金花茶花色相关基因的克隆及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金花茶(Camellia nitidissima)属于山茶属金花茶组,花色金黄,是我国珍稀濒危植物,亦是世界名贵的观赏植物之一,有“茶族皇后”之美誉,是培育黄色山茶花的珍稀遗传资源。尽管关于金花茶杂交育种的研究也屡见报导,但多年的杂交育种工作却很少获得像金花茶花色那么金黄的杂交后代。其原因可能在于研究者对其花色的遗传变异规律以及花色素合成的分子机理不甚了解,未能很好地利用金花茶所特有的种质资源进行黄色山茶花的育种工作。因此,本研究对金花茶花色的形成变化规律以及若干关键基因的功能进行了初步探索,对开展黄色山茶花的分子育种具有重要的理论意义和应用价值。
     利用RT-PCR (Reverse transcription polymerase chain reaction)方法和RACE(RapidAmplification of cDNA Ends)技术从金花茶花瓣中分离出6个与类黄酮色素Quercetin(Qu)合成相关基因的cDNA全长,1个与类胡萝卜素新黄质合成相关基因的cDNA全长,分别命名为金花茶查尔酮合成酶基因(CnCHS)、金花茶查尔酮异构酶基因(CnCHI)、金花茶黄烷酮3-羟化酶基因(CnF3H)、金花茶类黄酮3’-羟化酶基因(CnF3’H)、金花茶黄酮醇合成酶基因(CnFLS)、金花茶二氢黄酮醇还原酶基因(CnDFR)和金花茶新黄质合成酶基因(CnNSY)。对各基因的生物信息学分析表明,这些基因为所克隆的目的基因。将这些基因在Genbank中登录,其登录号码分别是:HQ269804,HQ269805,HQ290517,HQ290518,JF343560,JF440957,CnDFR尚未登录。
     高效液相色谱(High-performance Liquid Chromatography,HPLC)分析与花瓣表皮细胞色素观察结果表明,在金花茶花瓣呈绿色时,花瓣中类黄酮成份槲皮素-7-O-β-D-葡萄糖苷(Quertecin-7-O-β-D-glucoside, Qu7G)、槲皮素-3-O-β-D-葡萄糖苷(Quertecin-3-O-β-D-glucoside,Qu3G)、槲皮素(Quercetin,Qu)含量以及类胡萝素成份新黄质(neoxanthin)、叶黄素(xanthophyll)、紫黄质(violaxanthin)等含量均很低,显微镜下观测不到细胞中有色体的积累;在花色微黄色时,花瓣中QU7G、Qu3G含量最高,类胡萝卜素只在少数细胞中积累;在花瓣金黄色时,Qu7G、Qu3G含量比花色微黄时有所下降,类胡萝卜素有色体体积增大,每个细胞均呈黄色。这些结果表明Qu7G、Qu3G等类黄酮成份对金花茶花色起一定的辅助作用,花瓣中含有大量淡黄至近于无色的黄酮醇苷而不含有色的花青素苷,为类胡萝卜素成份的有效显色提供了必要条件,类胡萝卜素含量的升高并在细胞中不断积累是金花茶花瓣显色的最重要因素。
     荧光定量PCR表明,CnCHS、CnCHI、CnF3H、CnF3’H主要在花瓣绿色至淡黄色时期表达,在此时期,Qu7G、Qu3G含量不断升高并达最大值。CnFLS主要在初蕾期表达,而CnDFR基因的表达主要在花色金黄的半开期,二者表达时间的差异使DFR酶与FLS酶避免了对同一底物DHQ的竞争,进而抑制了花青素的合成,促使合成途径朝着Qu的方向进行,为Qu3G、Qu7G的合成提供充足的底物。
     利用pCAMBIA1300表达载体分别构建了CnFLS与CnNSY基因的正义表达载体及干扰表达载体共4个,并获得每个载体的转基因植株各10株。从每个基因的10株转化株中随机挑选5株,经PCR、Southern blotting鉴定出阳性植株各3株,将这些阳性植株扩繁为株系,每个株系6株。实时荧光定量PCR分析表明,与对照相比,转CnFLS正义基因烟草株系中FLS表达量显著提高,达8-13倍,而转CnFLS干扰基因的株系其表达量显著下降,仅为对照的0.1-0.5倍。转CnNSY基因的烟草株系其NSY基因的表达量显著提高,为对照的3-8倍,而转CnNSY干扰基因的烟草植株其表达量则明显下降,仅为对照的0.3-0.5倍。表明CnFLS、CnNSY正义基因与干扰基因均能在转基因烟草植株中正常表达,并具有明显的促进与抑制作用。
     观察转CnFLS正义基因烟草阳性株系的花色表型发现,3个转CnFLS正义基因烟草株系花色由对照株的粉红色变为淡红色或淡黄白色,花色产生了明显变化。HPLC分析表明,花色显淡黄白色烟草株系TF1花瓣中主要色素成份花青素-3-O-鼠李糖苷(Cyanidin-3-O-rutinoside,Cy3R)含量最低,约为对照的0.1倍;Qu3G、Qu7G含量明显升高,Qu3G含量与对照相比增加了约3倍,Qu7G约增加了1倍。转CnFLS干扰基因株系花由对照株的粉红色变为深红色,花色成份中Cy3R含量明显增加,花色最深的株系Tf23其花瓣中Cy3R含量最高,约为对照的3倍;3个CnFLS干扰株系中Qu3G、Qu7G含量均略有降低。表明CnFLS基因的超表达可促进黄酮醇合成而使花色变浅,而FLS的表达被抑制后则可促进花青素的合成使花色加深。
     对转CnNSY正义基因植株的表型观测发现,3个转基因烟草株系花色由对照株的粉红色变为淡红色或淡黄色。HPLC结果表明,花色显淡黄烟草株系TN10花瓣Cy3R含量最低,约为对照的5%;新黄质、紫黄质、叶黄素含量与对照相比均增加了约1倍。而转CnNSY干扰基因株系花色由粉红变为浅橙红色,3个转CnNSY干扰基因株系中Cy3R含量约为对照的0.6倍,新黄质、紫黄质含量略有下降,叶黄素含量略有上升。表明CnNSY基因具有调控类胡萝卜素合成的作用,其过量表达能够促进新黄质、紫黄质的合成而使花色变浅呈现黄色的趋势,干扰NSY的表达对类胡萝卜素合成影响不大。
     通过本研究,我们认为金花茶CnCHS、CnCHI、CnF3H、CnF3’H、CnFLS、CnDFR基因的表达特性对花瓣中只含黄酮醇(苷)而无花青素成份具有决定性作用,花瓣中淡黄或近于无色的黄酮醇(苷)为金花茶花瓣中类胡萝卜素有色体呈现金黄色创造了必要条件,对金花茶花色起决定作用的则是类胡萝卜素及其在花瓣中不断累积所形成的有色体。因此,我们认为在山茶花的分子育种中应采取转入CnFLS正义基因或CnDFR干扰基因以抑制花青素合成的同时,转入相关的类胡萝卜素合成基因如CnNSY等以提高类胡萝卜素含量的方法,才能育成更好的黄色茶花品种。
Camellia nitidissima, a famous ornamental plant of the world, which has golden flowersand known as “Queen of camellias” is an important parent to breed yellow camellias. Theresearches of cross breeding with C.nitidssima are reported constantly while breeders didn’tgain the hybids which have goledn yellow flowers by many years’ work. The reason of thisresult may be that the reasearchers don’t uderstand the regularity and biosynthesis pathway ofthe pigmentions. Based on this point, this research was carried out to search the transformatinmechanism and some relative key genes to provide the theory support for breeding the yellowcamellias.
     To investigate the biosynthesis pathway of the pigments,7genes’ cDNA sequences werecloned from the petals of C. nitidissima by the methods of RT-PCR(Reverse transcriptionpolymerase chain reaction) and RACE(Rapid Amplification of cDNA Ends), named CnCHS,CnCHI, CnF3H, CnF3’H, CnFLS, CnDFR and CnNSY respectively. The analysis of thesegenes’ bioinformations showed that these are the goal genes we want.The Genbank loadedcodes are HQ269804, HQ269805, HQ290517, HQ290518, JF343560and JF440957, CnDFR isnot loaded.
     The results of HPLC(High-performance Liquid Chromatography) and the pigmentobservation in epidermal cell of petals showed that the contents of Quercetin(Qu), Quercetin-7-O-β-D-glucoside(Qu7G), Quercetin-3-O-β-D-glucoside(Qu3G), and carotenoids are low andthe accumulation of chromoplasts can’t be found in the stage of petal uncolored;during theperiod of petals yellowish, the content of Qu3G and Qu7G are high, the chromoplastsaccumulated in serveal cells; when the petals golden yellow, the contents of Qu7G and Qu3Gare lower than before but the chromoplasts are bigger and in almost all the cells. The resultsindicated that the high amounts of colorless flavonols and no anthocyanidin in the petlas provide the necessary condition for the carotenoids to show its color, and the accumulation oftotal carotenoids in the cells is the determinant factor of the petal color.
     The results of quantitative Real-time PCR showed that the highest expression quantity ofCnCHS, CnCHI, CnF3H, CnF3’H appears during the period of uncolor petals to yellowish, inwhich the contents of Qu7G and Qu3G reach to highest level; the coperation of these genesmake the production of CnCHS transform to dihydroquercetion,which is the substrate of Qu7Gand Qu3G. The expression of CnFLS is mainly in the stage of uncolored petal and the CnDFRis during the time of full yellow colored indicate that the difference of the two genes makethem avoid competing the same substrate of dihydroquercetin, which restrains the combinationof anthocyanidin and provide enough substrates for the synthsis of Qu7G and Qu3G.
     We successfully constructed the sense and RNAi expression vectors of CnFLS and CnNSYrespectively by using the expression vector pCAMBIA1300and then the four genes weretransferred to tobacco by the Agrobacterium EHA105, finally,10lines of transgene plants ofevery gene were gained.5were selected in every10transgene plants, after the identifion ofPCR and Southern blotting,3lines transgene tobaccos were obtained of every gene. The resultsof quantitative Real-time PCR showed that the expression of FLS in trans-sense CnFLS is8-13times to the wild types and0.1-0.5times copmared to wild types in trans-interference CnFLSlines. The expression of NSY in trans-sense CnNSY is3-8times to the wild types and0.3-0.5times copmared to wild types in trans-interference CnNSY lines. This results show that theCnFLS and CnNSY can express in the transgens lines normally.
     The flower color of3lines of trans-sense CnLFS tobaccos appeared shallow yellow-white to shallow pink compared with the color of wild type tobacco. The results of HPLCshowed that the content of Cy3R in the petals of TF1which shows yellowish white color wasalmost0.1times of that of wild tobacco, the content of Qu3G is4times and Qu7G is2times ofthat of wild types. The color of trans-interference CnFLS tobaccos became more red than wildtype, the content of Cy3R in Tf23which shows the reddest color is3times of that of wild type,but the content of Qu3G、Qu7G are lower than that of wild type. These results indicates that the overexpression of CnFLS can make the flower color shallow and repression of FLS willcause the flower color deeper.
     The flower color of3lines of trans-sense CnNSY tobaccos appeared yellowish to shallowpink compared with the color of wild type tobacco. The results of HPLC showed that thecontent of Cy3R in the petals of TN10which shows yellowish white color was almost0.05times of that of wild tobacco, the contents of neoxanthin, violaxanthin, xanthophyll are2timesof that of wild types. The color of trans-interference CnNSY tobaccos became shallow orangered, the content of Cy3R in the3lines is about0.6times of that of wild type, and the contentsof neoxanthin, violaxanthin, xanthophyll are a little lower than that of wild type. These resultsindicates that the overexpression of CnNSY can promot the synthesis of carotenoids and makethe flower color shallow and repression of NSY will not affect the synthesis of caroteniods butthe overexpression of CnNSY might affect the synthesis of Cy3R.
     From this research we draw the conclusion that the expression characters of CnCHS,CnCHI, CnF3H, CnF3’H, CnFLS,CnDFR and CnFLS play the decisive role in the synthesis offlavonol and no synthesis of anthocyanidin. The exists of colorless flavonol provide a essentialcondition that the chromoplasts of carotenoids can show its golden color naturally,but the it isthe chromoplasts of carotenoids which accumulated in cells constantly rather than flavonoldecided the color of C.nitidissima. So, we believe that we can obtain the yellow camellias byusing the methods of trans-sense CnFLS or trans-interference CnDFR to decrease the contentof anthocyanidin ans increase the content of carotenoids by the method of trans-sense somecarotenoids synthsis genes such as CnNSY and so on.
引文
Ackerman W L. Growing the Yellow Camellia. The Camellia Journal,1981,36(1):4~6
    Aida R, Sanae K, Yoshikazu T, et al. Modification of flower color in torenia by genetic transformation. PlantSci,2000,153:32~42
    Aida R, Yoshida K, Kondo T, et al. Copigmentation gives bluer flowers on transgenic torenia plants with theantisense dihydroflavonol4-reductase gene. Plant Sci,2000,160:49~56
    Bartley G E, Scolnik Pablo A. Plant Carotenoids: Pigments for Photoprotection, Visual Attraction andHuman Health. The Plant Cell,1995,7:1027~1038
    Burbulis L E, Winkel-Shirley B. Interactions among enzymes of the Arabidopsis flavonoid biosyntheticPathway. PNAS,1999,96(22):12929~12934
    Chandller S,Brugliera F. Genetic modification in floriculture.Biotechnol Lett,2010,9, pubilished on line,springer Cunningham F X J, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants. Annu RevPlan t Physiol Plant Mol Biol,1998,49:557~583
    Del Villar-Martinez A, Gareia-Saucedo P A,Carabez-Trejo A, et a1. Carotenogenic gene expression andultrastructural changes during development in marigold. Plant Physiol,2005,162:1046~1056
    Deroles S C, Bradley J M, Schwinn K E et al. An antisense chalcone synthase cDNA leads to novel colourpatterns in lisianthus (Eustoma grandiflorum) flowers. Molecular Breeding,1998,4(1):59~66
    Davies K C,Winefield D, Lewis K, et al. Research into flower colour and flowering time with Eustomagrandiflorum (lisianthus). Flowering Newsl,1997,23:24~32
    Davies K M, Bloor S J, Spiller G B et al. Production of yellow colour in flowers: redirection of flavonoidbiosynthesis in Petunia. The Plant Journal,1998,13(2):259~266
    Deroles S C, Boase M R, Lee C E, et al. Gene transfer to plants in Breeding for Ornamentals: Classical andMolecularApproaches. Kluwer Academic Publishers,2002,155~196
    Elomaa P, Honkanen J, Puska R, et al. Agrobacterium~mediated transfer of antisense chalcone synehasecDNA to Gerbera hybrida inhibits flower pigmentation. Biotechnology,1993,11:508~511
    Feyissa D N, Lovdal T, Olsen K M, et al. The end ogenous GL3, but not EGL3, gene is necessary foranthocyanin acculmulation as induced by nitrogen depletion in Arabidopsis rosettest age leaves, Planta,2009,230:747~754
    Florence B, Alain D, Ralph A B, et al. Identification of neoxanthin synthase as a carotenoid cyclase paralog.Eur. J. Biochem,2000,267,6346~6352
    Forkmann G, Martens F. Metabolic engineering and applications of flavonoids. Current Opinion inBiotechnology,2001,12:155~160
    Fukusaki E, Kawasaki K, Kajiyama S, et a1. Flower color modulations of Torenia hybrida by downregulation of chaleone synthase genes with RNA interference. Journal of biotechnology,2004,111:229~240
    Grotewold E. The genetics and biochemistry of floral pigments. The Annual Review of Plant Biology,2006,57:761~80
    Halpin C. Gene stacking in transgenic plants—the challenge for21st century plant biotechnology. PlantBiotechnol J,2005,3:141~155
    Harborne J B, Williams C A. Advances in flavonoid research since1992, Phytochemistry,2000,55(6):481~504
    Hakado N, Krino S. New Species of Genus camellia in vietnam. International Camellia Journal,2007,54~56
    Holton T A, Brugliera F, and Tanaka Y,1993, Cloning and expression of flavonol synthase from Petuniahybrida, Plant J,4(6):1003~1010
    Holton T A, Tanaka Y. Blue roses: a pigment of our imagination? Trends biotechnology,1994,12:40~42
    Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. Plant cell,1995,7:1071~1083
    Hirschberg J. Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology,2001,4:210~218
    Hwang Y J, Yoshikawa K, Miyajima I, et al. Flower colors and pigments in hybrids with Camelliachrysantha. Scientia Horticulturae,1992,51:251~259
    Itoh Y, Higeta D, Suzuki A, et a1. Excision of transposable elements from the chalcone isomerase anddihydroflavonol4-reductase genes may contribute to the variegation of the yellow~flowered carnation(Dianthus caryophyllus), Plant Cell Physiol,2002,43(5):578~585
    Julie L, Kirstin E, Nick S. Real-Time PCR: Current Technology and Applications. London: CaisterAcademic Press,2009
    Karen N, Simon C D, Kenneth R M, et al. Antisense flavonol synthase alters copigmentation and flowercolor in lisianthus. Molecular Breeding,2002,9:217~229
    Kevin M D, Kathy E S, Simon C D, et al. Enhancing anthocyanin production by altering competition forsubstrate between flavonol synthase and dihydroflavonol-4-reductase, Euphytica,2003,131:259~268
    Kreuzaler F, Ragg H, Fautz E, et al. UV-induction of chalcone synthase mRNA in cell suspension ofpetrosklinum hortense.PNAS,1983,80:2591~2593
    Katsumoto Y, Fukuchi-Mizutani M, Fukui Y et al. Engineering of the rose flavonoid biosynthetic pathwaysuccessfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol.2007,48(11):1589~1600
    Katsuyama Y, Funa N, Miyahisa I, et al. Synthesis of unnatural flavonoids and stilbenes by exploiting theplant biosynthetic pathway in Escherichia coli. Chem Biol,2007Jun,14(6):613~21
    Kim S G, Binzel M L, Park S H, Yook S, Pike L M. Inactivation of DFR (Dihydroflavonol-4-reductase) genetranscription results in blockage of anthocyan in production in yellow onions (Allium cepa). MolecularBreeding,2004,14:253~263
    Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution ofbiochemical pathways. Trends in Plant Science,2005,10(5):236~242
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR andthe2(-Delta Delta C (T)) method. Methods,2001,25(4):402~408
    Ma Jinglin, Donglin Zhang, Riqing Zhang et al. Golden Camellias from Guangxi, China. SNA ResearchConference,2008,53
    Mehdy M C, Lamb C J. Chalcone isomerase eDNA cloning and mRNA induction by fungal elicitor,wounding and infection. EMBO J,1987,6:1527~1533
    Miyajima I, Uemoto S, Sakata Y, et al. Yellow pigment of Camellia chrysantha Flowers. American CamelliaYearbook,1985,71~80
    Mol J, Cornish E, Mason J, et al. Novel coloured flowers. Curr Opin Biotechnol,1999, Apr,10(2):198~201
    Mol J, Grotewold E, Koes R. How genes paint flowers and seeds. Trends in plant Science,19983,212~217
    Nakatsuka T, Nishihara M, Mishiba K, et al. Two different mutations are involved in the formation ofwhite~flowered gentian plants. Plant Sci,2005,169:949~958
    Nakatsuka T, Nishihara M, Misiba K, Yamamura S. Temporal expression of flavonoid biosynthes is relatedgenes regulates f low er p igm entat ion in gen t ian p lan ts. Plant Science,2005,168(5):1309~1318
    Nakatsuk A, Mizuta D, Kiiy Y, et al. Isolat ion and expression analys is of flavonoid biosynthesis genes inevergreen azalea. Scientia Horticu lturae,2008,118:314~320
    Nishihara M, Nakatsuka T, Yamamura S. Flavonoid components and flower color change in transgenictobacco plants by suppression of chalcone isomerase gene. FEBS Lett,2005,579:6074~6078
    Nashihara M, NAkatasuka T Genetic engineering of flavonoid pigments to modify flower color infloricultural plants. Biotechnol Lett,2010,10, published on line, springer
    Noda N, Kanno Y, Kato N, Kazuma K, Suzuki M. Regulation of gene expression involved in flavonol andanthocyanin biosynthes is during petal development in lisianthus (Eustoma grandiflorum). Physiolog inPlantarum,2004,122(3):305-313
    Ohmiya A, Sanae K, Ryutaro A, et al. Carotenoid Cleavage Dioxygenase (CmCCD4a) Contributes to WhiteColor Formation in Chrysanthemum Petals. Plant Physiology,2006,142:1193~1201
    Okinaka Y, Shimada Y, et al. Selective accumulation of delphinidin derivatives in tobacco using a putativeflavonoid3',5'~hydroxylase cDNA from Campanula medium.Biotechnology,2003, Jan,67(1):161~165
    Ono E, Fukuchi-Mizutani M, Nakamura N, et al. Yellow flowers generated by expression of the auronebiosynthetic pathway. PNAS,2006,103(29):11075~11080
    O’Reilly C, Shepherd NS, Pereira A, et al. Molecular cloning of the a1locus in Zea mays using thetransposable elements En and Mu1.The EMBO J,1985,4:877~882
    Ow DW.2004SIVB congress symposium proceeding: Transgene management via multiple site--specificrecombination systems. In Vitro Cell Dev Biol-Plant.2005,41:213~219
    Ow DW. GM maize from site-specific recombination technology,what next? Curr Opin biotechnol,2007,18:115~120
    Parks C R, Scogin R. The Elusive Yellow Camellia: Results from Breeding and Pigment Analysis. AmericanCamellia Yearbook,1988,31~37
    Parkts C R. The hybrids of Camellia chysantha. International Camellia Journal,1989,21(1):76~79
    Parks C R. Breeding Progress with Yellow Camellia. American Camellia Yearbook,2000,9~10
    Routaboul JM, Kerhoas L, Debeaujon I, et al. Flavonoid diversity and biosynthesis in seed of Arabidopsisthaliana. Planta,2006,224(1):96~107
    Rosati C, Simoneau P, et al. Engineering of flower color in forsythia by expression of twoindependently~transformed dihydroflavonol4-reductase and anthocyanidin synthase genes of flavonoidpathway. Mol Breed,2003,12:197~208
    Sandmann G, R mer S, Fraser PD. Understanding carotenoid metabolism as a necessity for geneticengineering of crop plants. Metab Eng,2006,8(4):291~302
    Saito K, Kobayashi M, Gong Z et al. Direct evidence for anthocyanidin synthase as a2~oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perillafrutescens. Plant J,1999,17(2):181~189
    Salim A~B, Philippe H, Michael S, et al. Identication of a novel gene coding for neoxanthin synthase fromSolanum tuberosum. FEBS Letters,2000,485:168~172
    Schwinn K, Venail J, Shang Y, et al. A small family of MYB-Regulatory genes controls floral pigmentationintensity and patterning in the genus Antirrhinura. Plant Cel1,2006,18(4):83l~85l
    Scogin R. Floral pigments of the yellow camellia,Camellia chrysantha(Theaceae). Aliso,1986,11:387~392
    Shinzo T, Yuko F, Noriko N, et al. Flower color modification of Petunia hybrida commercial varieties bymetabolic engineering. Plant Biotechnology,2004,21(5):377~386
    Springob K, Nakajima j I, Yamazaki M, and Saito K.Recent advances in the biosynthesis and accumulationof anthocyanins. Nat. Prod. Rep.2003,20:288~303
    Srivastava v'Ariza·Nieto M, Wilson AJ. Cre-mediated site-specific gene integration for consistent transgeneexpression in rice. Plant Biotechnol J,2004,2:169~179
    Suzuki K, Xue H, Tanaka Y, et al. Flower color modifications of Torenia hybrida by cosuppression ofanthocyanin biosynthesis genes. Molecular Breeding,2000,6:239~246
    Suzuki S, Nishihara M, Naktsuka T, et al. Flower color alteration in Lotus japonicus by modification of thecarotenoid biosynthetic pathway. Plant cell Reports,2007,26(7):951~959
    Tanaka Y, Sasaki N, Ohmiya A.Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids.Plant J,2008a,54:733~749
    Tanaka Y, Ohmiya A. Seeing is believing: Engineering anrhocyanin and carotenoid biosynthetic pathways.Curr Opin Bioteehnol,2008b,19:190~197
    Tanaka Y, Tsuda S, Kusumi T. Metabolic engineering to modify flower color. Plant Cell Physiology,1998,39:1119~1126
    Van Eldik G, Reijnen W H, Ruiter R K, et al. Regulation of flavonol biosynthesis during anther and pistildevelopment, and during pollen tube growth in Solanum tuberosum. Plant J,1997,11:105~113
    Varda M, Mark H, Iris P, Joseph H. Metabolic engineering of astaxanthin production in tobacco flowers.Nature Biotechnology,2000,18(8):888~892
    Van der Krol A R, Mur L A, Beld M, et al. Flavonoid genes in petunia: Additional of a limited number ofgene copies may lead to suppression of gene expression. Plant Cell,1990,2:291~299
    Van der Krol A R, Lenting R J, Veenstra J G, et a1. An antisense chalcone synthase gene in transgeneticplants inhibits flower pigmentation. Nature,1988,333:860~869
    Winkel-Shirley B. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. The plant journal,1995,8(5):659~671
    Winkel-Shirley B. Flavonoid biosynthesis: A colorful model for genetics, biochemistry, cell biology, andbiotechnology. Plant physiology,2001,26:485~493
    Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology,2002,5:218~223
    XIA L F. Seeding-Breeding of Camellia Chrysantha. American Camellia Yearbook,1984,42~47
    Yukihisa K, Masako F M, Yuko F, et al. Engineering of the Rose Flavonoid Biosynthetic PathwaySuccessfully Generated Blue~Hued Flowers Accumulating Delphinidin. Plant Cell Physiol,2007,48(11):1589~1600
    Yamaguchi S, K unitake T, Hisatomis S. Interspecific hybrid between Camellia japonica cv. Chochidori andC.chrysantha produced by embro culture. Japan Breed,1987,37:203~206
    安田齐(日)著;傅玉兰,译.花色的生理生物化学.北京:中国林业出版社,1989
    陈俊愉.金花茶杂交育种十四年.北京林业大学学报,1987,9(3):315~320
    陈素梅,朱喜荣,陈发棣,等.不同花色菊花品种花色素结构基因的表达特性.西北植物学报,2010,30(3):0453~0458
    程金水,陈俊愉,赵世伟,等.金花茶杂交育种研究.北京林业大学学报,1994,16(4):55~58
    邓桂英,杨振德,卢天玲.我国金花茶研究概述.广西农业生物科学,2000,19(2):126~130
    范正琪.麻疯树pepc1基因的克隆及气体调控烟草蛋白质和油脂合成的作用分析.中国林业科学研究院博士学位论文,2010,49~72
    高继银,陈绍云,徐碧玉.世界名贵茶花.杭州:浙江科学技术出版社,1998,6~28
    高继银,Parks C R,杜跃强.山茶属植物主要原种彩色图集.浙江:浙江科学出版社,2005
    高继银,苏玉华,胡羡聪.国内外茶花名种识别与鉴赏.浙江:浙江科学技术出版社,2007
    宫岛郁夫.金花茶(Camellia chrysantha)及F1代的花色及花色素研究.广西林业科学,1997,26(1):52~53
    郝再彬.植物生理实验.哈尔滨:哈尔滨工业大学出版社,2006,46~48
    黄金霞,王亮生,李晓梅,等.2006.花色变异的分子基础与进化模式研究进展.植物学通报,23(4):321~333
    黄连冬,莫树业.金花茶杂交新种初报.中国园林,1998,14(1):49~51
    梁汉兴,张赞英,张香兰.云南野山茶与金花茶杂交有性过程的观察.云南植物研究,1986,8(2):147~152
    梁盛业.金花茶.北京:中国林业出版社,1993
    凌文华,郭红辉.植物花色苷.北京:科学出版社,2009,23~46
    陆敏珠.中国金花茶饮用与人体健康.北京:中国林业出版社,2006
    马春雷,陈亮.茶树黄酮醇合成酶基因的克隆与原核表达.基因组学与应用生物学,2009,28(3):433~438
    闽天禄.世界山茶属的研究.昆明:云南科技出版社,2000
    彭晓,于大永,冯宝民,等.金花茶花化学成份的研究.广西植物,2011,31(4):550~553
    萩屋薰.用金花茶(Camellia chrysantha)的花粉进行种间杂交试验(初报).椿,1982,21(1):15~18
    沈荫椿.山茶.北京:中国林业出版社,2009,25~75
    孙翊,李慧,王亮生,等.一种快速有效分析烟草花冠中花青素苷的方法.植物学报,2011,46(2):189~196
    田海英,韦凤杰,张东豫,等.RP~HPLC法测定烟草中的质体色素.烟草化学,2009,4:32~36
    汤忠皓,黄连冬.金花茶杂交育种初报.北京林业大学学报,1987,9(4):374~379
    吴洪明,杨江帆,詹梓金.黄色山茶花栽培育种研究进展.福建林业科技,2004,31(3):147~150
    张宏达.华夏植物区系的金花茶组.中山大学学报,1979,3:69~74
    张宏达,任善湘.中国植物志,第四十九卷,第三分册.北京:科学出版社.1998,87~133
    夏泉生.山茶花.上海:上海科技出版社,2000,177~179
    西本慎一,橋本文雄,清水圭一,等.キンチャカ×ャブツバキ穜間雑穜の花色.園学雑志,2004,73(2):189~191
    徐玲娜,汪洋东,陈益存,等.油桐GADT2基因克隆及其RNAi双元表达载体构建.林业科学研究,2011,24(5):668~673
    赵世伟,程金水.金花茶和山茶花的种间杂种.北京林业大学学报,1998,20(2):44~47
    赵世伟,程金水.金花茶远缘杂交亲和力.园艺学进展,1994,332
    郑阳霞,季静,王罡,等.宁夏构杞八氢番茄红素合成酶基因的克隆与序列分析.林业科学,2006,42(5):138~141
    中国科学院植物生理研究所.现代植物生理学实验指南.北京:科学出版社.1998,222~223
    周军,陶建敏,彭日荷,等.巨峰葡萄查尔酮合成酶基因-4的克隆及表达特性的RT-PCR分析.南京农业大学学报,2010,33(2):39~44
    周琳,王雁,彭镇华.黄色花形成机制及基因工程研究进展.林业科学,2009,45(2):111~119
    周兴文,李纪元,范正琪.金花茶查尔酮合成酶基因全长克隆与序列分析.生物技术通报.2011,6:58~64
    周兴文,李纪元,范正琪.金花茶查尔酮异构酶基因全长克隆与表达的初步研究.林业科学研究,2012,25(1):93~99
    朱长普,陈星,王英典.植物类胡萝卜素生物合成及其相关基因在基因工程中的应用.植物生理与分子生物学学报,2004,30(6):609~618
    朱高浦.山茶花MADS~BOX家族B类基因克隆及在重瓣花形成中的作用.中国林业科学研究院博士学位论文,2011a,17~37
    朱高浦,李纪元,范正琪等.完全重瓣型山茶花品种‘红十八学士’CjHTM6基因cDNA的克隆与分析.热带作物学报,2011b,32(3):456~462
    朱高浦,李纪元,范正琪等.完全重瓣型山茶花品种‘红十八学士’CjHDEF基因cDNA的序列分析.生物技术通报,2011c,(2):98~102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700