PPARGC1及其辅激活基因多态性与有氧运动能力的关联性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探讨PPARGC1及其辅激活基因NRF1、NRF2、TEAM的多态性与有氧运动能力的关联性。
     研究一:PPARGC1及其辅激活基因多态性与杰出有氧运动能力的关联性研究
     研究对象:123名长跑运动员和206名普通人
     研究方法:通过case-control studies分析PPARGC1基因Thr394Thr、Gly482Ser、A2962G;NRF1基因rs2302970、rs6949152、rs10500120;NRF2基因rs12594956、rs80311031、rs7181866;TFAM基因rs1937、rs2306604、rs1049432多态性在运动员组与对照组的分布特征。
     研究结果:A2962G与杰出有氧运动能力关联,并有性别差异。A等位基因的频率在女国际健将组显著高于女对照组,且女运动员组无GG基因型。G等位基因(AG+GG基因型)的频率在男运动员组显著高于男对照组。PPARGC1基因单体型与男子的杰出有氧运动能力关联,ACA单体型仅在男国际健将组存在,ACG单体型的分布频率在男国际健将组显著高于男对照组。
     研究二:PPARGC1及其辅激活基因多态性与有氧运动能力表型的关联性研究
     研究对象:102名汉族男性青年
     研究方法:通过cross-sectional association studies和association studieswith training response phenotypes探讨上述多态性与有氧能力表型的关联性。
     研究结果:1)A2962G与V02max初始值关联,携带G等位基因(AG+GG基因型)群体大于非携带者。2)rs80311031的CC基因型跑节省化的初始能力最强;NRF2基因ATG单体型跑节省化的初始能力最差,但训练敏感性最高;rs2302970的CT基因型,rs6949152的AG基因型初始能力最强,训练敏感性也最高。
     结论:1)PPARGC1基因A2962G多态性及该基因单体型可作为男子长跑运动员选材用分子遗传学标记;2)A2962G、rs2402970、rs6949152和NRF2基因单体型可作为预测部分有氧运动能力表型的分子遗传学标记。
The aim of this work was to examine the association between the polymorphisms in PPARGC1,NRF1,NRF2 and TFAM gene and aerobic performance.
     PartⅠ:Association study of PPARGC1 and coactivator genes with elite aerobic performance
     Subjects:123 endurance athletes and 206 controls
     Methods:The case-control studies were to analyze the gene polymorphisms characteristic between endurance athletes and controls.These polymorphisms were located in PPARGC1(Thr394Thr,Gly482Ser,A2962G), NRF1(rs2302970,rs6949152,rs10500120),NRF2(rs12594956,rs80311031, rs7181866) and TFAM(rs1937,rs2306604,rs1049432) gene.
     Results:A2962G polymorphism was associated with elite aerobic performance with sexual difference.The frequency of G allele was significantly higher in elite male endurance athletes than male controls, while the A allele frequency was significantly higher in elite female athletes than female controls.Meantime,the PPARGC1 gene ACA haplotype was only appeared in elite male athletes,and the ACG haplotype frequency was significantly higher in elite male athletes than male controls.
     PartⅡ:Association study of PPARGC1 and coactivator genes with aerobic phenotypes
     Subjects:102 healthy,biologically unrelated young males from Northern China(of Han origin)
     Methods:The cross-sectional association studies and association studies with training response phenotypes were used to explore the genetic markers for aerobic phenotypes,such as VO2max,running economy,left cardiac structure and function at baseline and in response to training.
     Results:1) A2962G polymorphism was associated with VO2max at baseline, as carriers of the G allele(AG+GG genotypes) had higher levels of VO2max than the AA group.2) The VO2 at RE was associated with rs80311031, rs2302970 and NRF2 haplotype at baseline,whose carried CC,CT genotype or ATG haplotype had higher running economy capacity,respectively. However,the training response of VO2 at RE was associated with rs6949152, rs2302970 and NRF2 haplotype,and the group with AG,CT genotype or ATG haplotype were higher.
     Conclusion:1) A2962G and PPARGC1 gene haplotype might be the genetic markers in predicting male elite athlete.2) A2962G,rs2402970,rs6949152 and NRF2 gene haplotype might be the genetic markers in predicting the aerobic phenotypes.
引文
[1]何子红,胡扬.运动能力相关基因标记的研究策略及方法 中国运动医学杂志,2006,26:684-691.
    [2]Wolfarth B,Bray MS,Hagberg JM,et al.The human gene map for performance and health-related fitness phenotypes:the 2004 update Med Sci Sports Exerc,2005,37:881-903.
    [3]Jansson EKaijser L Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men J Appl Physiol,1987,62:999-1005.
    [4]Ojuka EO,Jones TE,Hart DH,et al.Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle Faseb J,2003,17:675-681.
    [5]Holloszy JO,Kohrt WMHansen PA The regulation of carbohydrate and fat metabolism during and after exercise Front Biosci,1998,3:D1011-1027.
    [6]Baar K Involvement of PPAR gamma co-activator-1,nuclear respiratory factors 1 and 2,and PPAR alpha in the adaptive response to endurance exercise Proc Nutr Soc,2004,63:269-273.
    [7]Fluck MHoppeler H Molecular basis of skeletal muscle plasticity-from gene to form and function Rev Physiol Biochem Pharmacol,2003,146:159-216.
    [8]Handschin C,Rhee J,Lin J,et al.An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle Proc Natl Acad Sci U S A,2003,100:7111-7116.
    [9]Booth FWThomason DB Molecular and cellular adaptation of muscle in response to exercise:perspectives of various models Physiol Rev,1991,71:541-585.
    [10]Zoll J,Sanchez H,N'Guessan B,et al.Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle J Physiol,2002,543:191-200.
    [11]Finck BNKelly DP PGC-1 coactivators:inducible regulators of energy metabolism in health and disease J Clin Invest,2006,116:615-622.
    [12]Puigserver PSpiegelman BM Peroxisome proliferator-activated receptor-gamma coactivator 1alpha(PGC-1 alpha):transcriptional coactivator and metabolic regulator Endocr Rev,2003,24:78-90.
    [13]Puigserver P Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha Int J Obes(Lond),2005,29 Suppl 1:S5-9.
    [14]Lin J,Handschin CSpiegelman BM Metabolic control through the PGC-1 family of transcription coactivators Cell Metab,2005,1:361-370.
    [15]Schreiber SN,Knutti D,Brogli K,et al.The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha(ERRalpha) J Biol Chem,2003,278:9013-9018.
    [16]Schreiber SN,Emter R,Hock MB,et al.The estrogen-related receptor alpha(ERRalpha)functions in PPARgamma coactivator 1alpha(PGC-1alpha)-induced mitochondrial biogenesis Proc Natl Acad Sci U S A,2004,101:6472-6477.
    [17]Zhang Y,Castellani LW,Sinal CJ,et al.Peroxisome proliferator-activated receptor-gamma coactivator lalpha(PGC-lalpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR Genes Dev,2004,18:157-169.
    [18]Gleyzer N,Vercauteren KScarpulla RC Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors(NRF-1 and NRF-2) and PGC-1 family coactivators Mol Cell Biol,2005,25:1354-1366.
    [19]Puigserver P,Wu Z,Park CW,et al.A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis Cell,1998,92:829-839.
    [20]Wu Z,Puigserver P,Andersson U,et al.Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1 Cell,1999,98:115-124.
    [21]St-Pierre J,Lin J,Kranss S,et al.Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators lalpha and 1beta(PGC-1alpha and PGC-1beta) in muscle cells J Biol Chem,2003,278:26597-26603.
    [22]Lin J,Wu H,Tarr PT,et al.Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres Nature,2002,418:797-801.
    [23]Michael LF,Wu Z,Cheatham RB,et al.Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1 Proc Natl Acad Sci U S A,2001,98:3820-3825.
    [24]Miura S,Kai Y,Ono M,et al.Overexpression of peroxisome proliferator-activated receptor gamma coactivator-1alpha down-regulates GLUT4 mRNA in skeletal muscles J Biol Chem,2003,278:31385-31390.
    [25]Yoon JC,Puigserver P,Chen G,et al.Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1 Nature,2001,413:131-138.
    [26]Vega RB,Huss JMKelly DP The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes Mol Cell Biol,2000,20:1868-1876.
    [27]Lin J,Yang R,Tarr PT,et al.Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP Cell,2005,120:261-273.
    [28]杜国光,李平风,顾文霞.辅调节因子在核受体基因表达调控中的作用 中国生物化学与分子生物学报,2000,16:565-568.
    [29]梁琳慧 辅调节因子在核受体调节基因表达中的作用 国外医学分子生物学分册,2002,24:357-361.
    [30]宋娟,贾伟平.PGC-1与能量平衡及糖、脂代谢的关系 上海医学,2004,27:869-871.
    [31]李伟文 过氧化物酶体增殖物激活受体γ共激活因子-1的研究进展 国外医学临床生物化学与检验学分册,2005 26:21-25.
    [32]孙亮,金峰,王沥,等.核辅激活因子PGC-1作用分子机制的研究进展 遗传,2005,27:302-308.
    [33]张春妮,王沪旭.PGC-1—一种新的核受体轴助活化因子 生命的化学,2003,23:379-381.
    [34]Knutti DKralli A PGC-1,a versatile coactivator Trends Endocrinol Metab,2001,12:360-365.
    [35]路文盛 过氧化物酶体增殖物激活受体γ辅助激活因子-1基因与糖尿病 国外医学内科学分 册,2006,33:72-77.
    [36]Perusse L,Rice T,Chagnon YC,et al.A genome-wide scan for abdominal fat assessed by computed tomography in the Quebec Family Study Diabetes,2001,50:614-621.
    [37]Hood DA,Irreher I,Ljubicic V,et al.Coordination of metabolic plasticity in skeletal muscle J Exp Biol,2006,209:2265-2275.
    [38]Rodgers JT,Lerin C,Haas W,et al.Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1 Nature,2005,434:113-118.
    [39]马春薇 PGC-1的研究进展 国外医学内分泌学分册,2003,23:211-213.
    [40]Herzig S,Long F,Jhala US,et al.CREB regulates hepatic gluconeogenesis through the coactivator PGC-1 Nature,2001,413:179-183.
    [41]Moore ML,Park EAMcMilIin JB Upstream stimulatory factor represses the induction of carnitine palmitoyltransferase-Ibeta expression by PGC-1 J Biol Chem,2003,278:17263-17268.
    [42]Scarpulla RC Nuclear activators and coactivators in mammalian mitochondrial biogenesis Biochim Bioohys Acta,2002.1576:1-14.
    [43]苏林,杨克恭,陈松森.一种新的辅激活因子—PGC-1生命的化学,2003,23:92-94.
    [44]孙亮,朱小泉,王沥,等.核辅激活因子PGC-1表达的分子调控机制 中国生物化学与分子生物学报,2005,21:431-439.
    [45]Arany Z,He H,Lin J,et al.Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle Cell Metab,2005,1:259-271.
    [46]Louet JF,Hayhurst G,Gonzalez FJ,et al.The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein(CREB) J Biol Chem,2002,277:37991-38000.
    [47]Arya R,Duggirala R,Jenkinson CP,et al.Evidence of a novel quantitative-trait locus for obesity on chromosome 4p in Mexican Americans Am J Hum Genet,2004,74:272-282.
    [48]Esterbauer H,Oberkofler H,Linnemayr V,et al.Peroxisome proliferator-activated receptor-gamma coactivator-1 gene locus:associations with obesity indices in middle-aged women Diabetes,2002,51:1281-1286.
    [49]Mandard S,Muller MKersten S Peroxisome proliferator-aetivated receptor alpha target genes Cell Mol Life Sci,2004,61:393-416.
    [50]Russell AP,Feilchenfeldt J,Schreiber S,et al.Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1and peroxisome proliferator-activated receptor-alpha in skeletal muscle Diabetes,2003,52:2874-2881.
    [51]Lee WJ,Kim M,Park HS,et al.AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1 Biochem Biophys Res Commun,2006,340:291-295.
    [52]Tiraby CLangin D Conversion from white to brown adipocytes:a strategy for the control of fat mass? Trends Endocrinol Metab,2003,14:439-441.
    [53]Lin J,Wu PH,Tarr PT,et al.Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice Cell,2004,119:121-135.
    [54]Berchtold MW,Brinkmeier HMuntener M Calcium ion in skeletal muscle:its crucial role for muscle function,plasticity,and disease Physiol Rev,2000,80:1215-1265.
    [55]Vescovo G,Ravara B,Gobbo V,et al.Skeletal muscle fibres synthesis in heart failure:role of PGC-lalpha,calcineurin and GH Int J Cardiol,2005,104:298-306.
    [56]Wu H,Kanatous SB,Thurmond FA,et al.Regulation of mitochondrial biogenesis in skeletal muscle by CaMK Science,2002,296:349-352.
    [57]Kelly DPScarpulla RC Transcriptional regulatory circuits controlling mitochondrial biogenesis and function Genes Dev,2004,18:357-368.
    [58]Norrbom J,Sundberg CJ,Ameln H,et al.PGC-lalpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle J Appl Physiol,2004,96:189-194.
    [59]Gow AJStamler JS Reactions between nitric oxide and haemoglobin under physiological conditions Nature,1998,391:169-173.
    [60]Lehman JJ,Barger PM,Kovacs A,et al.Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis J Clin Invest,2000,106:847-856.
    [61]Huss JMKelly DP Nuclear receptor signaling and cardiac energetics Circ Res,2004,95:568-578.
    [62]Leone TC,Lehman JJ,Finck BN,et al.PGC-1alpha deficiency causes multi-system energy metabolic derangements:muscle dysfunction,abnormal weight control and hepatic steatosis PLoS Biol,2005,3:e101.
    [63]Garnier A,Fortin D,Zoll J,et al.Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle Faseb J,2005,19:43-52.
    [64]Baar K,Wende AR,Jones TE,et al.Adaptations of skeletal muscle to exercise:rapid increase in the transcriptional coactivator PGC-1 Faseb J,2002,16:1879-1886.
    [65]Pilegaard H,Saltin BNeufer PD Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle J Physiol,2003,546:851-858.
    [66]Franks PW,Barroso I,Luan J,et al.PGC-1alpha genotype modifies the association of volitional energy expenditure with[OV0312]O2max Med Sci Sports Exerc,2003,35:1998-2004.
    [67]Lucia A,Gomez-Gallego F,Barroso I,et al.PPARGC1A genotype(Gly482Ser) predicts exceptional endurance capacity in European men J Appl Physiol,2005,99:344-348.
    [68]Ling C,Poulsen P,Carlsson E,et al.Multiple environmental and genetic factors influence skeletal muscle PGC-1alpha and PGC-1beta gene expression in twins J Clin Invest,2004,114:1518-1526.
    [69]Stumvoll M,Fritsche A,t'Hart LM,et al.The Gly482Ser variant in the peroxisome proliferator-activated receptor gamma coactivator-1 is not associated with diabetes-related traits in non-diabetic German and Dutch populations Exp Clin Endocrinol Diabetes,2004,112:253 -257.
    [70]Ek J,Andersen G,Urhammer SA,et al.Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1(PGC-1) and relationships of identified amino acid polymorphisms to Type Ⅱ diabetes mellitus Diabetologia,2001,44:2220-2226.
    [71]Hara K,Tobe K,Okada T,et al.A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type Ⅱ diabetes Diabetologia,2002,45:740-743.
    [72]Kunej T,Globocnik Petrovic M,Dove P,et al.A Gly482Ser polymorphism of the peroxisome proliferator-activated receptor-gamma coactivator-1(PGC-1) gene is associated with type 2 diabetes in Caucasians Folia Biol(Praha),2004,50:157-158.
    [73]Sookoian S,Garcia SI,Porto PI,et al.Peroxisome proliferator-activated receptor gamma and its coactivator-1 alpha may be associated with features of the metabolic syndrome in adolescents J Mol Endocrinol,2005,35:373-380.
    [74]王艳波.于永春,李智,等.中国上海地区汉族人PGC-1基因多态性与2型糖尿病相关性研究中华医学遗传学杂志,2005,22:453-456.
    [75]单莉,王辰,纪立农.等.PPARGC1基因Gly482Ser多态性与2型糖尿病的相关性研究 中国糖尿病杂志,2006,14:103-107.
    [76]Choi YS,Hong JM,Lim S,et al.Impaired coactivator activity of the Gly482 variant of peroxisome proliferator-activated receptor gamma coactivator-lalpha(PGC-lalpha) on mitochondrial transcription factor A(Tfam) promoter Biochem Biophys Res Commuu,2006,344:708-712.
    [77]Vimaleswaran KS,Radha V,Ghosh S,et al.Peroxisome proliferator-activated receptor-gamma co-activator-lalpha(PGC-lalpha) gene polymorphisms and their relationship to Type 2 diabetes in Asian Indians Diabet Med,2005,22:1516-1521.
    [78]Vimaleswaran KS,Radha V,Anjana M,et al.Effect of polymorphisms in the PPARGC1A gene on body fat in Asian Indians Int J Obes(Lond),2006,30:884-891.
    [79]Muller YL,Bogardus C,Pedersen O,et al.A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians Diabetes,2003,52:895-898.
    [80]Kim JH,Shin HD,Park BL,et al.Peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter polymorphisms are associated with early-0nset type 2 diabetes mellitus in the Korean population Diabetologia,2005,48:1323-1330.
    [81]宋熔.哺乳动物核呼吸因子研究进展.生理科学进展,2005,36:183-185.
    [82]陈锐.核呼吸因子研究进展 国外医学·生理、病理科学与临床分册,2005,25:59-61.
    [83]江海洪,刘泽军.线粒体呼吸链功能调控机制的研究进展 生理科学进展,2001,32:359-361.
    [84]江海洪 细胞核对线粒体呼吸链功能调控的研究,国外医学·生理、病理科学与临床分册,2001,21:167-169.
    [85]张辰艳.线粒体DNA基因表达的转录及其调控 生命的化学,2006,26:113-116.
    [86]周海洋,时多,王学敏.核呼吸因子-1:细胞核调控线粒体功能的一种重要因子生命的化学,2005,25:202-204.
    [87]Rosmarin AG,Resendes KK,Yang Z,et al.GA-binding protein transcription factor:,a review of GABP as an integrator of intracellular signaling and protein-protein interactions Blood Cells Mol Dis,2004,32:143-154.
    [88]LaMarco K,Thompson CC,Byers BP,et al.Identification of Ets-and notch-related subunits in GA binding protein Science,1991,253:789-792.
    [89]Sawa C,Goto M,Suzuki F,et al.Functional domains of transcription factor hGABP betal/E4TF1-53 required for nuclear localization and transcription activation Nucleic Acids Res,1996,24:4954-4961.
    [90]Scarpulla RC Nuclear control of respiratory gene expression in mammalian cells J Cell Biochem,2006,97:673-683.
    [91]Ongwijitwat SWong-Riley MT Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons? Gene,2005,360:65-77.
    [92]Hood DA Invited Review:.contractile activity-induced mitochondrial biogenesis in skeletal muscle J Appl Physiol,2001,90:1137-1157.
    [93]Evans MJScarpulla RC NRF-1:a trans-activator of nuclear-encoded respiratory genes in animal cells Genes Dev,1990,4:1023-1034.
    [94]肖莉莉 黄 线粒体DNA复制及其调控 中国生物化学与分子生物学报,2006,22:435-441.
    [95]Virbasius JVScarpulla RC Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors:a potential regulafory link between nuclear and rnitochondrial gene expression in organelle biogenesis Proc Nail Acad Sci U S A,1994,91:1309-1313..
    [96]Aizencang GI,Bishop DF,Forrest D,et al.Uroporphyrinogen Ⅲ synthase.An alternative promoter controls erythroid-specific expression in the murine gene J Biol Chem,2000,275:2295-2304.
    [97]Braidotti G,Borthwick IAMay BK Identification of regulatory sequences in the gene for 5-aminolevulinate synthase from rat J Biol Chem,1993,268:1109-1117.
    [98]Li B,Holloszy JOSemenkovich CF Respiratory uncoupling induces delta-aminolevulinate synthase expression through a nuclear respiratory factor-1-dependent mechanism in HeLa cells J Biol Chem,1999,274:17534-17540.
    [99]Baar K,Song Z,Semenkovich CF,et al.Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity Faseb J,2003,17:1666-1673.
    [100]Huo LScarpulla RC Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice Mol Cell Biol,2001,21:644-654.
    [101]Scarpulla RC Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells Gene,2002,286:81-89.
    [102]Tokusumi Y,Zhou STakada S Nuclear respiratory factor 1 plays an essential role in transcriptional initiation from the hepatitis B virus x gene promoter J Virol,2004,78:10856-10864.
    [103]Solecki D,Bernhardt G,Lipp M,et al.Identification of a nuclear respiratory factor-1 binding site within the core promoter of the human polio virus receptor/CD155 gene J Biol Chem,2000,275:12453-12462.
    [104]Murakami T,Shimomura Y,Yoshimura A,et al.Induction of nuclear respiratory factor-1expression by an acute bout of exercise in rat muscle Biochim Biophys Acta,1998,1381:113-122.
    [105]Short KR,Vittone JL,Bigelow ML,et al.Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity Diabetes,2003,52:1888-1896.
    [106]Cho YM,Shin HD,Park BL,et al.Association between polymorphisms in the nuclear respiratory factor 1 gene and type 2 diabetes mellitus in the Korean population Diabetologia,2005,48:2033-2038.
    [107]Garstka HL,Schmitt WE,Schultz J,et al.Import of mitochondrial transcription factor A(TFAM)into rat liver mitochondria stimulates transcription of mitochondrial DNA Nucleic Acids Res,2003,31:5039-5047.
    [108]刘志峰.姜勇.线粒体转录因子A的研究进展 生理科学进展,2006,37:37-34-.
    [109]时多,周运恒,于军,等.线粒体基因表达的调控及其与某些疾病的关系 生命的化学,2006,26:250-252.
    [110]Wredenberg A,Wibom R,Wilhelmsson H,et al.Increased mitochondrial mass in mitochondrial myopathy mice Proc Nail Acad Sci U S A,2002,99:15066-15071.
    [111]Ekstrand MI,Falkenberg M,Rantanen A,et al.Mitochondrial transcription factor A regulates mtDNA copy number in mammals Hum Mol Genet,2004,13:935-944.
    [112]Poulton J,Morten K,Freeman-Emmerson C,et al.Deficiency of the human mitochondrial transcription factor h-mtTFA in infantile mitochondrial myopathy is associated with mtDNA depletion Hum Mol Genet,1994,3:1763-1769.
    [113]Maniura-Weber K,Goffart S,Garstka HL,et al.Transient overexpression of mitoehondrial transcription factor A(TFAM) is sufficient to stimulate mitochondrial DNA transcription,but not sufficient to increase mtDNA copy number in cultured cells Nucleic Acids Res,2004,32:6015-6027.
    [114]Fisher RP,Lisowsky T,Breen GA,et al.A rapid,efficient method for purifying DNA-binding proteins.Denaturation-renaturation chromatography of human and yeast mitochondrial extracts J Biol Chem,1991,266:9153-9160.
    [115]Takamatsu C,Umeda S,Ohsato T,et al.Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA-binding protein EMBO Rep,2002,3:451-456.
    [116]Alam TI,Kanki T,Muta T,et al.Human mitochondrial DNA is packaged with TFAM Nucleic Acids Res,2003,31:1640-1645.
    [117]Garrido N,Griparic L,Jokitalo E,et al.Composition and dynamics of human mitochondrial nucleoids Mol Biol Cell,2003,14:1583-1596.
    [118]Kanki T,Nakayama H,Sasaki N,et al.Mitochondrial nucleoid and transcription factor A Ann N YAcad Sci,2004,1011:61-68.
    [119]Larsson NG,Wang J,Wilhelmsson H,et al.Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice Nat Genet,1998,18:231-236.
    [120]Hansson A,Hance N,Dufour E,et al.A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts Proc Natl Acad Sci U S A,2004,101:3136-3141.
    [121]Yoshida Y,Izumi H,Ise T,et al.Human mitochondrial transcription factor A binds preferentially to oxidatively damaged DNA Biochem Biophys P,es Commun,2002,295:945-951.
    [122]Yoshida Y,Izumi H,Torigoe T,et al.P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA Cancer Res,2003,63:3729-3734.
    [123]Choi YS,Lee KUPak YK Regulation of mitochondrial transcription factor A expression by high glucose Ann N Y Acad Sci,2004,1011:69-77.
    [124]Gunther C,von Hadeln K,Muller-Thomsen T,et al.Possible association of mitochondrial transcription factor A(TFAM) genotype with sporadic Alzheimer disease Neurosci Lett,2004,369:219-223.
    [125]Koulmann NBigard AX Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise Pflugers Arch,2006,452:125-139.
    [126]Shi YYHe L SHEsis,a powerful software platform for analyses of linkage disequilibrium,haplotype construction,and genetic association at polymorphism loci Cell Res,2005,15:97-98.
    [127]Pihlajamaki M,Tanila H,Kononen M,et al.Distinct and overlapping fMRI activation networks for processing of novel identities and locations of objects Eur J Neurosci,2005,22:2095-2105.
    [128]Irrcher I,Adhihetty PJ,Joseph AM,et al.Regulation of mitochondrial biogenesis in muscle by endurance exercise Sports Med,2003,33:783-793.
    [129]Adhihetty P J,Irrcher I,Joseph AM,et al.Plasticity of skeletal muscle mitochondria in response to contractile activity Exp Physiol,2003,88:99-107.
    [130]Sardiello M,Tripoli G,Romito A,et al.Energy biogenesis:one key for coordinating two genomes Trends Genet,2005,21:12-16.
    [131]Chabi B,Adhihetty PJ,Ljubicic V,et al.How is mitochondrial biogenesis affected in mitochondrial disease? Med Sci Sports Exerc,2005,37:2102-2110.
    [132]Kanki T,Ohgaki K,Gaspari M,et al.Architectural role of mitochondrial transcription factor Ain maintenance of human mitochondrial DNA Mol Cell Biol,2004,24:9823-9834.
    [133]Krahenbuhl GSWilliams TJ Running economy:,changes with age during childhood and adolescence Med Sci Sports Exert,1992,24:462-466.
    [134]Schaid DJ,Rowland CM,Tines DE,et al.Score tests for association between traits and haplotypes when linkage phase is ambiguous Am J Hum Genet,2002,70:425-434.
    [135]Sun L,Yang Z,Jin F,et al.The Gly482Ser variant of the PPARGC1 gene is associated with Type 2 diabetes mellitus in northern Chinese,especially men Diabet Med,2006,23:1085-1092.
    [136]Puigserver P,Rhee J,Donovan J,et al.Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-lalpha interaction Nature,2003,423:550-555.
    [137]Bouchard C,Rankinen T,Chagnon YC,et al.Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE Family Study J Appl Physiol,2000,88:551-559.
    [138]Rodas C,Calvo M,Estruch A,et al.Heritability of rtmning economy:a study made on twin brothers Eur J Appl Physiol Occup Physiol,1998,77:511-516.
    [139]Saunders PU,Pyne DB,Telford RD,et al.Factors affecting runniug economy in trained distance runners Sports Meal,2004,34:465-485.
    [140]Weston AR,Mbambo ZMyburgh KH Running economy of African and Caucasian distance runners Med Sci Sports Exerc,2000,32:1130-1134.
    [141]Daniels JT A physiologist's view of running economy Med Sci Sports Exerc,1985,17:332-338.
    [142]Di Prampero PE,Capelli C,Pagliaro P,et al.Energetics of best performances in middle-distance running J Appl Physiol,1993,74:2318-2324.
    [143]Calbet JA,Lundby C,Koskolou M,et al.Importance of hemoglobin concentration to exercise:acute manipulations Respir Physiol Neurobiol,2006,151:132-140.
    [144]Lucia A,Hoyos J,Santalla A,et al.Curvilinear VO(2):power output relationship in a ramp test in professional cyclists:possible association with blood hemoglobin concentration Jpn J Physiol,2002,52:95-103.
    [145]Cerretelli P,Samaja M.Acid-base balance at exercise in normoxia and in chronic hypoxia.Revisiting the "lactate paradox" Eur J Appl Physiol,2003,90:431-448.
    [146]He Z,Hu Y,Feng L,et al.Polymorphisms in the HBB gene relate to individual cardiorespiratory adaptation in response to endurance training Br J Sports Med,2006,40:998-1002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700