黄龙胆类胡萝卜素生物合成基因启动子的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类胡萝卜素是自然界的一大类萜类化合物,在动物营养及花色研究中占有重要地位。近20年来,类胡萝卜素基因克隆和功能鉴定及遗传工程研究工作取得了很大进展,尤其在农作物的类胡萝卜素含量提高方面取得了显著的成效,但对于植物类胡萝卜素代谢过程相关调控机制的研究还相对不足。因此,在应用遗传工程手段对作物进行遗传育种操作时存在很大的盲目性[2]。为了使类胡萝卜素基因工程研究更加有的放矢,当前更需要对植物体内的类胡萝卜素合成相关基因的表达调控机制进行深入研究。启动子在调控基因表达过程中起关键作用,因此启动子及其顺式作用元件的生物学功能研究是探求基因表达调控机制的重要部分。
     类胡萝卜基因的转录控制着黄龙胆花发育期间类胡萝卜素的积累。本研究通过分离并分析黄龙胆类胡萝卜素生物合成途径中相关酶基因的启动子来研究黄龙胆花发育期间类胡萝卜素基因表达协同上调的分子调控机制,试图在克隆到的协同上调的类胡萝卜素基因启动子调控区域找到共有顺式调控元件。研究成果如下:
     (一)本研究中共克隆得到6个与类胡萝卜素生物合成相关的启动子,即黄龙胆八氢番茄红素脱氢酶(GlZEP)基因启动子、黄龙胆八氢番茄红素脱氢酶(GlPDS)基因启动子、ζ-胡萝卜素脱氢酶(GlZDS)基因启动子、番茄红素β-环化酶(GlLYCB)基因启动子、胡萝卜素β-环羟化酶(GlBCH)基因启动子和番茄红素ε-环化酶(GlLYCE)基因启动子,启动子全长分别为2225bp、1077bp、766bp、1506bp、1744bp和938bp。
     (二)本研究中对各启动子的顺式作用元件分析得出如下结论:
     1、 GlZEP基因启动子序列-72bp和-84bp处有2个TATA-box;有6个对真核生物起到增强基因转录效率的CAAT-box;有较多的光调控顺式作用元件,包括:1个GT1元件、2个box I、3个G box、1个GAG元件、4个box4和1个chs-CMA2a元件;还发现几个与激素或逆境响应有关的顺式作用元件,包括1个乙烯响应元件ERE、2个CGTCA元件(对茉莉酸甲酯敏感)、2个涉及干旱胁迫的MYB结合位点、1个热激元件、3个真菌诱导响应的Box-W1和一个昼夜节律控制元件。
     2、 GlZEP、GlPDS、GlZDS、GlLYCB、GlBCH和GlLYCE基因启动子除核心启动子元件外,所有的启动子均包括三个顺式调控元件的共有元件:1)涉及MeJA-响应的CGTCA-元件;2)最近发现的在拟南芥PSY启动子上与RAP2.2有相互作用的ATCTA-元件;3)胚乳表达所必需的Skn-1元件。
     3、 GlZEP、GlPDS、GlZDS、GlLYCB、GlBCH和GlLYCE基因启动子序列中都发现至少一种类型的光响应元件,这些启动子可能根据日长和其他涉及花发育调控事件来进行类胡萝卜素表达调控。
     4、 GlZEP、GlPDS、GlZDS、GlLYCB、GlBCH和GlLYCE基因启动子序列中发现至少一种类型的MBS元件(涉及干旱诱导的MYB结合位点)。
     5、在GlPDS和GlLYCE基因启动子中存在乙烯响应元件ERE;GlLYCE和GlBCH基因启动子中存在ABRE(涉及脱落酸应答的顺式作用元件)和生长素响应元件(TGA-盒或TGA-元件); GlLYCB和GlLYCE基因启动子中存在对真菌感染起应答功能的Box-W1;GlZDS, GlLYCB和GlLYCE基因启动子中存在GCN4(涉及胚乳表达的顺式作用元件);GlLYCE和GlBCH基因启动子中还分别检测到了富TA区(烟草中的转录增强子)和ATGCAA-元件(水稻中与TGAGTCA元件(GCN4)相联系的结合位点)。
     (三)本研究中通过各启动子片段在番茄(Solanum lycopersicum cv. Micro-Tom)果实中的瞬时表达及GlZEP基因启动子在转基因番茄中的稳定表达,得出如下结论:
     1、对GlZEP基因启动子的全长及缺失片段的研究显示,GlZEP基因启动子下游的5'非编码区所包含的序列对于所驱动基因的高水平表达是必要的。GlZEP基因启动子近端的677bp区域内包含了其保持基本活性所必需的所有顺式作用元件。
     2、在含有有色体的成熟绿色果实(MG)中瞬时表达PDS-gusA、ZDS-gusA、LYCB-gusA、BCH-gusA和LYCE-gusA,所有启动子都能驱动转基因番茄中gusA报告基因的发育调控表达,表达模式与GLZEP基因启动子相似。但在未成熟绿色果实(IM)中这些启动子驱动的gusA基因则呈现非常低的表达水平或几乎不表达。
Carotenoids are naturally tetraterpenoids. They are important in nutuition for human. Inaddition carotenoids function as attractants to pollinators and seed dispersal agents. Duringthe last two decades, significant advances have been made in cloning most of thecarotenogenic genes and the genetic engineering of plants with the intention of manipulationof carotenoid content. However, a major limitation is our poor knowledge of how endogenouscarotenogenic genes are regulated in higher plants. Poor knowledge of the regulation ofcarotenogenic gene expression has thus far limited the predictive carotenoid engineering ofplants for enhancing carotenoid content and composition.
     The investigation of promoter was one of means for attempts to overcome theseroadblocks in plants by breaking through them or going around them. So the promoter andtheir cis-elements were researched. During the development of Gentiana lutea petals, atemporal correlation among the accumulation of carotenoids, the formation of chromoplasts,and the coordinated up-regulation of carotenogenic gene expression is evident. In this report,in order to elucidate the molecular control mechanisms of the coordinated up-regulation ofcarotenogenic gene expression, six promoters (GlZEP, GlPDS, GlZDS, GlLYCB, GlBCH andGlLYCE) were isolated by inverse PCR from G. lutea. All of these promoters were able todrive developmentally regulated expression of the gusA reporter gene in transgenic tomato(Solanum lycopersicum cv. Micro-Tom).
     We transformed tomato plants with the gusA gene encoding the reporter enzymeβ-glucuronidase (GUS) under the control of the GlZEP promoter, and investigated thereporter expression profile. We detected high levels of gusA expression and GUS activity inchromoplast containing flowers and fruits, but minimal levels in immature fruits containinggreen chloroplasts, in sepals, leaves, stems and roots. GlZEP-gusA expression was strictlyassociated with fruit development and chromoplast differentiation, suggesting anevolutionarily-conserved link between ZEP and the differentiation of organelles that storecarotenoid pigments.
     We transformed tomato plants with the gusA gene encoding the reporter enzymeβ-glucuronidase (GUS) under the control of the five genes(GlPDS, GlZDS, GlLYCB, GlBCHand GlLYCE) promoters respectively. High levels of gusA expression driven by thesepromoters were found in chromoplast-containing mature green (MG) fruits, but very lowlevels of expression, if any, were seen in chloroplast-containing immature green (IM) fruitsfor both GlLYCB and GlBCH promoters. The expression of these promoters is strictlyassociated with tomato fruit development and chromoplast differentiation. In addition to corepromoter elements (TATA box and CAAT box), three common cis-regulatory motifs involvedin methyl jasmonate (MeJA) responsiveness (CGTCA-motif), and binding an ethyleneresponse transcription factor (ATCTA-motif),required for endosperm expression Skn-1motif(GTCAT) were found in all the carotenogenic gene (GlPDS, GlZDS, GlLYCB, GlBCH, GlZEP and GlLYCE) promoters of G. lutea. Our present investigation provides new insights into theregulatory architecture of the coordinated up-regulation of carotenogenic gene expression inpetals of G. lutea. The impact of our results on current models for the regulation ofcarotenogenesis in plants is discussed.
引文
[1] Britton G, et al.Carotenoids Handbook [M]. Basel: Birkhauser Verlag,2004:VII.
    [2]朱长甫,陈星,王英典.植物类胡萝卜素生物合成及其相关基因在基因工程中的应用[J].植物生理及分子生物学学报,2004,30(6):609-618.
    [3] Bartley GE, Scolnik PA. Plant carotenoids: pigments for photoprotection, visual attraction, and humanhealth[J]. Plant Cell,1995,7:1027–1038.
    [4] Creelman RA, Zeevart JA. Incorporation of oxygen into abscisic acid and phaseic acid from molecularoxygen[J]. Plant Physiol,1984,75:166–169.
    [5] Schwartz SH, Qin X, Zeevaart JA.Elucidation of the indirect pathway of abscisicacid biosynthesis by mutants, genes, and enzymes[J]. Plant Physiol.,2003a,131(4):1591-1601.
    [6] Gomez-Roldan V,Fermas S,Brewer P B,et al.Strigolactone inhibition of shoot branching[J].Nature,2008,455(7210):189-194.
    [7] Umehara M,Hanada A,Yoshida S,et al.Inhibition of shoot branching by new terpenoid planthormones[J].Nature,2008,455(7210):195-200.
    [8] Fleischmann P, Watanabe N, Winterhalter P. Enzymatic carotenoid cleavage in star fruit(Averrhoacarambola)[J]. Phytochemistry,2003,63:131-137.
    [9] Kloer DP, Schulz GE. Structural and biological aspects of carotenoid cleavage[J]. Cell Mol Life Sci,2006,63:2291–2303
    [10] Von Lintig J, Vogt K. Vitamin A formation in animals: molecular identification and functionalcharacterization of carotene cleaving enzymes[J]. J Nutr,2004,134:251S–2516S.
    [11] Giuliano G, Tavazza R, Diretto G,et al. Metabolic engineering of carotenoid biosynthesis in plants[J].Trends Biotechnol,2008,26:139-145.
    [12] Farre G, Sanahuja G, Naqvi S, et al. Travel advice on the road to carotenoids in plants[J]. Plant Sci,2010,179:28–48.
    [13] Bai C, Twyman RM, Farre G, et al. A golden era–pro-vitamin A enhancement in diverse crops[J]. InVitro Cell Dev Biol Plant,2011,47:205-221.
    [14] Zhu C, Bai C, Sanahuja G, et al. The regulation of carotenoid pigmentation in flowers[J]. Arch.Biochem. Biophys.2010,504:132–141.
    [15] Harrison E H.Mechanisms of digestion and absorption of dietary vitamin A[J]. Annu Rev Nutr,2005,25:7-103.
    [16] Rao AV, Rao LG.Carotenoids and human health[J].Pharmacol Res,2007,55:207-216.
    [17] Ried K, Fakler P. Protective effect of lycopene on serum cholesterol and blood pressure:meta-analyses of intervention trials[J]. Maturitas,2010,68:299–310.
    [18] Landrum J,Bone R.Lutein, zeaxanthin, and the macular pigment[J].Arch Biochem Biophys,2001,385(1):28-40.
    [19] Krinsky N, Landrum J, Bone A.Biologic mechanisms of the protective role of Lutein and zeaxanthinin the eye[J].Annu Rev Nutr,2003,23:171-201.
    [20] Lichtenthaler H K, Schwender J, Disch A,et al. Biosynthesis of isoprenoids in higher plantschloroplasts proceeds via a mevalonate independent pathway[J]. FEBS Lett.,1997,40(3):271-274.
    [21] Cunningham FX and Gantt E. Genes and enzymes of carotenoid biosynthesis in plants [C]. AnnualReview of Plant Physiology and Plant Molecular Biology,1998,49:557-583.
    [22] Cunningham F X,Gantt E.A portfolio of plasmids for identification and analysis of carotenoidpathway enzymes:Adonis aestivalis as a case study[J]. Photosynth Res,2007,92:245-259.
    [23] Bramley PM. Regulation of carotenoid formation during tomato fruit ripening and development[J].JExp Bot,2002,53(377):2107-2113.
    [24] Kato M, Ikoma Y,Matsumoto H,et al. Accumulation of carotenoids and expression of carotenoidbiosynthetic genes during maturation in citrus fruit[J]. Plant Physio1,2004,134(2):824–837.
    [25] Kato M,IkomaY,Matsumoto H,et al. Accumulation of carotenoids and expression of carotenoidbiosynthetic genes and Carotenoid Cleavage Dioxygenase Genes during Fruit Maturation in the JuiceSacs of ‘Tamani,’‘Kiyomi’ Tangor,and ‘Wilking’ Mandarin[J]. Japan Soc Hort Sci,2007,76(2):103-111.
    [26] Porter J W,Lincoln R E.Lycopersicon selections containing a high content of carotenes and colorlesspolyenes.II.The mechanism of carotene biosynthesis[J]. Arch Biochem Biophys,1950,27:390-403.
    [27] Bird C R, Ray J A, Fletcher J D,et al.Using antisense RNA to study gene function: inhibition ofcarotenoid biosynthesis in transgenic tomatoes[J]. Bio Technol,1991,9:635-639.
    [28] Marin E, Nussaume L, Quesada A, et al. Molecular identification of zeaxanthin epoxidase ofNicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to theABA locus of Arabidopsis thaliana[J]. EMBO,1996,15:2331–2342.
    [29] Ronen G, Cohen M, Zamir D, et al. Regulation of carotenoid biosynthesis during tomato fruitdevelopment: express-ion of the gene for lycopene epsilon-cyclase is down-regulated during ripeningand is elevated in the mutant Delta[J]. Plant J.1999,17(4):341-351.
    [30] Isaacson T, Ronen G, Zamir D, et al.Cloning of tangerine from tomato reveals a carotenoidisomerase essential for the production of β-carotene and xanthophylls in plants[J].PlantCell,2002,14(2):333-342.
    [31] Park H, Kreunen S S, Cuttriss A J, et al. Identification of the carotenoid isomerase provides insightinto carotenoid biosynthesis, prolamellar body formation and photomorphogenesis[J].PlantCell,2002,14(2):321-332.
    [32] Moehs C P, Tian L,Osteryoung K W, et al. Analysis of carotenoid biosynthetic gene expression duringmarigold petal development[J]. Plant Mol.Biol.,2001,45(3):281-293.
    [33] Eisenreich W, Rohdich F, Bacher A. Deoxyxylulose phosphate pathway to terpenoids [J]. Trends PlantSci,2001,6(2):78-84.
    [34] Rodríguez-Concepción M and Boronat A. Elucidation of the methylerythritol phosphate pathway forisoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics[J]. Plant Physiol,2002,130(3):1079-1089.
    [35] Zhan A Y,You X L,Zhan Y G.Biosynthetic pathway and applications of plant terpenoidisoprenoid.Letters in Biotechnology,2010,21(1):131-135.
    [36] Li F,Murillo C,Wurtzel E T. Maize Y9encodes a product essential for15-cis-ζ-caroteneisomerization[J]. Plant Physiol,2007,144:1181-1189.
    [37] Chen Y, Li FQ, Wurtzel ET. Isolation and characterization of the Z-ISO gene encoding a missingcomponent of carotenoid biosynthesis in plants[J]. Plant Physiology.2010,153,66–79.
    [38] Breitenbach J, Sandmann G.zeta-Carotene cis isomers as products and substrates in the plant poly-ciscarotenoid biosynthetic pathway to lycopene[J]. Planta,2005,220:785-793.
    [39] Isaacson T, Ohad I, Beyer P, et al. Analysis in vitro of the enzyme CRTISO establishes apoly-cis-carotenoid biosynthesis pathway in plants[J]. Plant Physiol,2004,136:4246–4255.
    [40] Li Q, Farré G, Naqvi S, et al. Cloning and functional characterization of the maize carotenoidisomerase and β-carotene hydroxylase genes and their regulation during endosperm maturation [J].Transgenic Res,2010,19:1053–1068.
    [41] Cunningham F X, Pogson B, Sun Z, et al. Functional analysis of the βandε-lycopene cyclase enzymesof Arabidopsis reveals a mechanism for control of cyclic carotenoid formation[J]. Plant Cell,1996,8(9):1613-1626.
    [42] Tian L, Magallanes L, Undback M, et al. Functional analysis of β-and ε-ring carotenoid hydroxylasesin Arabidopsis[J]. The Plant Cell,2003,15(6):1320-1332.
    [43] Zhu C, Yamamura S, Nishihara M, et al.cDNAs for the synthesis of cyclic carotenoids in petals ofGentiana lutea and their regulation during flower development [J]. Biochim Biophys Acta.2003,1625(3):305-308.
    [44] Yamamoto HY. Xanthophyll cycles. Methods in Enzymology [M],1985,110:301-312.
    [45] Al-Babili S, Hugueney P, Schledz M, et al. Identification of a novel gene coding for neoxanthinsynthase from Solanum tuberosum [J]. FEBS Lett,2000,485(2):168-172.
    [46] Bouvier F, Suire C, Harlingue A, et al.Molecular cloning of geranyl diphosphate synthase andcompartmentation of monoterpene synthesis in plant cells[J]. Plant J.,2000,24(2):241-252.
    [47] Schwartz S H, Koornneef M, Zeevaart J A D,et al. Biochemical characterization of the aba2and aba3mutants in Arabidopsis thaliana[J].Plant Physiol,1997a,114:161-166.
    [48] Qin X, Zeevaart JA.The9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisicacid biosynthesis in water-stressed bean[J]. Proc Natl Acad Sci USA,1999,96(26):15354-15361.
    [49] Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants [J]. Trends Plant Sci,2002,7(1):41-48.
    [50] Taylor IB, Burbidge A, Thompson AJ. Control of abscisic acid synthesis [J]. J Exp Bot,2000,51(350):1563-1574.
    [51] Ramos-Valdivia A C, van der Heijden R, Verpoorte R. Isopentenyl diphosphate isomerase: a coreenzyme in isoprenoid biosynthesis: a review of its biochemistry and function [J]. Nat Prod Rep,1997,14:591-603.
    [52] Kajiwara S, Fraserp D, Kondo K,et al.Expression of an exogenous isopentenyldiphosphate isomerasegene enhances isoprenoid biosynthesis in Escherichia coli [J].Biochem J,1997,324:421-426.
    [53] Araki N, Kusumi K, Masamoto K, et al.Temperature-sensitive Arabidopsis mutant defectivein1-deoxy-D-xylulose5-phosphate syntheses within the plastid non-mevalonate pathway ofisoprenoid biosynthesis [J].Physiology Plant,2000,108:19-24.
    [54] Nakamura A, Shimada H, Masuda T, et al. Two distinct isopentenyl diphosphate isomerases in cytosoland plastid are differentially induced by environmental stresses in tobacco[J]. FEBS Lett,2001,506(1):61-64.
    [55] Okada K, Kasahara H, Yamaguchi S,et al.Genetic evidence for the role of isopentenyl diphosphateisomerases in the mevalonate pathway and plant development in Arabidopsis[J].Plant Cell Physiol,2008,49(4):604-616.
    [56] Kishimoto S,Ohmiya A. Regulation of carotenoid biosynthesis in Petals and leaves of chrys-anthemum (Chrysanthemum morfolium)[J]. Physiol Plant,2006,128:436-447.
    [57] Kuntz M, Rómer S, Suire C, et al. Identification of a cDNA for the plastid-located geranylgeranylpyrophosphate synthase from Capsieum annuum:correlative increase in enzyme activity andtranscript level during fruit ripening[J]. Plant J,1992,2:25-34.
    [58] R mers, Hugueney P, Bouvier F, et al. Expression of the genes encoding the early carotenoidbiosynthetic enzymes in Capsicum annuum[J]. Biochem Biophys Res Communication,1993,196:1414-1421.
    [59] Liao Z, Chen M, Gong Y, et al. A new geranylgeranyl diphosphate synthase gene from Ginkgo biloba,which intermediates the biosynthesis of the key precursor for ginkgolides[J]. DNA Seq.2004,15(2):153-158.
    [60] Tao NG, Hu ZY, Liu Q, et al. Expression of Phytoene synthase gene(Psy) is enhanced during fruitripening of Cara Cara navel orange(Citrus sinensis Osbeck)[J]. Plant Cell Reports[J],2007,26:837-843
    [61] Okada K, Saito T, Nakagawa T,et al. Five geranylgeranyl diphosphate synthases expressedindifferent organs are localized into three subcellular compartments in arabidopsis[J]. PlantPhysiology,2000,122:1045-1056.
    [62] Ament K. Van Schie CC, Bouwmeester HJ, et al.Induction of a leaf specific geranylgeranylpyrophosphate synthase and emission of (E,E)-4,8,12–trimethyltrideca-1,3,7,11-tetraene in tomatoare dependent on both jasmonic acid and salicylic acid signaling pathways[J]. Planta,2006,224(5):1197-1208.
    [63] Fraser P D,Enfissi E M,Halket J M,et al. Manipulation of phytoene levels in tomato fruit: effeets onisoprenoids,plastids,and intermediary metabolism[J]. Plant Cell,2007,19(10):3194-3211.
    [64] Zhu C, Yamamura S, KoiwaH, et al. cDNA cloning and expression of carotenogenic genes duringflower development in Gentiana lutea[J]. Plant Mol Biol,2002,48(3):277-285.
    [65] Palaisa KA, Morgante M, Williams M, et al. Contrasting effects of selection on sequencediversity andlinkage disequilibrium at two phytoene synthase loci [J]. Plant Cell,2003,15(8):1795-1806.
    [66] Buckner B, Miguel PS, Janick-Buckner D, et al. The y1gene of maize codes for phytoene synthase [J].Genetics,1996,143(1):479-488.
    [67] Li F, Vallabhaneni R and Wurtzel E T. PSY3, a new member of the phytoene synthase gene familyconserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis [J]. PlantPhysiol,2008,146(3):1333-1345.
    [68] Shewmaker C K,Sheehy J A,Daley M,et al.Seed specific overexpression of phytoene synthase:increase in carotenoids and other metabolic effects[J].The Plant Journal,1999,20(4):401-412.
    [69] Arango J, Wust F, Beyer P, et al. Characterization of phytoene synthases from cassava and theirinvolvement in abiotic stress-mediated responses[J]. Planta,2010,232(5):1251–1256.
    [70] Welsch R, Wust F, Bar C, et al. A third phytoene synthase is devoted to abiotic stress-induced abscisicacid formation in rice and defines functional diversification of phytoene synthase genes[J]. PlantPhysiology,2008,147(1):367–380.
    [71] Maunders MJ, Holdsworth MJ, Slater A, et al.Ethylene stimulates the accumulation of ripening-related mRNAs in tomatoes[J].Plant cell and environment,1987,10(2):177-184.
    [72] Davies KM, Grierson D.Identification of cDNA clones for tomato (Lycopersicon esculentum Mill.)mRNA that accumulate during ripening and leaf in response to ethylene[J].Planta,1989,179(1):73-80.
    [73] Fraser P D, Truesdale M R, Bird C R,et al. Carotenoid biosynthesis during tomato fruitdevelopment(Evidence for tissue-specific gene expression)[J]. Plant physiol,1994,105(l):405-413.
    [74] Bartley G E,Scolnik P A. cDNA cloning,expression during development and genome mapping ofPSY2,a second tomato gene encoding phytoene synthase[J].J Biol Chem,1993,268(34):25718-25721.
    [75] Fraser P D,Kiano J W,Truesdale M R,et al. Phytoene synthase-2enzyme activity in tomato does notcontribute to carotenoid synthesis in ripening fruit[J].Plant Mol Biol,1999,40(4):687-698.
    [76] Gallagher C E,Matthews P D,Li F,et al.Gene duplication in the carotenoid biosynthetic pathwaypreceded evolution of the grasses[J].Plant Physiol,2004,135(3):1776-1783.
    [77] Busch M, Seuter A, Hain R.Functional analysis of the early steps of carotenoid biosynthesis intobacco[J].Plant Physiol,2002,128(2):439-453.
    [78] Fanciullino A L,Dhuique-Mayer C,Luro F,et al. Carotenoid biosynthetic pathway in the citrusgenus:number of copies and phylogenetic diversity of seven genes[J].J Agric FoodChem,2007,55(18):7405-7417.
    [79] Zhang W,Dubcovsky J.Association between allelic variation at the phytoene synthase1gene andyellow pigment content in the wheat grain[J].Theor Appl Genet,2008,116(5):635-645.
    [80] He XY, Zhang YL, He ZH, et al. Characterization of phytoene synthase1gene(Psyl) located oncommon wheat chromosome7A and development of a functional marker[J]. Theoretical and AppliedGenetics,2008,116(2):213-221.
    [81] Schledz M, al-Babili S, von Linting J, et al.. Phytoene synthase from Narcissus pseudonarcissus:Functional expression, galactolipid requirement, topological distriution in chromoplasts andinduction during flowering[J]. Plant J,1996,10(5):781-792.
    [82] Chamovitz D, Pecker I, Hirschberg J. The molecular basis of resistance to the herbicide norflurazon[J]. Plant Mol Biol,1991,16(6):967-974.
    [83] Hugueney P,Romer S,Kuntz M,Camara B.Characterization and molecular-cloning of a flavoproteincatalyzing the synthesis of phytofluene and ζ-carotene in capsicum chromoplasts[J].Eur JBiochem,1992,209(1):399-407.
    [83] Pecker I, Gabbay R, Cunningham FX, et al. Cloning and characterization of the cDNA for lycopeneβ-cyclase from tomato reveals decrease in its expression during fruit ripening [J]. Plant Mol Biol,1996,30(4):807-819.
    [84] Mann V., Pecker I., Hirschberg J., Cloning and characterization of the gene for phytoene desaturase(Pds) from tomato (Lycopersicon esculentum)[J]. Plant Molecular Biology.1994,24(3):429-434
    [85] Senthil Kumar M,Hema R,Anand A,et al. A systematic study to determine the extent of genesilencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequencesare used for virus-induced gene silencing[J]. New Phytologist,2007,176(4):782-791.
    [86] Liu E, Page J E. Optimized cDNA libraries for virus-induced gene silencing(VIGS) using tobaccorattle virus[J]. Plant Methods,2008,4:5.
    [87]陈段芬,彭镇华,高志民.中国水仙八氢番茄红素脱氢酶基因(PDS)的克隆及表达分析[J].分子植物育种,2008,6(3):574–578.
    [88]朱海生,李永平,温庆放,等.草莓八氢番茄红素脱氢酶基因pds的克隆及特征分析[J].园艺学报,2011,38(1):55–60.
    [89]李永平,朱海生,温庆放,等.草莓ζ-胡萝卜素脱氢酶基因ZDS的克隆及特征分析[J].热带亚热带植物学报,2010,18(6):670~674.
    [90] Vallabhaneni R and Wurtzel E. Timing and biosynthetic potential for carotenoid accumulation ingenetically diverse germplasm of maize [J]. Plant Physiol,2009,150(2):562-572.
    [91] Bai L, Kim EH, DellaPenna D, et al. Novel lycopene epsilon cyclase activities in maize revealedthrough perturbation of carotenoid biosynthesis[J]. The Plant Journal,2009,59(4):588–599.
    [92] Harjes CE, Rocheford TR, Bai L, et al. Natural genetic variation in lycopene epsilon cyclase tappedfor maize biofortification[J]. Science,2008,319(5861):330–333.
    [93] Scolnik P A, Bartley G E. Nucleotide swquence of lycopene cyclase (GenBank L40176) fromArabidopsis (PGR-019)[J]. Plant Physiol,1995,108:1343
    [94] Ronen G, Carmel G L, Zamir D, et al. An alternative Pathway to beta-carotene formation in plantchromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato[J].Proc Natl Acid Sci USA,2000,97(20):11102-11107.
    [95] Tao N G, Xu J,Cheng Y J,et al. Lycopene-ε-cyclase pre-mRNA is alternatively spliced in Cara Caranavel orange(Citrus sinensis Osbeck)[J].Biotechnol Lett,2005,27(11):779-782.
    [96] Kim J, Smith JJ, Tian L, et al. The evolution and function of carotenoid hydroxylases in Arabidopsis.Plant Cell Physiol,2009,50(3):463-479.
    [97] Quinlan RF, Jaradat TT and Wurtzel ET. Escherichia coli as a platform for functional expression ofplant P450carotene hydroxylases [J]. Arch Biochem Biophys,2007,458(2):146-157.
    [98] Kim JE, Cheng KM, Craft NE, et al. Over-expression of Arabidopsis thaliana carotenoid hydroxylasesindividually and in combination with a β-carotene ketolase provides insight into in vivo functions[J].Phytochem,2010a,71(2-3):168-178.
    [99] Yu B, Lydiate DJ, Sch fer UA. Characterization of a β-carotene hydroxylase of Adonis aestivalis andits expression in Arabidopsis thaliana [J]. Planta,2007,226(1):181–192.
    [100] Vallabhaneni R, Kaczorowski DJ, Yaakovian MD, et al. Heme oxygenase1protects against hepatichypoxia and injury from hemorrhage via regulation of cellular respiration [J]. Shock,2010,33(3):274-281.
    [101] Castillo R, Fernandez JA, Gomez-Gomez L. Implications of carotenoid biosynthetic genes inapocarotenoid formation during the stigma development of Crocus sativus and its closerrelatives1[J].Plant Physiol,2005,139(2):674–689.
    [102] Cho DH, Jung YJ, Choi CS, et al. Astaxanthin production in transgenic Arabidopsis with chyB geneencoding β;-carotene Hydroxylase[J]. J. Plant Biol.,2008,51(1):58–63.
    [103] Diretto G, Tavazza R, Welsch R, et al. Metabolic engineering of potato tuber carotenoids throughtuber-specific silencing of lycopene ε-cyclase[J]. BMC Plant Biol.2006,6:13.
    [104] Diretto G, Welsch R, Tavazza R, et al. Silencing of beta-carotene hydroxylase increases totalcarotenoid and beta-carotene levels in potato tubers[J]. BMC Plant Biol.2007b,7:11.
    [105] Van Eck J, Conlin B, Garvin DF, et al. Enhancing beta-carotene content in potato by RNAi mediatedsilencing of the beta-carotene hydroxylase gene[J]. Am. J. Potato Res.,2007,84:331–342.
    [106] Yamamizo C, Kishimoto S, Ohmiya A. Carotenoid composition and carotenogenic gene expressionduring Ipomoea petal development[J]. Experimental Botany,2010,61(3):709–719.
    [107] Galpaz N, Ronen G, Khalfa Z,et al. A chromoplast-specific carotenoid biosynthesis pathway isrevealed by cloning of the tomato white-flower locus[J]. Plant Cell,2006,18(8):1947–1960.
    [108] Davison PA, Hunter CN, Horton P.Overexpression of β-carotene hydroxylase enhances stresstolerance in Arabidopsis[J]. Nature.2002,418(6894):203-206.
    [109] Bouvier F, Keller Y, Harlingue A, et al. Xanthophyll biosynthesis: molecular and functionalcharacterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.)[J].Biochimica et Biophysica Acta,1998,1391(3):320-328.
    [110] Kim I J,Ko K C,Kim C S,et al.Isolation and characterization of cDNAs encodingβ-carotene hydroxylase in Citrus[J]. Plant Sci,2001,161(5):1005-1010.
    [111] Morris W L, Ducreux L,Griffiths D W,et al. Carotenogenesis during tuber development and storagein Potato[J].J Exp Bot,2004,55:975-982.
    [112] Bugos RC,Hieber D,Yamamoto HY.Xanthophyll cycle enzymes are members of the lipcolinfinity,the first identified from plants[J].J Biol Chem,1998,273(25):15321-15324.
    [113] Siefermann D,Yamamoto HY.Properties of NADPH and oxygen-dependent zeaxanthin epoxidationin isolated chloroplasts:a transmembrane model for the vio laxanthin cycle[J]. Biochim BiophysActa,1975,387:149-158.
    [114] Gilmore AM,Mohanty N,Yamamoto HY.Epoxidation of zeaxanthin and antheraxanthin reversesnon-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence oftrans-thylakoid delta pH[J].FEBS Lett,1994,350:271-274.
    [115] Müller P, Li XP, Niyogi KK.Non-photochemical quenching.A response to excess light energy[J].Plant Physiol,2001,125:1558-1566.
    [116] Nambara E and Marion-Poll A. Abscisic acid biosynthesis and catabolism [J]. Annual Review ofPlant Biology,2005,56:165-186.
    [117] Tan BC, Schwartz SH, Zeevaart JA, et al. Genetic control of abscisic acid biosynthesis in maize [J].Proc Natl Acad Sci USA,1997,94(22):12235-12240.
    [118] Chernys J T, Zeevaart J A D. Characterization of the9-cis-epoxycarotenoid dioxygenase gene familyand the regulation of abscisic biosynthesis in avocado[J].Plant Physiol,2000,124(1):345-354.
    [119] Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K,et al.A stress-inducible gene for9-cis-epoxycar-otenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea[J]. Plant Physiol,2000,123(2):553-562.
    [120] Iuchi S,Kobayashi M,Taji T,et al.Regulation of drought tolerance by gene manipulation of9-cis-epoxyearotenoid dioxygenase a key enzyme in abscisic acid biosynthesis in Arabidopsis[J].Plant,2001,27:325-333.
    [121] Burbidge A,Grieve T,Jackson A,et al. Structure and expression of a cDNA encoding a putativeneoxanthin cleavage enzyme(NCED) isolated from a wilt-related tomato(Lycopersicon esculentumMill.) library[J].Journal of Experimental Botany,1997,47:2111-2112.
    [122] Rodrigo M J,Alquezar B,Zacaras L.Cloning and characterization of two9-cis-epoxycarotenoiddioxygenasegenes,differentially regulated during fruit maturation and under stress conditions,fromorange(Citrus sinensisL. Osbeck)[J]. Journal of Experimental Botany,2006,57(3):633-643.
    [123] Aluru M,Xu Y,Guo R,et al.Generation of transgenic maize with enhanced provitamin A content[J].Exp Bot,2008,59(13):3551-3562.
    [124] Cuttriss AJ, Cazzonelli CI, Wurtzel ET, and Pogson B J. Carotenoids[M]. Advances in BotanicalResearch,2011,58:1-36.
    [125] Frey A,Audran C,Marin E,et al. Engineering seed dormancy by the modification of zeaxanthinepoxidase gene expression[J]. Plant Mol Biol,1999,39(6):1267-1274.
    [126] Mann V, Harker M, Pecker I, et al.Metabolic engineering of astaxanthin production in tobaccoflowers [J]. Nat Biotechnol,2000,18(8):888-892.
    [127]季静,三村山郎,西原昌宏,等.通过转基因提高β-胡萝卜素生物合成量[J].中国生物化学与分子生物学报,2004,20:440-444.
    [128] Zhu C, Gerjets T and Sandmann G. Nicotiana glauca engineered for the production ofketocarotenoids in flowers and leaves by expressing the cyanobacterial crtO ketolase gene [J].Transgenic Res,2007a,16(6):813-821.
    [129] Fray R G, Wallace A,Fraser P D, et al. Constitutive expression of a fruit phytoene synthase gene intransgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellinpathway[J].Plant J,1995,8(5):693-701.
    [130] Dharmapuri S, Rosati C, Pallara P, et al. Metabolic engineering of xanthophyll content in tomatofruits [J]. FEBS Lett,2002,519(1-3):30-34.
    [131] Davuluri G, Tuinen A, Fraser P, et al. Fruit-specific RNAi-mediated suppression of DET1enhancescarotenoid and flavonoid content in tomatoes [J]. Nat Biotechnol,2005,23(7):890-895.
    [132] Sun L, Yuan B, Zhang M,et al. Fruit-specific RNAi-mediated suppression of SlNCED1increasesboth lycopene and β-carotene contents in tomato fruit[J]. Journal of Experimental Botany,2012,63(8):3097–3108.
    [133] Fraser P D,R mer S,ShiPton C A,et al. Evaluation of transgenic tomato plants expressing anadditional phytoene synthase in a fruit specific manner[J]. Proc Natl Acad Sci USA,2002,99(2):1092-1097.
    [134] Fujisawa M, Watanabe M, Choi S K,et al. Enrichment of carotenoids in flaxseed(Linumusitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase genecrtB[J]. J Biosci Bioeng,2008,105(6):636-641.
    [135] Ravanello M P, Ke D, Alvarez J, et al.Coordinate expression of multiple bacterial carotenoid genesin canola leading to altered carotenoid production[J].Metab Eng,2003,5:255-263.
    [136] Fujisawa M, Takita E, Harada H, et al. Pathway engineering of Brassica napus seeds using multiplekey enzyme genes involved in ketocarotenoid formation [J]. J Exp Bot,2009,60(4):1319-1332.
    [137] Wei S, Yu B, Gruber MY, et al. Enhanced seed carotenoid levels and branching in transgenicBrassica napus expressing the Arabidopsis miR156b Gene[J]. J. Agric. Food Chem.2010,58(17):9572–9578.
    [138] Jayaraj J, Devlin R and Punja Z. Metabolic engineering of novel ketocarotenoid production in carrotplants [J]. Transgenic Res,2008,17(4):489-501.
    [139] Maass D,Arango J,Wust F,et al. Carotenoid crystal formation in Arabidopsis and carrot roots causedby increased phytoene synthase protein levels[J]. PLoS ONE,2009,4: e6373.
    [140] Ye X,Al-Babili S,Kloti A,et al.Engineering the provitamin A (beta-carotene) biosynthetic pathwayinto (carotenoid-free) rice endosperm[J].Science,2000,287:303-305.
    [141] Paine JA, Shipton CA, Chaggar S, et al. Improving the nutritional value of Golden Rice throughincreased pro-vitamin A content [J]. Nat Biotechnol,2005,23(4):482-487.
    [142] Naqvi S, Zhu C, Farre G,et al.Transgenic multivitamin corn through biofortification of endospermwith three vitamins representing three distinct metabolic pathways[J]. Proc Natl Acad Sci U SA.2009a,106(19):7762-7767.
    [143] Romer S,Lubeck J,Kauder F,et al. Genetic engineering of a zeaxanthin-rich potato by antisenseinactivation and co-suppression of carotenoid epoxidation[J]. Meta Eng,2002,4(4):263-272.
    [144] Diretto G, Al-Babili S, Tavazza R, et al. Metabolic engineering of potato carotenoid content throughtuber-specific overexpression of a bacterial mini-pathway [J]. PLoS one,2007,2(4):e350.
    [145] Ferreira CF, Alves E,Pestana KN,et al. Molecular characterization of cassava (Manihot esculentaCrantz) with yellow-orange roots for beta-carotene improvement[J]. Crop Breed ApplBiotechnol,2008,8(1):23–29.
    [146] Nassar N,Fernandes P,Melani R, et al. Amarelinha do Amapá: a carotenoid-rich cassava cultivar[J].Genet. Mol. Res.2009,8(3):1051–1055.
    [147] Welsch R, Arango J,Bar C,et al. Provitamin A accumulation in cassava (Manihot esculenta) rootsdriven by a single nucleotide polymorphism in a phytoene synthase gene[J]. Plant Cell,2010,22(10):3348–3356.
    [148] Navazio J. P. Utilization of high carotene cucumber germplasm for genetic improvement ofnutritional quality[J]. PhD thesis. University of Wisconsin-Madison;1994.
    [149] Cuevas HE,Staub JE,Simon PW, et al. Mapping of genetic loci that regulate quantity ofbeta-carotene in fruit of US Western Shipping melon (Cucumis melo L.)[J]. Theor. Appl. Genet.2008,117:1345–1359.
    [150] Cuevas HE, Staub JE. Simon PW,et al. A consensus linkage map identifies genomic regionscontrolling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melon L.)[J].Theor Appl Genet,2009,119(4):741–756.
    [151] Ampomah-Dwamena C, McGhie T, Wibisono R,et al. The kiwifruit lycopene beta-cyclase plays asignificant role in carotenoid accumulation in fruit [J]. J Exp Bot,2009,60(13):3765–3779.
    [152] Kim M, Kim SC, Song KJ, et al. Transformation of carotenoid biosynthetic genes using amicro-cross section method in kiwifruit (Actinidia deliciosa cv. Hayward)[J]. Plant Cell Rep.2010b,29(12):1339–1349.
    [153] Zhu C,Naqvi S,Gomez-Galera S,et al. Transgenic strategies for the nutritional enhancement ofplants[J]. Trends Plant Sci,2007b,12(12):548-555.
    [154] Ma JK, Drake PM, Christou P. The production of recombinant pharmaceutical proteins in plants[J].Nat Rev Genet,2003,4:794–805.
    [155] Twyman RM. Growth and development: control of gene expression, regulation of transcription[M].In: Thomas B, Murphy DJ, Murray B (eds) Encyclopedia of Applied Plant Sciences. Elsevier Science,London,2003:558–567.
    [156] Lagrange T,Gauvin S,Mache R,et al.S2F,a leaf-specific trans-acting factor,binds to a novel cis-actingelement and differentially activates the RPL21gene[J].Plant cell,1997,9(8):1469-1479.
    [157] Potenza C, Aleman L, Sengupta-Gopalan C. Targeting transgene expression in research, agricultural,and environmental applications: promoters used in plant transformation[J]. In Vitro Cell Dev BiolPlant,2004,40(1):1-22
    [158] Odell J T,Nagy F,Chua N H.Identification of DNA sequences required for activity of the cauliflowermosaic virus35S promoter.Identification of DNA sequences required for activity of the cauliflowermosaic virus35S promoter[J]. Nature,1985,313(6005):810-812.
    [159] Kay R, Chan A, Daly M, et al. Duplication of CaMV35S promoter sequences creates a strongenhancer for plant genes[J]. Science,1987,236:1299-1302.
    [160] Fang RX, Nagy F, Sivasubramaniam S,et al. Multiple cisregulatory elements for maximal expressionof the Cauliflower mosaic virus35S promoter in transgenic plants[J]. Plant Cell,1989,1(1):141-150.
    [161] Lam E, Benfey PN, Gilmartin PM, et al. Sitespecific mutations alter in vitro factor and changepromoter expression pattern in transgenic plants[J]. Proc Natl Acad Sci USA,1989,86(20):7890–7894.
    [162] Ohtsuki S, Levine M, Cai HN. Different core promoters possess distinct regulatory activities in theDrosophila embryo[J]. Genes Dev,1998,12:547–556
    [163] Zheng X, Deng W, Luo K,et al. The Cauliflower mosaic virus (CaMV)35S promoter sequence altersthe level and patterns of activity of adjacent tissue-and organ-specific gene promoters[J]. Plant CellRep,2007,26(8):1195–1203
    [164] Sanders P R, Winter J A,Barnason A R,et al.Comparison of cauliflower mosaic virus35S andnopaline synthase promoters in transgenic plants[J]. Nucleic Acids Res,1987,15(4):1543-1558.
    [165] Naomi SS, Ichiro M, Shigeo N, et al. Constitutive promoters available for transgene expressioninstead of CaMV35S RNA promoter: Arabidopsis promoters of tryptophan synthase protein βsubunitand phytochrome B[J]. Plant Biotech,2002,19(1):19-26.
    [166] McElroy D, Zhang W, Cao J, et al. Isolation of an efficient actin promoter for use in ricetransformation[J]. Plant Cell,1990a,2(2):163-171.
    [167] McElroy D,et al.Characterization of the rice(Oryza Sativa) actin gene family[J]. Plant Mol Biol,1990b,15(2):257-268.
    [168] Schledzewski K, Mendel RR. Quantitative transient gene expression: Comparison of the promotersfor maize polyubiquitin1, rice actin1, maize-derivedEmu and CaMV35S in cells of barley, maize andtobacco[J]. Transgenic Res,1994,3(4):249-255.
    [169] Gittins JR, Pellny TK, Hiles ER, et al. Transgene expression driven by heterologous ribulose-1,5-bisphosphate carboxylase/oxygenase small-subunit gene peomoters in the vegetative tissues ofapple(Malus pumila Mill)[J]. Planta,2000,210(2):232-240.
    [170] Robinson DJ. Environmental risk assessment of releases of transgenic plants containingvirus-derived inserts[J].Transgenic Research,1996,5(5):359-362.
    [171] KumpatlaS P, Chandrasekharan M B, Iyer LM, et al. Genome intruder scanning and modulationsystems and transgene silencing[J].Trends in Plant Science,1998,3(3):97–104.
    [172] Suzuki H,Fowler T J,Tierney M L.Deletion analysis and localization of SbPRP1,a soybean cell wallprotein gene,in roots of transgenic tobacco and cowpea[J].Plant Mol Biol,1993,21(1):109-119.
    [173] Gowik U,Burscheidt J,Akyildiz M,et al.cis-Regulatory elements for mesophyll-specific geneexpression in the C4plant flaveria trinervia,the promoter of the C4phosphoenolpyruvatecarboxylase gene[J].Plant cell,2004,16(5):1077-1090.
    [174] Van Haaren MJ,Houck CM.A functional map of the fruit-specific promoter of the tomato2A11gene[J].Plant Mol Biol,1993,21(4):625-640.
    [175]毛自朝,于秋菊,甄伟,等.果实专一性启动子驱动ipt基因在番茄中的表达及其对番茄果实发育的影响[J]科学通报,2002,47(6):444-448.
    [176] Schernthaner JP, Matzke MA, Matzke AJM. Endospermspecific activity of a zein gene promoter intransgenic tobacco plants[J]. EMBO J,1988,7(5):1249–1255.
    [177] Leisy DJ, Hnilo J, Zhao Y, et al. Expression of a rice glutelin promoter in transgenic tobacco [J].Plant Mol Biol,1990,14(1):41–50.
    [178] Takaiwa F, Oono K, Kato A. Analysis of the5’ flanking region responsible for the endosperm-specific expression of a rice glutelin chimeric gene in transgenic tobacco [J]. Plant Mol Biol,1991a,16(1):49–58.
    [179] Zheng Z, Kawagoe Y, Xiao S, et al.5’ distal and proximal cis-acting regulation elements are requiredfor developmental control of a rice seed storage protein glutelin gene[J]. Plant J,1993,4(2):357–366.
    [180] Marris C, Gallois P, Copley J, et al. The5’ flanking region of a barley B hordein gene controls tissueand developmental specific CAT expression in tobacco plants[J]. Plant Mol Biol,1988,10(4):359–366.
    [181] Qu LQ, Takaiwa F. Evaluation of tissue specificity and expression strength of rice seed componentgene promoters in transgenic rice[J]. Plant Biotechnol J,2004,2(2):113–125.
    [182] Colot V, Robert LS, Kavanagh TA, et al. Localization of sequences in wheat endosperm proteingenes which confer tissue-specific expression in tobacco[J]. EMBO J,1987,6(12):3559-3564.
    [183] Wobus U, Borisjuk L, Panitz R,et al. Control of seed storage protein gene expression: new aspects onan old problem[J]. J Plant Physiol,1995,145(5-6):592–599.
    [184] Opsahl-Sorteberg HG, Divon HH, Nielsen PS, et al. Identification of a49-bp fragment of theHvLTP2promoter directing aleurone cell specific expression[J]. Gene,2004,341:49-58.
    [185] Furtado A, Henry RJ. The wheat Em promoter drives reporter gene expression in embryo andaleurone tissue of transgenic barley and rice[J]. Plant Biotechnol J,2005,3(4):421-434.
    [186] Onodera Y, Suzuki A, Wu CY, et al. A rice functional transcriptional activator, RISBZ1, responsiblefor endosperm-specific expression of storage protein genes through GCN4motif[J]. J BiolChem,2001,276:14139-14152.
    [187] Yang G, Nakamura H, Ichikawa H, et al. OsBLE3, a brassinolide-enhanced gene, is involved in thegrowth of rice[J]. Phytochemistry,2006,67(14):1442–1454.
    [188] Saidi Y, Finka A, Chakhporanian M,et al. Controlled expression of recombinant proteins inPhyscomitrella patens by a conditional heat-shock promoter: a tool for plant research andbiotechnology[J]. Plant Mol Biol,2005,59(5):697–711.
    [189] Sun AQ, Yi SY, Yang JY, et al. Identification and characterization of a heat-inducible ftsH gene fromtomato (Lycopersicon esculentum Mill.). Plant Sci[J],2006a,170(3):551–562.
    [190] Park HC,Kim ML,Kang YH, et al.Pathogen-and NaCl-induced expression of the SCaM-4promoteris mediated in part by a GT-1box that interacts with a GT-1-like transcription factor[J].PlantPhysiol,2004,135(4):2150-2161.
    [191] Kaplan B, Davydov O, Knight H, et al.Rapid transcriptome changes induced by cytosolic Ca2+transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis[J]. PlantCell.2006,18(10):2733-2748.
    [192] Naqvi S, Farre G, Sanahuja G, et al. When more is better: multigene engineering in plants[J]. TrendsPlant Sci,2009b,15(1):48–56.
    [193] Ha SH, Liang YS, Jung H, et al. Application of two bicistronic systems involving2A and IRESsequences to the biosynthesis of carotenoids in rice endosperm[J]. Plant Biotechnol J,2010,8(8):928-938.
    [194] Kim M, Kim J, Kim H, et al.Genetic Modification of the Soybean to Enhance theβ-Carotene Contentthrough Seed-Specific Expression[J]. PLOS ONE,2012,7(10):e48287.
    [195] He Y, Zhu C, Wang D, et al. Cloning of plastid division gene GlFtsZ from Gentiana lutea and itsexpression during petal development[J].Progress in Natural Science.2002,12(8):592-598.
    [196] Niyogi K K.Photoprotection revisited:Genetic and Molecular Approaches[J].Plant Physiology andPlant Molecular Biology,1999,50(1):333-359.
    [197] Audran C,Borel C,FreyA,et al.Expression studies of the zeaxanthin epoxidase gene in Nicotianaplumbaginifolia[J]. Plant Physiol,1998,118(3):1021-1028.
    [198] Park HY,Seok HY,Park BK,et al.Overexpression of Arabidopsis ZEP enhances tolerance to osmoticstress[J]. Biochemical and Biophysical Research Communications,2008,375(1):80-85.
    [199] Orzaez D,Mirabel S,Willemien W H,et al.Agroinjection of tomato fruits.A tool for rapid functionalanalysis of transgenes directly in fruit[J].Plant Physiol,2006,140(1):3-11.
    [200] Pfitzner AJ. Transformation of tomato[J]. Methods Mol Biol.1998,81:359-63.
    [201] Sun H J,Uchii S,Watanabe S,et al.A highly efficient transformation protocol for Micro-Tom,a modelcultivar for tomato functional genomics[J].Plant Cell Physiol,2006b,47(3):1-6.
    [202] Kosugi S, Suzuka I, Ohashi Y, et al.Upstream sequences of rice proliferating cell nuclear antigen(PCNA) gene mediate expression of PCNA-GUSchimeric gene in meristems of transgenic tobaccoplants[J]. Nucleic Acids Res.1991,19(7):1571-1576.
    [203] Jefferson AR, Kavanagh TA, Bevan MW. GUS fusion: beta-glucuronidase as a sensitive andversatile gene fusion marker in higher plants[J]. EMBO J,1987,6(13):3901–3907.
    [204] Lescot M, Dehais P, Moreau Y,et al. PlantCARE: a database of plant cis-acting regulatory elementsand a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res,2002,30(1):325–327.
    [205] Yang Q, Yuan D, Shi L,et al. Functional characterization of the Gentiana lutea zeaxanthin epoxidase(GlZEP) promoter in transgenic tomatoplants[J]. Transgenic Res.2012,21(5):1043-1056.
    [206] Forth D, Pyke KA. The suffulta mutation in tomato reveals a novel method of plastid replicationduring fruit ripening[J]. J Exp Bot,2006,57(9):1971–1979.
    [207] Egea I, Barsan C, Bian W, et al. Chromoplast differentiation: current status and perspectives[J].Plant Cell Physiol,2010,51(10):1601-1611.
    [208] Alquézar B, Zacarías L, Rodrigo MJ. Molecular and functional characterization of a novelchromoplast-specific lycopene beta-cyclase from Citrus and its relation to lycopene accumulation[J].J Exp Bot,2009,60(6):1783-1797.
    [209] Dalal M, Chinnusamy V, Bansal KC. Isolation and functional characterization of lycopene β-cyclase(CYC-B) promoter from Solanum habrochaites[J]. BMC Plant Biol,2010,10:61.
    [210] Mendes AF, Chen C, Gmitter FG Jr, et al. Expression and phylogenetic analysis of two newlycopeneβ-cyclases from Citrus paradisi[J]. Physiol Plant,2011,141(1):1–10.
    [211] Ahrazem O, Rubio-Moraga A, López RC, et al. The expression of a chromoplast-specific lycopenebeta cyclase gene is involved in the high production of saffron’s apocarotenoid precursors[J]. J ExpBot,2010,61(1):105-119.
    [212] Blas AL, Ming R, Liu Z, et al. Cloning of the papaya chromoplast-specific lycopene β-cyclase,CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hotspot[J]. Plant Physiol,2010,152(4):2013-2022.
    [213] Devitt LC, Fanning K, Dietzgen RG,et al. Isolation and functional characterization of a lycopeneβ-cyclase gene that controls fruit colour of papaya (Carica papaya L.)[J]. J Exp Bot,2010,61(1):33–39.
    [214] Scott JW, Harbaugh BK. Micro-Tom,a miniature dwarf tomato [J]. Florida Agric Exp StationCirc,1989,370:1-6.
    [215] Meissner R, Jacobson Y, Melaned S, et al. A new model system for tomato genetics [J]. Plant J,1997,12(6):1465–1472.
    [216] Haroldsen VM, Chi-Ham CL, Kulkarni S, et al. Constitutively expressed DHAR and MDHARinfluence fruit, but not foliar ascorbate levels in tomato [J]. Plant Physiol Biochem,2011,49(10):1244–1249.
    [217] Carvalho RF, Campos ML, Pino LE,et al. Convergence of developmental mutants into a singletomato model system:‘Micro-Tom’ as an effective toolkit for plant development research [J]. PlantMethods2011,7:18.
    [218] Corona V, Aracri B, Kosturkova G, et al. Regulation of a carotenoid biosynthesis gene promoterduring plant development[J]. Plant J,1996,9(4):505–512.
    [219] Peremarti A, Twyman RM, Gómez-Galera S, et al. Promoter diversity in multigene transformation[J].Plant Mol Biol,2010,73(4-5):363–378.
    [220] Von Lintig J, Welsch R, Bonk M, et al. Light dependent regulation of carotenoid biosynthesis occursat the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba andArabidopsis thaliana seedlings[J]. Plant J,1997,12(3):625–634.
    [221] Simkin A, Zhu C, Kuntz M, et al. Light-dark regulation of carotenoid biosynthesis in pepper(Capsicum annuum) leaves[J]. J Plant Physiol,2003,160(5):439-443.
    [222] Thompson AJ, Jackson AC, Parker RA, et al. Abscisic acid biosynthesis in tomato: regulation ofzeaxanthin epoxidase and9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, waterstress and abscisic acid[J]. Plant Mol Biol,2000,42(6):833-845.
    [223] Facella P, Lopez L, Carbone F, et al. Diurnal and circadian rhythms in the tomato transcriptome andtheir modulation by cryptochrome photoreceptors. PLOS One,2008,3:e2798.
    [224] Welsch R, Medina J, Giuliano G,et al. Structural and functional characterization of the phytoenesynthase promoter from Arabidopsis thaliana[J]. Planta,2003,216(3):523–534.
    [225] Welsch R, Maass D, Voegel T, et al. Transcription factor RAP2.2and its interacting partner SINAT2:stable elements in the carotenogenesis of Arabidopsis leaves[J]. Plant Physiol,2007,145(3):1073–1085.
    [226] Liu F, Vantoai T, Moy LP, et al. Global transcription profiling reveals comprehensive insights intohypoxic response in Arabidopsis[J]. Plant Physiol,2005,137(3):1115–1129.
    [227] Nilsson L, Müller R, Nielsen TH. Dissecting the plant transcriptome and the regulatory responses tophosphate deprivation[J]. Physiol Plant,2010,139(2):129-143.
    [228] Namitha KK, Archana SN, Negi PS. Expression of carotenoid biosynthetic pathway genes andchanges in carotenoids during ripening in tomato (Lycopersicon esculentum)[J].FoodFunct.2011,2(3-4):168-173.
    [229] Sandmann G, Romer S, Fraser PD. Understanding carotenoid metabolism as a necessity for geneticengineering of crop plants [J]. Metab Eng,2006,8(4):291-302.
    [230] Zhu C, Sanahuja G, Yuan D, et al.Biofortification of plants with altered antioxidant content andcomposition: genetic engineering strategies[J]. Plant Biotechnol J,2013,11(2):129-141.
    [231] Farre G, Bai C, Twyman RM, et al. Nutritious crops producing multiple carotenoids–a metabolicbalancing act[J]. Trends Plant Sci,2011,16(10):532-540.
    [232] Rouster J, Leah R, Mundyt J, et al. Identification of a methyl jasmonate-responsive region in thepromoter of a lipoxygenase1gene expressed in barley grain[J]. Plant J,1997,11(3):513-523.
    [233] Takaiwa F, Oono K, Wing D,et al. Sequence of three members and expression of a new majorsubfamily of glutelin genes from rice[J]. Plant Mol Biol,1991b,17(4):875-885.
    [234] Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2(bHLH) and AtMYB (MYB) function astranscriptional activators in abscisic acid signaling[J]. Plant Cell,2003,15(1):63-78.
    [235] Caron H, van Schaik B, van der Mee M, et al. The human transcriptome map: clustering of highlyexpressed genes in chromosomal domains[J]. Science,2001,291(5507):1289-1292.
    [236] Winzer T, Gazda V, He Z, et al. A Papaver somniferum10-gene cluster for synthesis of theanticancer alkaloid noscapine[J]. Science,2012,336(6089):1704-1708.
    [237]错误!未找到引用源。错误!未找到引用源。Hichri I, Barrieu F, Bogs J, et al. Recent advances in thetranscriptional regulation of the flavonoid biosynthetic pathway[J]. J Exp Bot,2011,62(8):2465-2483.
    [238] Werner T. Cluster analysis and promoter modelling as bioinformatics tools for the identification oftarget genes from expression array data[J]. Pharmacogenomics,2001,2(1):25-36.
    [239] Kim SY, Kim Y. Genome-wide prediction of transcriptional regulatory elements of humanpromoters using gene expression and promoter analysis data[J]. BMC Bioinformatics,2006,7:330.
    [240] Yamamoto YY, Yoshioka Y, Hyakumachi M,et al. Prediction of transcriptional regulatory elementsfor plant hormone responses based on microarray data[J]. BMC Plant Biol,2011,11:39.
    [241] Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements (PLACE)database:1999[J]. Nucleic Acids Res,1999,27(1):297-300.
    [242] Kreiman G. Identification of sparsely distributed clusters of cis-regulatory elements in sets ofco-expressed genes[J]. Nucleic Acids Res,2004,32(9):2889-2900.
    [243] Haberer G, Mader MT, Kosarev P, et al. Largescale cis-element detection by analysis of correlatedexpression and sequence conservation between Arabidopsis and Brassica oleracea[J]. Plant Physiol,2006,142(4):1589-1602.
    [244] Obayashi T, Kinoshita K, Nakai K, et al. ATTED-II: a database of co-expressed genes and ciselements for identifying co-regulated gene groups in Arabidopsis[J]. Nucleic Acids Res,2007,35(suppl1):D863-D869.
    [245] Lenka SK, Lohia B, Kumar A,et al. Genome-wide targeted prediction of ABA responsive genes inrice based on overrepresented cis-motif in co-expressed genes[J]. Plant Mol Biol,2009,69(3):261-271.
    [246] Liu L, Wei J, Zhang M, et al. Ethylene independent induction of lycopene biosynthesis in tomatofruits by jasmonates[J]. J Exp Bot,2012,63(16):5751-5761.
    [247] Cazzonelli C, Pogson B. Source to sink: regulation of carotenoid biosynthesis in plants[J]. TrendsPlant Sci,2010,15(5):266-274.
    [248] Lu S, Li L. Carotenoid metabolism: biosynthesis, regulation, and beyond[J]. Journal of IntegrativePlant Biology,2008,50(7):778-785.
    [249] Toledo-Ortiz G, Huq E, Rodriguez-Concepcion M. Direct regulation of phytoene synthase geneexpression and carotenoid biosynthesis by phytochrome-interacting factors[J]. Proc Natl Acad SciUSA,2010,107(25):11626-11631.
    [250] Hayward A, Stirnberg P, Beveridge CA,et al. Interactions between auxin and strigolactone in shootshoot branching control[J]. Plant Physiol,2009,151(1):400-412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700