生理性缺血训练促进远隔侧支循环生成中VEGF/NO的调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:正常骨骼肌生理性缺血训练可促进远隔病理性缺血部位侧支循环生成,但其作用的具体机制尚不清楚。内皮祖细胞(EPCs)是侧支循环形成的细胞学基础,骨髓的EPCs可通过归巢机制至缺血靶组织,分化为血管内皮。EPCs迁移受血管内皮生长因子(VEGF),一氧化氮(NO)等多种细胞因子调节,而VEGF/NO对生理性缺血训练促进远隔侧支循环过程中EPCs归巢的调控作用尚未见报道。本研究假说为:适宜的正常骨骼肌生理性缺血训练可以促进内源性EPCs释放,通过VEGF-NO介导的EPCs归巢机制,促进远隔病理性缺血心肌侧支循环形成,实现“生物搭桥”。
     目的:探索VEGF/NO对正常骨骼肌生理性缺血训练促进远隔缺血心肌侧支循环过程中EPCs归巢的调控机制。
     方法:54只新西兰兔冠状动脉左室支(LVB)植入水囊缩窄器制作可控性心肌缺血模型。造模成功后随机分为6组,休息一周后进行相应缺血干预:①假手术组(Sham),手术植入水囊,但不进行任何缺血刺激,安静笼养4周;②单纯心肌缺血组(MI),模拟心肌病理性缺血,水囊充水阻断冠状动脉血流2分钟/次,间隔10分钟,2次/天,5天/周,共4周;③单纯生理性缺血训练组(PIT),心肌缺血与MI组相同,双后肢同时进行生理性缺血训练即通过双后肢气压止血带环扎以阻断局部血流,3分钟/次,间隔5分钟,3次/天,5次/周,共4周;④NO抑制的PIT组,造模手术后该组兔采用160μg/ml浓度的NO合成酶抑制剂L-nitroarginine methyl ester(L-NAME)溶于兔饮用水中,饲养7天后达NO阻断后稳态,称为(L-NAME)组,此组同时进行心脏病理性缺血和生理性缺血训练;⑤VEGF阻断的PIT组(Anti-VEGF),心肌缺血和后肢生理性缺血训练同PIT组。VEGF阻断采用Anti-VEGF(Bevacizumab,安维汀)10mg/kg,术后休息1周并于训练前24小时静脉注射,每2周注射一次。⑥VEGF与NO双阻断组(L-NAME+Anti-VEGF),同时接受以上L-NAME及VEGF抗体处理,心肌缺血及生理性缺血训练亦PIT组。实验终点时超声心电图检测心功能,后处死取材,进行实验室检测:微球技术检测局部心肌侧支循环血流(CCBF);免疫组化染色检测缺血心肌毛细血管密度(CD);采用流式细胞仪进行外周血循环EPCs(CD34~+/Flk-1~+)计数;ELISA检测外周血VEGF含量;硝酸还原酶法检测外周血中NO含量;采用定量RT-PCR及Western blotting法检测局部缺血心肌eNOS及VEGF的mRNA及蛋白含量。
     结果:①实验过程中,11只兔最终退出实验,其中5只因各种感染死亡,6只因心室颤动死亡。Sham, MI, L-NAME,Anti-VEGF, L-NAME+Anti-VEGF组各有1只死于感染,Sham, MI, L-NAME, Anti-VEGF组各有1只死于室颤,L-NAME+Anti-VEGF组有2只死于室颤。②MI组循环中EPCs数目(CD34+/Flk-1+)训练前后增高的倍数显著高于Sham组(P<0.05);EPCs数增高倍数在PIT组显著高于MI组(P<0.001);VEGF和/或NO阻断后,PIT诱导的EPCs增高效应均被相应阻断,且导致兔心脏左室射血率降低。③在200倍光镜下,MI组心肌毛细血管密度显著高于Sham组(P<0.05)。心肌毛细血管密度在PIT组显著高于MI组(P<0.01)。L-NAME(P<0.01),Anti-VEGF(P<0.01),L-NAME+Anti-VEGF(P<0.001)组心肌毛细血管密度,与PIT组相比,均显著下降。④实验开始时,六组之间的局部冠状动脉阻断后即侧支循环血流量(CCBF)无统计学差异(P>0.05);经四周训练至实验终点时,CCBF在PIT组(2643±183)显著高于Sham(1739±190, P<0.05)及M(I1840±122, P<0.05)组; CCBF在L-NAME (1975±194), Anti-VEGF (1837±150),L-NAME+Anti-VEGF(1675±71)组均低于PIT组,差异均有统计学意义(P<0.05)。⑤PIT组eNOS mRNA表达水平显著高于Sham和MI组(P<0.05);PIT,L-NAME,Anti-VEGF三组之间eNOS mRNA表达水平无显著性差异(P>0.05);MI组VEGF mRNA表达水平显著高于Sham组(P<0.05);VEGFmRNA表达水平在PIT组较MI组明显增加(P<0.01);L-NAME+Anti-VEGF组VEGF mRNA表达水平显著低于PIT(P<0.05),L-NAME(P<0.01),Anti-VEGF组(P<0.01)。VEGFR-1mRNA表达水平在PIT组显著高于Sham组(P<0.05);PIT组VEGFR-1mRNA表达水平显著低于L-NAME(P<0.001),Anti-VEGF(P<0.05),L-NAME+Anti-VEGF组(P<0.001);VEGFR-2mRNA表达水平在PIT组显著高于Sham,MI,Anti-VEGF及L-NAME+Anti-VEGF组(P<0.001);PIT组sVEGFR-1mRNA表达水平显著高于Sham及MI组(P<0.05);sVEGFR-1mRNA表达水平在L-NAME+Anti-VEGF组显著高于PIT及Anti-VEGF组(P<0.05)。⑥VEGF蛋白表达水平在PIT组(2.03±0.291)显著高于Sham(0.76±0.097, P<0.001)及MI组(1.26±0.149, P<0.05);而VEGF抗体可阻断此效应(P<0.001);六组之间的eNOS蛋白表达量无统计学差异(P>0.05);PIT组p-eNOS蛋白表达量(0.87±0.151)较Sham(0.24±0.015, P<0.01)及MI组(0.6±0.042, P<0.05)明显增加,而此效应可被VEGF及L-NAME预处理阻断(P <0.001)。外周血VEGF及NO含量与局部缺血心肌VEGF及p-eNOS趋势基本一致。⑦循环EPCs升高的倍数分别与局部心肌毛细血管密度(r=0.893,P=0.000)和局部缺血心肌侧支血流量(r=0.877,P=0.000)成正相关。结论:在兔的可控性心肌缺血模型上,PIT可通过VEGF/eNOS相关途径提高EPCs迁移及血管新生,促进局部心肌侧支循环生成。
Objective: Ischemia-induced angiogenesis have been promising which aims toimprove neovascularization by delivery of angiogenic factors or endothelialprogenitor cells (EPCs) to cardiac ischemic area. In order to avoid the risk ofexcessive myocardial ischemia, therefore, we hypothesized that physiologicalischemic training (PIT) of normal skeletal muscle might contribute to myocardialangiogenesis via mobilization of EPCs from the bone marrow in the establishedrabbit model of controllable myocardial ischemia.
     Methods: The rabbits were grouped by sham-operation (Sham), myocardialischemia without PIT (MI), PIT, PIT with the pretreatment with the endothelial nitricoxide synthase (eNOS) inhibitor L-nitroarginine methyl ester (L-NAME), PIT withanti-vascular endothelial growth factor antibody (Anti-VEGF), or both L-NAME andAnti-VEGF antibody (L-NAME+Anti-VEGF). Controlled myocardial ischemia wasmodeled by a water balloon constrictor implanted on their left ventricular branch PITprocedure included three cycles of3minutes of cuff inflation followed by5minutesof deflation on hind limbs of the rabbits for4weeks. At the endpoints, circulatingEPCs (CD34+/Flk-1+) were measured by fluorescence-activated cell sorter; capillarydensity, by immunohistochemistry; blood flow, by a microspheres technique; leftventricular ejection fraction, by echocardiogram; plasma VEGF and nitric oxide, by enzyme linked immunosorbent assay (ELISA) and nitrate reductase method; themRNA and protein expression of VEGF and eNOS, by real-time RT (reversetranscription)–PCR and Western blotting respectively.
     Results: Compared with Sham and MI groups, the PIT group had the highest EPCcount (P <0.001), and the increase of capillary density (P <0.01) and collateralblood flow (P <0.05) in the ischemic myocardium were consistent with the findingof EPC count. Blockade of VEGF or eNOS prevented all such PIT–induced effectsand caused the decrease of left ventricular ejection fraction (P <0.05). The mRNAlevels of eNOS and VEGF were significantly higher in the groups received PITcompared with the Sham group (P <0.05). VEGF protein expression was higher inthe groups received PIT than the Sham and MI groups (P <0.05), and the effects wasinhibited by Anti-VEGF pretreatment (P <0.05). Phospho-eNOS protein expressionwas higher in the PIT group than the Sham and MI groups (P <0.05), and the effectwas inhibited by L-NAME and Anti-VEGF antibody pretreatment (P <0.05). Theplasma VEGF and nitric oxide were consistent with the myocardial VEGF and eNOSprotein levels respectively. The capillary density and collateral blood flow werehighly correlated with the increase of EPC count (r=0.893and r=0.877,respectively, P=0.000).
     Conclusion: PIT improved EPC mobilization and myocardial angiogenesis in vivothough VEGF/eNOS-related pathway. Consequently, these results might support thefuture development of strategies for therapeutic neovascularization.
引文
[1].刘小清,冠心病流行病学研究进展及疾病负担.中华心血管病杂志,2008.36(6):第573-576页.
    [2].王挹青,何世华与王焱,80岁以上冠心病患者行冠状动脉介入治疗术的安全性和疗效观察.中华老年医学杂志,2001.20(2):第108-110页.
    [3]. Meier, P., et al., The impact of the coronary collateral circulation onmortality: a meta-analysis. Eur Heart J,2012.33(5): p.614-21.
    [4]. Sen, T. and T. Aksu, Endothelial progenitor cell and adhesion moleculesdetermine the quality of the coronary collateral circulation/Endothelial progenitorcells (CD34+KDR+) and monocytes may provide the development of good coronarycollaterals despite the vascular risk factors and extensive atherosclerosis. AnadoluKardiyol Derg,2012.12(5): p.447; author reply447-8.
    [5]. Froehlich, G., T. Crake and P. Meier, Exercise training for refractory angina:improving the coronary collateral circulation. Cardiology,2012.123(2): p.78-9;author reply80.
    [6]. Uhlemann, M., et al., Impact of different exercise training modalities on thecoronary collateral circulation and plaque composition in patients with significantcoronary artery disease (EXCITE trial): study protocol for a randomized controlledtrial. Trials,2012.13: p.167.
    [7].金挺剑等,心肌缺血日负荷对冠状动脉侧支血流量的影响.中国康复医学杂志,2005.20(6):第405-408页.
    [8].路鹏等,心肌短暂缺血后血管内皮生长因子表达的时间规律.中华物理医学与康复杂志,2004.26(10):第577-580页.
    [9]. Kobayashi, Y., et al., Previous angina reduces in-hospital death in patientswith acute myocardial infarction. Am J Cardiol,1998.81(2): p.117-22.
    [10]. Lu, X., et al., Effect and mechanism of intermittent myocardial ischemiainduced by exercise on coronary collateral formation. Am J Phys Med Rehabil,2008.87(10): p.803-14.
    [11].王红星等,缺血负荷对家兔冠状动脉固有侧支循环开放的影响.中国康复医学杂志,2003.18(5):第274-277页.
    [12].王元会等,心肌周缺血频率对兔冠状动脉侧支循环生成的影响.中华物理医学与康复杂志,2006.28(1):第5-9页.
    [13].刘元标等,家兔短暂心肌缺血后VEGF蛋白表达的空间规律.中国康复医学杂志,2004.19(6):第422-425页.
    [14]. Suzuki, H., et al., Hepatocyte growth factor and vascular endothelial growthfactor in ischaemic heart disease. Coron Artery Dis,2003.14(4): p.301-7.
    [15]. Soeki, T., et al., Role of circulating vascular endothelial growth factor andhepatocyte growth factor in patients with coronary artery disease. Heart Vessels,2000.15(3): p.105-11.
    [16]. Gao, J., et al., Proteomic mechanism of myocardial angiogenesis augmentedby remote ischemic training of skeletal muscle in rabbit. Cardiovasc Ther,2011.29(3): p.199-210.
    [17]. Shen, M., et al., Effect of stimulation frequency on angiogenesis and geneexpression in ischemic skeletal muscle of rabbit. Can J Physiol Pharmacol,2009.87(5): p.396-401.
    [18]. Lin, A., et al., Effect of physiologic ischemic training on protection ofmyocardial infarction in rabbits. Am J Phys Med Rehabil,2011.90(2): p.97-105.
    [19]. Zhao, Y., et al., Improving angiogenesis and muscle performance in theischemic limb model by physiological ischemic training in rabbits. Am J Phys MedRehabil,2011.90(12): p.1020-9.
    [20].余滨宾,励建安与韩良,缺血负荷对家兔股动脉固有侧支循环开放的影响.中国康复医学杂志,2010.25(1):第4-8页.
    [21]. Muthaian, R., G. Minhas and A. Anand, Pathophysiology of stroke andstroke-induced retinal ischemia: emerging role of stem cells. J Cell Physiol,2012.227(3): p.1269-79.
    [22]. Tongers, J., J.G. Roncalli and D.W. Losordo, Role of endothelial progenitorcells during ischemia-induced vasculogenesis and collateral formation. MicrovascRes,2010.79(3): p.200-6.
    [23]. Mobius-Winkler, S., et al., Endothelial progenitor cells: implications forcardiovascular disease. Cytometry A,2009.75(1): p.25-37.
    [24]. Kawamoto, A. and D.W. Losordo, Endothelial progenitor cells forcardiovascular regeneration. Trends Cardiovasc Med,2008.18(1): p.33-7.
    [25]. Duda, D.G., D. Fukumura and R.K. Jain, Role of eNOS inneovascularization: NO for endothelial progenitor cells. Trends Mol Med,2004.10(4): p.143-5.
    [26]. Laufs, U., et al., Physical training increases endothelial progenitor cells,inhibits neointima formation, and enhances angiogenesis. Circulation,2004.109(2): p.220-6.
    [27]. Goldstein, L.J., et al., Endothelial progenitor cell release into circulation istriggered by hyperoxia-induced increases in bone marrow nitric oxide. Stem Cells,2006.24(10): p.2309-18.
    [28]. van der Zee, R., et al., Vascular endothelial growth factor/vascularpermeability factor augments nitric oxide release from quiescent rabbit and humanvascular endothelium. Circulation,1997.95(4): p.1030-7.
    [29].李永东等,血管内皮生长因子对血管内皮细胞分泌功能的影响及一氧化氮在其中的作用.中国现代医学杂志,2002.12(18):第8-10页.
    [30].吴涛等,可控性心肌缺血动物模型的制作.中国康复医学杂志,2006.21(12):第1068-1071,插1页.
    [31].林爱翠,生理性缺血训练对兔心肌梗死的保护作用及机制,2010,南京医科大学.
    [32]. Marano, G., et al., Protection by shear stress from collar-induced intimalthickening: role of nitric oxide. Arterioscler Thromb Vasc Biol,1999.19(11): p.2609-14.
    [33]. Guo, Y.B., et al., Pleurodesis is inhibited by anti-vascular endothelial growthfactor antibody. Chest,2005.128(3): p.1790-7.
    [34]. Shen, M., et al., Effect of stimulation frequency on angiogenesis and geneexpression in ischemic skeletal muscle of rabbit. Can J Physiol Pharmacol,2009.87(5): p.396-401.
    [35]. Bai, R.K. and L.J. Wong, Detection and quantification of heteroplasmicmutant mitochondrial DNA by real-time amplification refractory mutation systemquantitative PCR analysis: a single-step approach. Clin Chem,2004.50(6): p.996-1001.
    [36].中华医学会心血管病学分会中华心血管病杂志编辑委员会,中国心血管病预防指南.中华心血管病杂志,2011.39(1):第3-22页.
    [37]. Exercise for your heart. More powerful than you may think. Mayo ClinHealth Lett,2011.29(2): p.1-3.
    [38]. Froehlich, G., T. Crake and P. Meier, Exercise training for refractory angina:improving the coronary collateral circulation. Cardiology,2012.123(2): p.78-9;author reply80.
    [39]. Korzeniowska, K.I.,[Physical training as an effective way to protect theheart against ischaemia]. Kardiol Pol,2011.69Suppl3: p.75-9.
    [40]. Watanabe, T., et al., Significance of downsloping ST-segment depressioninduced by low-level exercise in severe coronary artery disease. Assessment withmyocardial ischemia and collateral perfusion. Jpn Heart J,1997.38(2): p.207-18.
    [41].陆晓等,短暂缺血阈强度运动促进心肌侧支循环生成的机制.中华物理医学与康复杂志,2009.31(9):第587-592页.
    [42].邱峰等,心肌缺血和有氧运动训练诱导VEGF表达时间规律的实验研究.中国康复医学杂志,2008.23(3):第193-197页.
    [43].沈梅,骨骼肌等长收缩缺血训练对远隔缺血部位血管新生的作用和机理,2008,南京医科大学.
    [44].韩良,励建安与余滨宾,等长收缩负荷对家兔股动脉固有侧支循环开放的影响.中华物理医学与康复杂志,2010.32(1):第13-16页.
    [45]. Bo, C.J., et al., Effects of ischemic preconditioning in the late phase onhoming of endothelial progenitor cells in renal ischemia/reperfusion injury.Transplant Proc,2013.45(2): p.511-6.
    [46]. Czirok, A. and C.D. Little, Pattern formation during vasculogenesis. BirthDefects Res C Embryo Today,2012.96(2): p.153-62.
    [47]. Wang, X. and J.W. Xiong,[Vascular endothelial cell development andunderlying mechanisms]. Yi Chuan,2012.34(9): p.1114-22.
    [48]. Krankel, N., T.F. Luscher and U. Landmesser,"Endothelial progenitor cells"as a therapeutic strategy in cardiovascular disease. Curr Vasc Pharmacol,2012.10(1):p.107-24.
    [49]. Grisar, J.C., et al., Endothelial progenitor cells in cardiovascular disease andchronic inflammation: from biomarker to therapeutic agent. Biomark Med,2011.5(6): p.731-44.
    [50]. Chen, X., et al., Deterioration of Cardiac Function After Acute MyocardialInfarction is Prevented by Transplantation of Modified Endothelial Progenitor CellsOverexpressing Endothelial NO Synthases. Cell Physiol Biochem,2013.31(2-3): p.355-365.
    [51]. Bo, C.J., et al., Effects of ischemic preconditioning in the late phase onhoming of endothelial progenitor cells in renal ischemia/reperfusion injury.Transplant Proc,2013.45(2): p.511-6.
    [52]. Gallagher, K.A., et al., Diabetic impairments in NO-mediated endothelialprogenitor cell mobilization and homing are reversed by hyperoxia and SDF-1alpha. J Clin Invest,2007.117(5): p.1249-59.
    [53]. Gerber, H.P., et al., Complete inhibition of rhabdomyosarcoma xenograftgrowth and neovascularization requires blockade of both tumor and host vascularendothelial growth factor. Cancer Res,2000.60(22): p.6253-8.
    [54]. Nagai, T., et al., Intravenous administration of anti-vascular endothelialgrowth factor humanized monoclonal antibody bevacizumab improves articularcartilage repair. Arthritis Res Ther,2010.12(5): p. R178.
    [55].吴涛与励建安,心肌缺血动物模型制备方法.中国康复医学杂志,2006.21(2):第180-182页.
    [56]. Asahara, T., et al., Isolation of putative progenitor endothelial cells forangiogenesis. Science,1997.275(5302): p.964-7.
    [57]. Napoli, C., et al., Endothelial progenitor cells as therapeutic agents in themicrocirculation: an update. Atherosclerosis,2011.215(1): p.9-22.
    [58]. Allegra, A., et al., Endothelial progenitor cells: pathogenetic role andtherapeutic perspectives. J Nephrol,2009.22(4): p.463-75.
    [59]. Huang, P.H., et al., Vascular endothelial function and circulating endothelialprogenitor cells in patients with cardiac syndrome X. Heart,2007.93(9): p.1064-70.
    [60]. Werner, N. and G. Nickenig, Influence of cardiovascular risk factors onendothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol,2006.26(2): p.257-66.
    [61]. Lambiase, P.D., et al., Circulating humoral factors and endothelial progenitorcells in patients with differing coronary collateral support. Circulation,2004.109(24):p.2986-92.
    [62]. Kawamoto, A., et al., Intramyocardial transplantation of autologousendothelial progenitor cells for therapeutic neovascularization of myocardial ischemia.Circulation,2003.107(3): p.461-8.
    [63]. Losordo, D.W., et al., Intramyocardial, autologous CD34+cell therapy forrefractory angina. Circ Res,2011.109(4): p.428-36.
    [64]. Matsumura, M., et al., Effects of atorvastatin on angiogenesis in hindlimbischemia and endothelial progenitor cell formation in rats. J Atheroscler Thromb,2009.16(4): p.319-26.
    [65]. Dussault, S., et al., Sildenafil increases endothelial progenitor cell functionand improves ischemia-induced neovascularization in hypercholesterolemicapolipoprotein E-deficient mice. Hypertension,2009.54(5): p.1043-9.
    [66]. Khakoo, A.Y. and T. Finkel, Endothelial progenitor cells. Annu Rev Med,2005.56: p.79-101.
    [67]. Dzau, V.J., et al., Therapeutic potential of endothelial progenitor cells incardiovascular diseases. Hypertension,2005.46(1): p.7-18.
    [68]. Wang, X.H., et al., Dynamic changes in the expression of growth factorreceptors in the myocardium microvascular endothelium after murine myocardialinfarction. Chin Med J (Engl),2007.120(6): p.485-90.
    [69]. Mac, G.F. and A.S. Popel, Systems biology of vascular endothelial growthfactors. Microcirculation,2008.15(8): p.715-38.
    [70]. Yla-Herttuala, S., et al., Vascular endothelial growth factors: biology andcurrent status of clinical applications in cardiovascular medicine. J Am Coll Cardiol,2007.49(10): p.1015-26.
    [71]. Kaushal, S., et al., Functional small-diameter neovessels created usingendothelial progenitor cells expanded ex vivo. Nat Med,2001.7(9): p.1035-40.
    [72]. Shintani, S., et al., Mobilization of endothelial progenitor cells in patientswith acute myocardial infarction. Circulation,2001.103(23): p.2776-9.
    [73]. Kalka, C., et al., VEGF gene transfer mobilizes endothelial progenitor cellsin patients with inoperable coronary disease. Ann Thorac Surg,2000.70(3): p.829-34.
    [74]. Smadja, D.M., et al., Increased VEGFR2expression during human lateendothelial progenitor cells expansion enhances in vitro angiogenesis withup-regulation of integrin alpha(6). J Cell Mol Med,2007.11(5): p.1149-61.
    [75]. Jain, S., et al., Incremental increase in VEGFR1(+) hematopoietic progenitorcells and VEGFR2(+) endothelial progenitor cells predicts relapse and lack of tumorresponse in breast cancer patients. Breast Cancer Res Treat,2012.132(1): p.235-42.
    [76]. Avouac, J., et al., Angiogenesis in systemic sclerosis: impaired expression ofvascular endothelial growth factor receptor1in endothelial progenitor-derived cellsunder hypoxic conditions. Arthritis Rheum,2008.58(11): p.3550-61.
    [77]. Jiang, M., et al., Angiogenesis by transplantation of HIF-1alpha modifiedEPCs into ischemic limbs. J Cell Biochem,2008.103(1): p.321-34.
    [78]. Tekin, D., A.D. Dursun and L. Xi, Hypoxia inducible factor1(HIF-1) andcardioprotection. Acta Pharmacol Sin,2010.31(9): p.1085-94.
    [79]. Sahara, M., et al., A phosphodiesterase-5inhibitor vardenafil enhancesangiogenesis through a protein kinase G-dependent hypoxia-induciblefactor-1/vascular endothelial growth factor pathway. Arterioscler Thromb Vasc Biol,2010.30(7): p.1315-24.
    [80]. Tammela, T., et al., The biology of vascular endothelial growth factors.Cardiovasc Res,2005.65(3): p.550-63.
    [81]. Jain, S., et al., Incremental increase in VEGFR1(+) hematopoietic progenitorcells and VEGFR2(+) endothelial progenitor cells predicts relapse and lack of tumorresponse in breast cancer patients. Breast Cancer Res Treat,2012.132(1): p.235-42.
    [82]. Kaza, E., et al., Up-regulation of soluble vascular endothelial growth factorreceptor-1prevents angiogenesis in hypertrophied myocardium. Cardiovasc Res,2011.89(2): p.410-8.
    [83]. Hazarika, S., et al., Impaired angiogenesis after hindlimb ischemia in type2diabetes mellitus: differential regulation of vascular endothelial growth factorreceptor1and soluble vascular endothelial growth factor receptor1. Circ Res,2007.101(9): p.948-56.
    [84]. Khoury, C.C. and F.N. Ziyadeh, Angiogenic factors. Contrib Nephrol,2011.170: p.83-92.
    [85]. Campa, C., et al., Inflammatory mediators and angiogenic factors inchoroidal neovascularization: pathogenetic interactions and therapeutic implications.Mediators Inflamm,2010.2010.
    [86]. Watt, S.M., et al., Human endothelial stem/progenitor cells, angiogenicfactors and vascular repair. J R Soc Interface,2010.7Suppl6: p. S731-51.
    [87]. Goldstein, L.J., et al., Endothelial progenitor cell release into circulation istriggered by hyperoxia-induced increases in bone marrow nitric oxide. Stem Cells,2006.24(10): p.2309-18.
    [88]. Fukumura, D., et al., Predominant role of endothelial nitric oxide synthase invascular endothelial growth factor-induced angiogenesis and vascular permeability.Proc Natl Acad Sci U S A,2001.98(5): p.2604-9.
    [89]. Steiner, S., et al., Endurance training increases the number of endothelialprogenitor cells in patients with cardiovascular risk and coronary artery disease.Atherosclerosis,2005.181(2): p.305-10.
    [90]. Paul, J.D., et al., Endothelial progenitor cell mobilization and increasedintravascular nitric oxide in patients undergoing cardiac rehabilitation. J CardiopulmRehabil Prev,2007.27(2): p.65-73.
    [91]. Hiasa, K., et al., Gene transfer of stromal cell-derived factor-1alpha enhancesischemic vasculogenesis and angiogenesis via vascular endothelial growthfactor/endothelial nitric oxide synthase-related pathway: next-generation chemokinetherapy for therapeutic neovascularization. Circulation,2004.109(20): p.2454-61.
    [92]. Lin, M.I. and W.C. Sessa, Vascular endothelial growth factor signaling toendothelial nitric oxide synthase: more than a FLeeTing moment. Circ Res,2006.99(7): p.666-8.
    [93]. Yang, L., et al., VEGF increases the proliferative capacity and eNOS/NOlevels of endothelial progenitor cells through the calcineurin/NFAT signallingpathway. Cell Biol Int,2012.36(1): p.21-7.
    [94]. Joshi, M.S., et al., Functional relevance of genetic variations of endothelialnitric oxide synthase and vascular endothelial growth factor in diabetic coronarymicrovessel dysfunction. Clin Exp Pharmacol Physiol,2013.
    [1]黄岚,黄德嘉.血管损伤性疾病-从分子到临床.2008版.北京:人民卫生出版社,2008:265-266.
    [2] Sieveking DP, Buckle A, Celermajer DS, et al. Strikingly different angiogenicproperties of endothelial progenitor cell subpopulations: insights from a novelhuman angiogenesis assay. J Am Coll Cardiol,2008,51:660-668.
    [3] Quirici N, Soligo D, Caneva L, et al. Differentiation and expansion ofendothelial cells from human bone marrow CD133+cells. Br J Haematol,2001,115:186-194.
    [4] Hinds MT, Ma M, Tran N, et al. Potential of baboon endothelial progenitorcells for tissue engineered vascular grafts. J Biomed Mater Res A,2008,86:804-812.
    [5] Lei Z, Shi HL, Li L, et al. Batroxobin mobilizes circulating endothelialprogenitor cells in patients with deep vein thrombosis. Clin Appl ThrombHemost,2011,17:75-79.
    [6] Bu X, Yan Y, Zhang Z, et al. Properties of extracellular matrix-like scaffolds forthe growth and differentiation of endothelial progenitor cells. J Surg Res,2010,164:50-57.
    [7] Kirton JP, Xu Q. Endothelial precursors in vascular repair. Microvasc Res,2010,79:193-199.
    [8] Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization,differentiation, and homing. Arterioscler Thromb Vasc Biol,2003,23:1185-1189.
    [9] Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells forangiogenesis. Science,1997,275:964-967.
    [10] Arsic N, Mamaeva D, Lamb NJ, et al. Muscle-derived stem cells isolated asnon-adherent population give rise to cardiac. Skeletal muscle and neurallineages. Exp Cell Res,2008,314:1266-1280.
    [11] He XY, Chen ZZ, Cai YQ, et al. Expression of cytokines in rat brain withfocal cerebral ischemia after grafting with bone marrow stromal cells andendothelial progenitor cells. Cytotherapy,2011,3:46-53.
    [12] Acharya SS, Kaplan RN Md, Macdonald D, et al. Neo-angiogenesiscontributes to the development of hemophilic synovitis. Blood,2010,
    [13] Kang HS, Kim JH, Phi JH, et al. Plasma matrix metalloproteinases, cytokinesand angiogenic factors in moyamoya disease. J Neurol Neurosurg Psychiatry,2010,81:673-678.
    [14] Delgaudine M, Lambermont B, Lancellotti P, et al. Effects ofgranulocyte-colony-stimulating factor on progenitor cell mobilization and heartperfusion and function in normal mice. Cytotherapy,2011,13:237-247.
    [15] Yoshioka T, Takahashi M, Shiba Y, et al. Granulocyte colony-stimulatingfactor (G-CSF) accelerates reendothelialization and reduces neointimalformation after vascular injury in mice. Cardiovasc Res,2006,70:61-69.
    [16] Jie KE, van der Putten K, Bergevoet MW, et al. Short-and long-term effectsof erythropoietin treatment on endothelial progenitor cell levels in patients withcardiorenal syndrome. Heart,2011,97:60-65.
    [17] Sautina L, Sautin Y, Beem E, et al. Induction of nitric oxide by erythropoietinis mediated by the {beta} common receptor and requires interaction with VEGFreceptor2. Blood,2010,115:896-905.
    [18] Foresta C, De Toni L, Di Mambro A, et al. Role of estrogen receptors inmenstrual cycle-related neoangiogenesis and their influence on endothelialprogenitor cell physiology. Fertil Steril,2010,93:220-228.
    [19] Baruscotti I, Barchiesi F, Jackson EK, et al. Estradiol stimulates capillaryformation by human endothelial progenitor cells: role of estrogenreceptor-{alpha}/{beta}, heme oxygenase1, and tyrosine kinase. Hypertension,2010,56:397-404.
    [20] Witkowski S, Lockard MM, Jenkins NT, et al. Relationship betweencirculating progenitor cells, vascular function and oxidative stress withlong-term training and short-term detraining in older men. Clin Sci (Lond),2010,118:303-311.
    [21]邱峰,励建安,陆晓,等.心肌缺血和有氧运动训练诱导VEGF表达时间规律的实验研究.中国康复医学杂志,2008,23:193-197.
    [22] Lu X, Wu T, Huang P, et al. Effect and mechanism of intermittent myocardialischemia induced by exercise on coronary collateral formation. Am J Phys MedRehabil,2008,87:803-814.
    [23] Song Q, Wang L, Zhu J, et al. Effect of simvastatin on inducing endothelialprogenitor cells homing and promoting bone defect repair. Zhongguo Xiu FuChong Jian Wai Ke Za Zhi,2010,24:1103-1106.
    [24] Cheng XW, Kuzuya M, Kim W, et al. Exercise training stimulatesischemia-induced neovascularization via phosphatidylinositol3-kinase/Akt-dependent hypoxia-induced factor-1alpha reactivation in mice ofadvanced age. Circulation,2010,122:707-716.
    [25] Yue WS, Wang M, Yan GH, et al. Smoking is associated with depletion ofcirculating endothelial progenitor cells and elevated pulmonary artery systolicpressure in patients with coronary artery disease. Am J Cardiol,2010,106:1248-1254.
    [26] Shen C, Li Q, Zhang YC, et al. Advanced glycation endproducts increase EPCapoptosis and decrease nitric oxide release via MAPK pathways. BiomedPharmacother,2010,64:35-43.
    [27] Kawamoto A, Gwon HC. Therapeutic potential of ex vivo expandedendothelial progenitor cells for myocardial ischemia. Circulation,2001,103:634-637.
    [28] Iwasaki H, Kawamoto A, Ishikawa M, et al. Dose-dependent contribution ofCD34-positive cell transplantation concurrent vasclulogenesis andcardiomyogenesis for functional regenerative recovery after myocardialinfarction. Circulation,2006,113:1311-1325.
    [29] Werner L, Deutsch V, Barshack I, et al. Transfer of endothelial progenitorcells improves myocardial performance in rats with dilated cardiomyopathyinduced following experimental myocarditis. J Mol Cell Cardiol,2005,39:691-697.
    [30] Wang X, Jameel MN, Li Q, et al. Stem cells for myocardial repair with use ofa transarterial catheter. Circulation,2009,120: S238-246.
    [31] Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation ofautologous circulating endothelial cells into denuded vessels and prostheticgrafts: implications for cell-based vascular therapy. Circulation,2003,108:2710-2715.
    [32] Steinmetz M, Brouwers C, Nickenig G, et al. Synergistic effects oftelmisartan and simvastatin on endothelial progenitor cells. J Cell Mol Med,2010,14:1645-1456.
    [33] Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derivedhuman adult endothelial progenitor cells into functionally activecardiomyocytes. Circulation,2003,107:1024-1032.
    [34] Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion ofperipheral blood stem-cells mobilised with granulocyte-colony stimulatingfactor on left ventricular systolic function and restenosis after coronary stentingin myocardial infarction: the MAGIC cell randomised clinical trial. Lancet,2004,363:751-756.
    [35] Kang HJ, Lee HY, Na SH, et al. Differential effect of intracoronary infusionof mobilized peripheral blood stem cells by granulocyte colony-stimulatingfactor on left ventricular function and remodeling in patients with acutemyocardial infarction versus old myocardial infarction: the MAGICCell-3-DES randomized, controlled trial. Circulation,2006,114:1145-1151.
    [36] Kim YJ, Shin JI, Park KW, et al. The effect of granulocyte-colonystimulating factor on endothelial function in patients with myocardial infarction.Heart,2009,95:1320-1325.
    [37] Zohlnhofer D, Ott I, Mehilli J, et al. Stem cell mobilization by granulocytecolony-stimulating factor in patients with acute myocardial infarction: arandomized controlled trial. JAMA,2006,295:1003-1010.
    [38] Ince H, Nienaber CA. Granulocyte-colony-stimulating factor in acutemyocardial infarction: future perspectives after FIRSTLINE-AMI andREVIVAL-2. Nat Clin Pract Cardiovasc Med,2007,4Suppl1: S114-118.
    [39] Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cellsand Regeneration Enhancement in Acute Myocardial Infarction(TOPCARE-AMI). Circulation,2002,106:3009-3017.
    [40] Schachinger V, Assmus B, Britten MB, et a1. Transplantation of progenitorcells and regeneration enhancement in acute myocardial infarction: finalone-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol,2004,44:1690-1699.
    [41] Meyer GP, Wollert KC, Lotz J, et a1. Intracoronary bone marrow celltransfer after myocardial infarction: eighteen months' follow-up data from therandomized, controlled BOOST (Bone marrow transfer to enhance ST-elevationinfarct regeneration) trial. Circulation,2006,113:1287-1294.
    [42] Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transferafter myocardial infarction:5-year follow-up from the randomized-controlledBOOST trial. Eur Heart J,2009,30:2978-2984.
    [43] Dill T, Schachinger V, Rolf A, et al. Intracoronary administration of bonemarrow-derived progenitor cells improves left ventricular function in patients atrisk for adverse remodeling after acute ST-segment elevation myocardialinfarction: results of the Reinfusion of Enriched Progenitor cells And InfarctRemodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiacmagnetic resonance imaging substudy. Am Heart J,2009,157:541-547.
    [44] Lunde K, Solheim S, Aakhus S, et al. Autologous stem cell transplantation inacute myocardial infarction: The ASTAMI randomized controlled trial.Intracoronary transplantation of autologous mononuclear bone marrow cells,study design and safety aspects. Scand Cardiovasc J,2005,39:150-158.
    [45] Beitnes JO, Gjesdal O, Lunde K, et al. Left ventricular systolic and diastolicfunction improve after acute myocardial infarction treated with acutepercutaneous coronary intervention, but are not influenced by intracoronaryinjection of autologous mononuclear bone marrow cells: a3year serialechocardiographic sub-study of the randomized-controlled ASTAMI study. EurJ Echocardiogr,2011,12:98-106.
    [46] Wolfram O, Jentsch-Ullrich K, Wagner A, et al. G-CSF-induced mobilizationof CD34(+) progenitor cells and proarrhythmic effects in patients with severecoronary artery disease. Pacing Clin Electrophysiol,2007,30Suppl1:S166-169.
    [47] Siu CW, Watson T, Lai WH, et al. Relationship of circulating endothelialprogenitor cells to the recurrence of atrial fibrillation after successfulconversion and maintenance of sinus rhythm. Europace,2010,12:517-521.
    [48] Imamura H, Ohta T, Tsunetoshi K, et al. Transdifferentiation of bonemarrow-derived endothelial progenitor cells into the smooth muscle cell lineagemediated by tansforming growth factor-beta1. Atherosclerosis,2010,211:114-121.
    [49] Campagnolo P, Wong MM, Xu Q. Progenitor Cells in Arteriosclerosis: Good orBad Guys? Antioxid Redox Signal,2010,[Epub ahead of print].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700