lateralis with aging.J Appl Physiol.1998,85(4):1337-1341.
    [163] Neptune, R. R., Kautz, S. A., Zajac, F. E. Muscle contributions to specificbiomechanical functions do not change in forward versus backward pedaling. JBiomech.2000,33(2):155-164.
    [164] McMahon, S., Jenkins, D. Factors affecting the rate of phosphocreatine resynthesisfollowing intense exercise. Sports Med.2002,32(12):761-784.
    [165] Ferreira, L. F., Harper, A. J., Townsend, D. K., Lutjemeier, B. J., et al. Kinetics ofestimated human muscle capillary blood flow during recovery from exercise. ExpPhysiol.2005,90(5):715-726.
    [166] McCully, K. K., Smith, S., Rajaei, S., Leigh, J. S., et al. Muscle metabolism withblood flow restriction in chronic fatigue syndrome. J Appl Physiol.2004,96(3):871-878.
    [167] Bhambhani, Y., Maikala, R., Esmail, S. Oxygenation trends in vastus lateralismuscle during incremental and intense anaerobic cycle exercise in young men andwomen. Eur J Appl Physiol.2001,84(6):547-556.
    [168] Abe, T., Brechue, W. F., Fujita, S., Brown, J. B. Gender differences in FFMaccumulation and architectural characteristics of muscle. Med Sci Sports Exerc.1998,30(7):1066-1070.
    [169] Akima, H., Takahashi, H., Kuno, S. Y., Katsuta, S. Coactivation pattern in humanquadriceps during isokinetic knee-extension by muscle functional MRI. Eur J ApplPhysiol.2004,91(1):7-14.
    [170] de Ruiter, C. J., Hoddenbach, J. G., Huurnink, A., de Haan, A. Relative torquecontribution of vastus medialis muscle at different knee angles. Acta Physiol (Oxf).2008,194(3):223-237.
    [171] Simeoni, R. J., Mills, P. M. Quadriceps muscles vastus medialis obliques, rectusfemoris and vastus lateralis compared via electromyogram bicoherence analysis.Australas Phys Eng Sci Med.2003,26(3):125-131.
    [172] Housh, T. J., deVries, H. A., Johnson, G. O., Housh, D. J., et al. Electromyographicfatigue thresholds of the superficial muscles of the quadriceps femoris. Eur J ApplPhysiol Occup Physiol.1995,71(2-3):131-136.
    [173] Shenoy, S., Mishra, P., Sandhu, J. S. Peak Torque and IEMG Activity of QuadricepsFemoris Muscle at Three Different Knee Angles in a Collegiate Population. J ExercSci Fit.2011,9(1):40-45.
    [174] Pincivero, D. M., Salfetnikov, Y., Campy, R. M., Coelho, A. J. Angle-andgender-specific quadriceps femoris muscle recruitment and knee extensor torque. JBiomech.2004,37(11):1689-1697.
    [175] Kek, K., Samizo, M., Miyakawa, T., Kudo, N., et al., Imaging of regionaldifferences of muscle oxygenation during exercise using spatially resolved NIRS, inConf Proc IEEE Eng Med Biol Soc, Editor^Editors.2005: Shanghai, China. p.2622-2625.
    [176] Salzman, A., Torburn, L., Perry, J. Contribution of rectus femoris and vasti to kneeextension. An electromyographic study. Clin Orthop Relat Res.1993,(290):236-243.
    [177] Hendrix, C. R., Housh, T. J., Johnson, G. O., Mielke, M., et al. Comparison ofCritical Force to EMG Fatigue Thresholds during Isometric Leg Extension. Med SciSports Exerc.2009,41(4):956-964.
    [178] Hendrix, C. R., Housh, T. J., Zuniga, J. M., Camic, C. L., et al. Amechanomyographic frequency-based fatigue threshold test. J Neurosci Methods.2010,187(1):1-7.
    [179] duManoir, G. R., DeLorey, D. S., Kowalchuk, J. M., Paterson, D. H. Kinetics ofVO2limb blood flow and regional muscle deoxygenation in young adults duringmoderate intensity, knee-extension exercise. Eur J Appl Physiol.2010,108(3):607-617.
    [180] Luca, C. J. D. The use of surface electromyography in biomechanics. J ApplBiomech.1997,13(2):135-163.
    [181] Burden, A. How should we normalize electromyograms obtained from healthyparticipants? What we have learned from over25years of research. J ElectromyogrKinesiol.2010,20(6):1023-1035.
    [182] Osawa, T., Kime, R., Hamaoka, T., Katsumura, T., et al. Attenuation of MuscleDeoxygenation Precedes EMG Threshold in Normoxia and Hypoxia. Med SciSports Exerc.2011,43(8):1406-1413.
    [183] Kent-Braun, J. A., Miller, R. G., Weiner, M. W. Phases of metabolism duringprogressive exercise to fatigue in human skeletal muscle. J Appl Physiol.1993,75(2):573-580.
    [184] Acevedo, E. O., Goldfarb, A. H. Increased training intensity effects on plasmalactate, ventilatory threshold, and endurance. Med Sci Sports Exerc.1989,21(5):563-568.
    [185] Bunc, V., Hofmann, P., Leitner, H., Gaisl, G. Verification of the heart rate threshold.Eur J Appl Physiol Occup Physiol.1995,70(3):263-269.
    [186] Molina, R., Denadai, B. S. Muscle damage slows oxygen uptake kinetics duringmoderate-intensity exercise performed at high pedal rate. Appl Physiol Nutr Metab.2011,36(6):848-855.
    [187] Farrell, P. A., Wilmore, J. H., Coyle, E. F., Billing, J. E., et al. Plasma lactateaccumulation and distance running performance. Med Sci Sports.1979,11(4):338-344.
    [188] Shinohara, M., Kouzaki, M., Yoshihisa, T., Fukunaga, T. Mechanomyogram fromthe different heads of the quadriceps muscle during incremental knee extension. EurJ Appl Physiol Occup Physiol.1998,78(4):289-295.
    [189] Kennedy, M. D., Haykowsky, M. J., Boliek, C. A., Esch, B. T., et al. Regionalmuscle oxygenation differences in vastus lateralis during different modes ofincremental exercise. Dyn Med.2006,5:8.
    [190] Jurimae, J., von Duvillard, S. P., Maestu, J., Cicchella, A., et al. Aerobic-anaerobictransition intensity measured via EMG signals in athletes with different physicalactivity patterns. Eur J Appl Physiol.2007,101(3):341-346.
    [191] Watanabe, K., Akima, H. Effect of knee joint angle on neuromuscular activation ofthe vastus intermedius muscle during isometric contraction. Scand J Med Sci Sports.2011,21(6): e412-420.
    [192] Stylianou, A. P., Luchies, C. W., Lerner, D. E., King, G. W. The use of correlationintegrals in the study of localized muscle fatigue of elbow flexors during maximalefforts. J Electromyogr Kinesiol.2005,15(5):437-443.
    [193] Felici, F., Colace, L., Sbriccoli, P. Surface EMG modifications after eccentricexercise. J Electromyogr Kinesiol.1997,7(3):193-202.
    [194]陈成.肌电信号的处理方法及其对职业性下腰痛评估的研究:[硕士学位论文].天津大学精密仪器与光电子工程学院,天津大学,2003.
    [195] Yamada, E., Kusaka, T., Arima, N., Isobe, K., et al. Relationship between muscleoxygenation and electromyography activity during sustained isometric contraction.Clin Physiol Funct Imaging.2008,28(4):216-221.
    [196]杨晓晔.表面肌电图对青年男子股四头肌的疲劳评价:[硕士学位论文].运动生理学,北京体育大学,2004.
    [197] Filligoi, G. C., Felici, F. Detection of hidden rhythms in surface EMG signals with anonlinear time-series tool. Med Eng Phys.1999,21(6-7):439-448.
    [198] Sbriccoli, P., Felici, F., Rosponi, A., Aliotta, A., et al. Exercise induced muscledamage and recovery assessed by means of linear and non-linear sEMG analysis andultrasonography. J Electromyogr Kinesiol.2001,11(2):73-83.
    [199] Pincivero, D. M., Campy, R. M., Salfetnikov, Y., Bright, A., et al. Influence ofcontraction intensity, muscle, and gender on median frequency of the quadricepsfemoris. J Appl Physiol.2001,90(3):804-810.
    [200] Wang, B., Tian, Q., Zhang, Z., Gong, H. Comparison between the changes in muscleoxygenation and blood lactate concentration in finswimmers during incrementalexercise. in: Eighth International Conference on Photonics and Imaging in Biologyand Medicine (PIBM2009). Wuhan, China: SPIE, vol.7519,2009.75190C-75198.
    [201] Weippert, M., Kumar, M., Kreuzfeld, S., Arndt, D., et al. Comparison of threemobile devices for measuring R-R intervals and heart rate variability: Polar S810i,Suunto t6and an ambulatory ECG system. Eur J Appl Physiol.2010,109(4):779-786.
    [202] Burton, D. A., Stokes, K., Hall, G. M. Physiological effects of exercise. Contin EducAnaesth Crit Care Pain.2004,4(6):185-188.
    [203] Markel, T. A., Daley, J. C.,3rd, Hogeman, C. S., Herr, M. D., et al. Aging and theexercise pressor reflex in humans. Circulation.2003,107(5):675-678.
    [204] Kaufman, M. P., Hayes, S. G. The exercise pressor reflex. Clin Auton Res.2002,12(6):429-439.
    [205] Mortimer, J. T., Kerstein, M. D., Magnusson, R., Petersen, I. Muscle blood flow inthe human biceps as a function of developed muscle force. Arch Surg.1971,103(3):376-377.
    [206] Hendrix, C. R., Housh, T. J., Johnson, G. O., Mielke, M., et al. A new EMGfrequency-based fatigue threshold test. J Neurosci Methods.2009,181(1):45-51.
    [207] Oliveira, A. D. C., Goncalves, M. EMG amplitude and frequency parameters ofmuscular activity: Effect of resistance training based on electromyographic fatiguethreshold. J Electromyogr Kinesiol.2009,19(2):295-303.
    [208] Kendall, K. L., Smith, A. E., Graef, J. L., Walter, A. A., et al. Validity ofelectromyographic fatigue threshold as a noninvasive method for tracking changesin ventilatory threshold in college-aged men. J Strength Cond Res.2010,24(1):109-113.
    [209] Wigmore, D. M., Befroy, D. E., Lanza, I. R., Kent-Braun, J. A. Contractionfrequency modulates muscle fatigue and the rate of myoglobin desaturation duringincremental contractions in humans. Appl Physiol Nutr Metab.2008,33(5):915-921.
    [210] Kek, K. J., Miyakawa, T., Kudo, N., Yamamoto, K., Functional imaging of muscleoxygenation and oxygen consumption in the knee extensor muscles during isometriccontractions by spatially resolved near-infrared spectroscopy, in Proc. of SPIE Vol.6434, Chance, B., Alfano, R. R., Tromberg, B. J., Tamura, M. and Sevick-Muraca, E.M., Editor^Editors.2007, SPIE: San Jose, CA, USA. p.643422-643412.
    [211] Quaresima, V., Colier, W., van der Sluijs, M., Ferrari, M. Nonuniform quadricepsO-2consumption revealed by near infrared multipoint measurements. BiochemBiophys Res Commun.2001,285(4):1034-1039.
    [212] Kouzaki, M., Shinohara, M., Masani, K., Tachi, M., et al. Local blood circulationamong knee extensor synergists in relation to alternate muscle activity duringlow-level sustained contraction. J Appl Physiol.2003,95(1):49-56.
    [213] Koga, S., Poole, D. C., Ferreira, L. F., Whipp, B. J., et al. Spatial heterogeneity ofquadriceps muscle deoxygenation kinetics during cycle exercise. J Appl Physiol.2007,103(6):2049-2056.
    [214] Kouzaki, M. Significant roles of synergistic muscles in human redundant andcomplicated activities. Int J Sport Helth Sci.2005,3(S):181-193.
    [215] Lucia, A., Sanchez, O., Carvajal, A., Chicharro, J. L. Analysis of theaerobic-anaerobic transition in elite cyclists during incremental exercise with the useof electromyography. Br J Sports Med.1999,33(3):178-185.
    [216] Hug, F., Laplaud, D., Savin, B., Grelot, L. Occurrence of electromyographic andventilatory thresholds in professional road cyclists. Eur J Appl Physiol.2003,90(5-6):643-646.
    [217] Watanabe, K., Akima, H. Validity of surface electromyography for vastusintermedius muscle assessed by needle electromyography. J Neurosci Methods.2011,198(2):332-335.
    [218] Hamaoka, T., McCully, K. K., Niwayama, M., Chance, B. The use of musclenear-infrared spectroscopy in sport, health and medical sciences: recentdevelopments. Philos Transact A Math Phys Eng Sci.2011,369(1955):4591-4604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700