花椰菜和拟南芥中or基因作用机理的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Orange (Or)基因是在天然突变的菜头呈橘黄色的花椰菜中发现的。突变体的菜头、茎髓、叶子基部、顶端分生组织的细胞由于大量积累p-胡萝卜素(能达到野生型的几百倍)而呈现橘黄色。研究发现突变体和野生型类胡萝卜素合成途径(包括上游MEP途径)的酶基因表达水平并没有显著差异:类胡萝卜素含量的上升可能是由于积累能力的提高而不是合成能力的增强。进一步研究发现,野生型的Or基因编码一个质体定位的富含半胱氨酸DnaJ类似蛋白,突变体是由于基因中插入了一个带有长末端重复序列的转座子。Or基因敲除突变体并未表现出色素积累的表型,说明oR.是功能获得性(gain-of-function)突变而不是无义/功能丧失(loss-of-function)突变。or纯合突变体顶端分生组织质体分裂发育受到影响,细胞中仅存在一到两个较大的有色体,但叶片质体发育正常。与有色体形成相关的基因在oR.突变体中表达量升高,且or总是在富含前质体的幼嫩组织里高表达,说明OR与促进有色体的形成有关。最近有研究报道OR与真核翻译释放因子eRF1-2在细胞核里相互作用,认为OR可能是可以在质体-核之间穿梭的双定位蛋白。把oR.基因转土豆、拟南芥等,土豆块茎会积累类胡萝卜素而变黄,拟南芥花序中类胡萝卜素含量也提高,说明OR在基因工程改善作物的营养品质方面具有很好的应用前景。
     为了进一步了解OR在植物体内的作用机理,本论文中我们以拟南芥or过表达、Or敲除突变体和花椰菜野生型和or.突变体的幼苗为材料,研究了拟南芥突变体与对照组在表型、色素含量、转录组等方面的差异,和花椰菜幼苗去黄化过程中色素含量、质体发育、质体-核信号交流以及相关基因在转录水平、蛋白水平等方面的情况。综合所有的研究结果得到以下结论:
     1)OR在绿色组织中(如花椰菜子叶、拟南芥整株)也起到了提高类胡萝卜素含量的作用,但是不像在非绿色组织中作用那样明显。与花椰菜or突变体菜头中主要积累的是β-胡萝卜素不同的是,绿色组织中植物黄体素、花药黄素等含量提高了,说明OR的作用具有组织特异性。花椰菜or.突变体幼苗子叶中叶绿素含量没有明显变化,花青素含量明显升高。
     2)芯片分析的结果表明拟南芥过表达or突变体中类胡萝卜素合成途径的相关基因表达模式并没有显著变化。而定量PCR分析花椰菜野生型和or突变体去黄化幼苗子叶中相关基因的表达发现,突变体类胡萝卜素合成途径上PSY、LCYE、VDE等基因的表达有所上调,PDS的蛋白水平在两者间也不同,表明合成能力提高是突变体幼苗子叶中类胡萝卜素含量略高的原因。因为研究的组织和发育阶段不同,这与之前认为OR的作用是使积累能力增强而不是合成能力提高的结论并不矛盾。
     3)OR对去黄化过程中质体的发育没有显著影响,除了在6h突变体子叶样品中观察到类囊体比野生型的更厚、垛叠排列松散,这可能与突变体中存在胁迫环境有关。
     4)花椰菜or.突变体去黄化幼苗子叶中花药黄素和花青素含量升高、VDE表达上升、LHCB和LHCA蛋白水平降低、Fv/Fm下降、NPQ升高、CAT酶活增强、ABA含量高等都说明突变体中存在胁迫环境。芯片的结果也支持了这一点:拟南芥过表达or突变体的花苞和茎生叶中,表达共同上调的基因在一些胁迫条件下或是激素合成、信号传导、抗逆相关突变体中共同上调或下调,暗示着OR在植物调节生理活动、应对环境刺激中起作用。
     5)花椰菜or突变体中的胁迫环境触发了GUN1的高表达,但是OR并不作用于质体对核信号的四吡咯代谢途径或质体基因表达途径,而是与质体的氧化还原状态和活性氧信号途径有关。突变体菜头中谷胱甘肽总量和GSH/GSSG比值的下降支持了这一点,且突变体中相对氧化的环境有可能造成一些酶(包括类胡萝卜素合成途径的酶)活性增强。
     6)拟南芥or突变体变得对光尤其是蓝光非常敏感,且OR很有可能联合GUN1和CRY1参与到整合光信号和质体信号的途径中。
     本研究综合分析了拟南芥和花椰菜两种植物不同发育阶段、不同组织中OR在各个层面的影响,为进一步揭示OR的作用机制提供了可能的研究方向。
Orange (Or) gene was discovered in spontaneous, semidominant mutant of cauliflower which showed orange color of its curd, shoot pith, leaf base and shoot apical meristem due to the abnormal accumulation of high level of β-carotene. The homozygous mutant (or) causes no significant up-regulation of genes required for β-carotene biosynthesis or the upstream MEP pathways. It appears that the abnormal accumulation of high level of β-carotene is due to an enhanced ability of accumulation rather than increased capacity of biosynthesis. Further studies revealed that Or encodes a Cys-rich domain containing DnaJ-like protein. The or gene mutation is due to the insertion of a long terminal repeat retrotransposon in the or allele. Or knock-out mutant didn't show the high pigment accumulation pattern, indicating that the or mutant is not a loss-of-function mutation but a gain-of-function mutation. Plastid division is affected in the shoot apical meristem of or homozygous mutant, and only one or two large plastids were observed in a cell. Plastid development in leaves is normal. Genes involved in chromoplast differentiation are up-regulated in or mutant and or gene itself has a high expression in proplastid-rich or other noncolored plastid-rich tissues, suggesting that the function of OR is associated with a cellular process that promotes the formation of chromoplasts. Recently, OR was reported to interact with eRF1-2in the nucleus of Arabidopsis protoplast and was thought to be a plastid-nucleus bi-localized protein. or transgenic potato and Arabidopsis also showed increased carotenoids content in their tuber and inflorescence respectively, indicating the great potential of or gene in improving nutritional value of crops.
     To further understand the possible mechanism of OR, we generated or over-expression and Or dsRNA interference Arabidopsis mutants and investigated the phenotype, pigments content, transcriptome profile of the mutants. We also utilized de-etiolated wild-type (WT) and or mutant cauliflower seedlings as research objects. Pigment contents, plastid development, plastid-to-nucleus retrograde signaling pathways, transcription level and protein level of genes involved in the de-etiolation process were analyzed. Taken together, we preliminarily proposed the following conclusions:
     1) OR also functions in green tissues, such as Arabidopsis leaves and cauliflower cotyledons, although not that effective as in non-green tissues. In contrast to the great enhanced level of β-carotene content in mutant cauliflower curds,the increase of β-carotene content was not significant in green tissues and the contents of lutein and antheraxanthin were also increased, indicating that OR may play its role in a tissue-specific manner. There was no significant change in the content of chlorophylls, while anthocyanin content increased significantly in mutant cauliflower seedlings.
     2) Microarray analysis of the Arabidopsis mutants showed no remarkable change of the transcription pattern of the genes required for carotenoids biosynthesis. But the Q-PCR results exhibit increased expression level of PSY, LCYE, VDE in de-etiolated or mutant cauliflower cotyledons. The protein levels of PDS were also different between WT and mutant cauliflowers. These might account for the higher content of carotenoids in mutant cauliflower cotyledons. Due to the different tissues and different development stages investigated, the conclusion was not in contradiction with the previous studies.
     3) OR has no significant effect on the plastid development in de-etiolated cauliflower cotyledons, except for the slightly looser and thicker grana in6h de-etiolated mutant cauliflower cotyledons. This might related to the stress condition in the mutant.
     4) There were many cues implying that a stress condition existed in the mutant cauliflower seedlings, such as the increased content of antheraxanthin, anthocycanin and ABA, the enhanced expression of VDE, decreased level of Fv/Fm and increased level of NPQ. Microarray analysis also supported the point. The up-regulated genes in both flower buds and cauline leaves of Arabidopsis or mutants were simultaneously up-regulated or down-regulated in stress condition treated WT plants or in resistant-defective mutants, proving that OR may be involved in the regulation of plant physical activity responding to the environmental stimuli.
     5) The stress condition in homozygous cauliflower or mutant triggered the high expression of GUN1. It appears that or may function in the Redox/ROS pathways rather than tetrapyrroles metabolism pathway or the plastid gene expression pathway. The decreased level of total glutathione and the ratio of GSH/GSSG in or mutant cauliflower curd also supported the point. The more oxidized environment in mutant cauliflower seedlings may increase the activity of the enzymes required for carotenoids biosynthesis.
     6) or mutant is sensitive to light, especially the blue light. Its close co-expression relationship with CRY1and the high expression level of GUN1in or mutant imply that OR may participate in the integration network of light and plastid signals together with CRY1and GUN1.
     In this work, comprehensive analyses were carried out at various aspects in Arabidopsis and cauliflower mutants. The conclusions provide a probably orientation for the future work.
引文
Albrecht, M., and Sandmann, G. (1994). Light-stimulated carotenoid biosynthesis during transformation of maize etioplasts is regulated by increased activity of isopentenyl pyrophosphate isomerase. Plant Physiol.105,529-534.
    Albrecht, V., Ingenfeld, A., and Apel, K. (2006). Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana:The impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Mol. Biol.60,507-518.
    Alfonso, M., Perewoska, I., and Kirilovsky, D. (2000). Redox control of psbA gene expression in the cyanobacterium Synechocystis PCC 6803. involvement of the cytochrome b6/f complex. Plant Physiol.122,505-516.
    Allen, J.F. (2005). Photosynthesis:The processing of redox signals in chloroplasts. Curr. Biol.15,929-932.
    Allen, J.F., and Pfannschmidt, T. (2000). Balancing the two photosystems: Photosynthetic electron transfer governs transcription of reaction center genes in chloroplasts. Philos. Trans. R. Soc. Lond., B 355,1351-1359.
    Aluru, M.R., Bae, H., Wu, D., et al. (2001). The Arabidopsis immutans mutation affects plastid differentiation and the morphogenesis of white and green sectors in variegated plants. Plant Physiol.127,67-77.
    Ankele, E., Kindgren, P., Pesquet, E., et al. (2007). In vivo visualization of Mg-protoporphyrinIX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast. Plant Cell 19,1964-1979.
    Apel, K., and Hirt, H. (2004). Reactive oxygen species:Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol.55,373-399.
    Austin, J.R., and Staehelin, L.A. (2011). Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiol.155,1601-1611.
    Baier, M., and Dietz, K.-J. (2005). Chloroplasts as source and target of cellular redox regulation:A discussion on chloroplast redox signals in the context of plant physiology. J. Exp. Bot.56,1449-1462.
    Baier, M., Stroher, E., and Dietz, K.-J. (2004). The acceptor availability at photosystem I and ABA control nuclear expression of 2-Cys peroxiredoxin-A in Arabidopsis thaliana. Plant Cell Physiol.45,997-1006.
    Ball, L., Accotto, G.-P., Bechtold, U., et al. (2004). Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16,2448-2462.
    Bartley, G.E., and Scolnik, P. A. (1995). Plant carotenoids:Pigments for photoprotection, visual attraction, and human health. Plant Cell 7,1027-1038.
    Beck, C.F. (2005). Signaling pathways from the chloroplast to the nucleus. Planta 222, 743-756.
    Bissati, K.E., and Kirilovsky, D. (2001). Regulation of psbA and psaE expression by light quality in Synechocystis Species PCC 6803. a redox control mechanism. Plant Physiol.125,1988-2000.
    Bohne, F., and Linden, H. (2002). Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1579, 26-34.
    Bonardi, V., Pesaresi, P., Becker, T., et al. (2005). Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437,1179-1182.
    Bouvier, F., Backhaus, R.A., and Camara, B. (1998). Induction and control of chromoplast-specific carotenoid genes by oxidative stress. J. Biol. Chem.273, 30651-30659.
    Bradbeer, J.W., Atkinson, Y.E., Borner, T., et al. (1979). Cytoplasmic synthesis of plastid polypeptides may be controlled by plastid synthesized RNA. Nature 279, 816-817.
    Briggs, W.R., and Huala, E. (1999). Blue-light photoreceptors in higher plants. Annu. Rev. Cell Dev. Biol.15,33-62.
    Brutnell, T.P., Sawers, R.J.H., Mant, A., et al. (1999). BUNDLE SHEATH DEFECTIVE2, a novel protein required for post-translational regulation of the rbcL gene of Maize. Plant Cell 11,849-864.
    Chandok, M.R., Sopory, S.K., and Oelmulle, R. (2001). Cytoplasmic kinase and phosphatase activities can induce PsaF gene expression in the absence of functional plastids:evidence that phosphorylation/dephosphorylation events are involved in interorganellar crosstalk. Mol. Gen. Genet.264,819-826.
    Chappell, J. (1995). Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.46, 521-547.
    Cho, D., Shin, D., Jeon, B.W., et al. (2009). ROS-mediated ABA signaling. J. Plant Biol.52,102-113.
    Chory, J., Nagpal, P., and Peto, C.A. (1991). Phenotypic and genetic analysis of del2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3,445-459.
    Clough, S.J., and Bent, A.F. (1998). Floral dip:A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J.16, 735-743.
    Cottage, A., Mott, E.K., Kempster, J.A., et al. (2010). The Arabidopsis plastid-signalling mutant gunl(genomes uncoupledl) shows altered sensitivity to sucrose and abscisic acid and alterations in early seedling development. J. Exp. Bot.61,3773-3786.
    Crisp, P., Walkey, D.G.A., Bellman, E., et al. (1975). A mutation affecting curd colour in cauliflower (Brassica oleracea L. var. Botrytis DC). Euphytica 24,173-176.
    Cunningham, F.X. (2002). Regulation of carotenoid synthesis and accumulation in plants. Pure Appl. Chem.74,1409-1417.
    Cunningham, F.X., and Gantt, E. (1998). Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Biol.49,557-583.
    Cunningham, F.X., and Gantt, E. (2001). One ring or two? Determination of ring number in carotenoids by lycopene ε-cyclases. Proc. Natl. Acad. Sci. USA 98, 2905-2910.
    Cunningham, F.X., Pogson, B., Sun, Z., et al. (1996). Functional analysis of the β and ε lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8,1613-1626.
    Cuttriss, A.J., Chubb, A.C., Alawady, A., et al. (2007). Regulation of lutein biosynthesis and prolamellar body formation in Arabidopsis. Funct. Plant Biol. 34,663-672.
    Davletova, S., Rizhsky, L., Liang, H., et al. (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17,268-281.
    Demmig-Adams, B., and Adams, W.W. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci.1,21-26.
    Demmig-Adams, B., and Adams, W.W. (2002). Antioxidants in photosynthesis and human nutrition. Science 298,2149-2153.
    Desikan, R., A.-H.-Mackerness, S., Hancock, J.T., et al. (2001). Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol.127,159-172.
    Diretto, G., Tavazza, R., Welsch, R., et al. (2006). Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol.6,13-23.
    Diretto, G., Welsch, R., Tavazza, R., et al. (2007). Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol.7,11-18.
    Dong, H., Deng, Y., Mu, J., et al. (2007). The Arabidopsis Spontaneous Cell Death1 gene, encoding a ζ-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling. Cell Res.17,458-470.
    Ducreux, L.J.M., Morris, W.L., Hedley, P.E., et al. (2005). Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J. Exp. Bot.56,81-89.
    Durnford, D.G., and Falkowski, P.G. (1997). Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynth. Res.53,229-241.
    Escoubas, J.M., Lomas, M., LaRoche, J., et al. (1995). Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc. Natl. Acad. Sci. USA 92,10237-10241.
    Estevez, J.M., Cantero, A., Reindl, A., et al. (2001). 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J. Biol. Chem.276,22901-22909.
    Fankhauser, C., and Casal, J.J. (2004). Phenotypic characterization of a photomorphogenic mutant. Plant J.39,747-760.
    Fernandez, A.P., and Strand, A. (2008). Retrograde signaling and plant stress:Plastid signals initiate cellular stress responses. Curr. Opin. Plant Biol.11,509-513.
    Fey, V., Wagner, R., Brautigam, K., et al. (2005a). Photosynthetic redox control of nuclear gene expression. J. Exp. Bot.56,1491-1498.
    Fey, V., Wagner, R., Brautigam, K., et al. (2005b). Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. J. Biol. Chem.280,5318-5328.
    Foyer, C.H. (2005). Redox homeostasis and antioxidant signaling:A metabolic interface between stress perception and physiological responses. Plant Cell 17, 1866-1875.
    Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione:The heart of the redox hub. Plant Physiol.155,2-18.
    Fraser, P.D., Truesdale, M.R., Bird, C.R., et al. (1994). Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol.105,405-413.
    Fryer, M.J., Ball, L., Oxborough, K., et al. (2003). Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J.33,691-705.
    Galpaz, N., Wang, Q., Menda, N., et al. (2008). Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J.53,717-730.
    Galvez-Valdivieso, G., Fryer, M.J., Lawson, T., et al. (2009). The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell 21,2143-2162.
    Ghassemian, M., Lutes, J., Tepperman, J.M., et al. (2006). Integrative analysis of transcript and metabolite profiling data sets to evaluate the regulation of biochemical pathways during photomorphogenesis. Arch. Biochem. Biophys. 448,45-59.
    Giuliano, G., Bartley, G.E., and Scolnik, P.A. (1993). Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5,379-387.
    Gomez-Roldan, V., Fermas, S., Brewer, P.B., et al. (2008). Strigolactone inhibition of shoot branching. Nature 455,189-194.
    Gomez, D., Noctor, G., Knight, M.R., et al. (2004). Regulation of calcium signalling and gene expression by glutathione. J. Exp. Bot.55,1851-1859.
    Gonzalez-Perez, S., Gutierrez, J., Garcia-Garcia, F., et al. (2011). Early transcriptional defence responses in Arabidopsis cell suspension culture under high light conditions. Plant Physiol., (in press. doi:10.1104/pp.1111.177766).
    Gray, J.C., Sornarajah, R., Zabron, A.A., et al. (1995). Chloroplast control of nuclear gene expression. In:Photosynthesis:From Light to Biosphere. (P. Mathis, ed.), Kluwer Academic Press, Dordrecht, pp.543-550.
    Hadley, C.W., Miller, E.C., Schwartz, S.J., et al. (2002). Tomatoes, lycopene, and prostate cancer:Progress and promise. Exp. Biol. Med.227,869-880.
    Hess, W.R., Muller, A., Nagy, F., et al. (1994). Ribosome-deficient plastids affect transcription of light-induced nuclear genes:Genetic evidence for a plastid-derived signal. Mol. Gen. Genet.242,305-312.
    Hihara, Y., Sonoike, K., Kanehisa, M., et al. (2003). DNA microarray analysis of redox-responsive genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol.185,1719-1725.
    Hirschberg, J. (2001). Carotenoid biosynthesis in flowering plants. Curr. Opin. Plant Biol.4,210-218.
    Hoober, J.K. (2006). Chloroplast development:Whence and whither. In:The structure and function of plastids (Advances in Photosynthesis and respiration). (R.R. Wise, and J.K. Hoober, eds.), Springer, Dordrecht, pp.27-51.
    Horner, H.T., Healy, R.A., Ren, G., et al. (2007). Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. Am. J. Bot.94,12-24.
    Hornero-Mendez, D., and Britton, G. (2002). Involvement of NADPH in the cyclization reaction of carotenoid biosynthesis. FEBS Lett.515,133-136.
    Horton, P. (1999). Are grana necessary for regulation of light harvesting? Aust. J. Plant Physiol.26,659-669.
    Inoue, K., Furbee, K.J., Uratsu, S., et al. (2006). Catalytic activities and chloroplast import of carotenogenic enzymes from citrus. Physiol. Plantarum 127,561-570.
    Jahns, P., Latowski, D., and Strzalka, K. (2009). Mechanism and regulation of the violaxanthin cycle:The role of antenna proteins and membrane lipids. Biochim. Biophys.Acta 1787,3-14.
    Jiao, Y., Lau, O.S., and Deng, X.W. (2007). Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet.8,217-230.
    Johanningmeier, U. (1988). Possible control of transcript levels by chlorophyll precursors in Chlamydomonas. Eur. J. Biochem.177,417-424.
    Johanningmeier, U., and Howell, S.H. (1984). Regulation of light-harvesting chlorophyll-binding protein mRNA accumulation in Chlamydomonas reinhardi. Possible involvement of chlorophyll synthesis precursors. J. Biol. Chem.259, 13541-13549.
    Kakizaki, T., Matsumura, H., Nakayama, K., et al. (2009). Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. Plant Physiol.151,1339-1353.
    Karpinski, S., Escobar, C., Karpinska, B., et al. (1997). Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9,627-640.
    Kelley, W.L. (1998). The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci.23,222-227.
    Kelley, W.L. (1999). Molecular chaperones:How J domains turn on Hsp70s. Curr. Biol.9, R305-R308.
    Kishimoto, S., and Ohmiya, A. (2006). Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium). Physiol. Plantarum 128,436-447.
    Kittsteiner, U., Brunner, H., and Rudiger, W. (1991). The greening process in cress seedlings. Ⅱ. Complexing agents and 5-aminolevulinate inhibit accumulation of cab messenger RNA coding for the light-harvesting chloropyll a/b protein. Physiol. Plantarum 81,190-196.
    Kleine, T., Voigt, C., and Leister, D. (2009). Plastid signalling to the nucleus: Messengers still lost in the mists? Trends Genet.25,185-192.
    Koussevitzky, S., Nott, A., Mockler, T.C., et al. (2007). Signals from chloroplasts converge to regulate nuclear gene expression. Science 316,715-719.
    Krinsky, N.I., Landrum, J.T., and Bone, R.A. (2003). Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr.23,171-201.
    Kropat, J., Oster, U., Riidiger, W., et al. (1997). Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc. Natl. Acad. Sci. USA 94,14168-14172.
    Kropat, J., Oster, U., Riidiger, W., et al. (2000). Chloroplast signaling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J.24,523-531.
    Kuge, S., and Jones, N. (1994). YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J.13,655-664.
    La-Rocca, N., Rascio, N., Oster, U., et al. (2001). Amitrole treatment of etiolated barley seedlings leads to deregulation of tetrapyrrole synthesis and to reduced expression of Lhc and RbcS genes. Planta 213,101-108.
    Laloia, C., Apela, K., and Danona, A. (2004). Reactive oxygen signalling:The latest news. Curr. Opin. Plant Biol.7,323-328.
    Landruma, J.T., and Bone, R.A. (2001). Lutein, zeaxanthin, and the macular pigment. Arch. Biochem. Biophys.385,28-40.
    Larkin, R.M., Alonso, J.M., Ecker, J.R., et al. (2003). GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299,902-906.
    Lee, J., He, K., Stolc, V., et al. (2007a). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19,731-749.
    Lee, K.P., Kim, C., Landgraf, F., et al. (2007b). EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104,10270-10275.
    Lee, P., and Schmidt-Dannert, C. (2002). Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl. Microbiol. Biotechnol.60,1-11.
    Li, L., Lu, S., Cosman, K.M., et al. (2006). β-Carotene accumulation induced by the cauliflower Or gene is not due to an increased capacity of biosynthesis. Phytochemistry 67,1177-1184.
    Li, L., Paolillo, D.J., Parthasarathy, M.V., et al. (2001). A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower(Brassica oleracea var. botrytis). Plant J.26,59-67.
    Li, L., and van Eck, J. (2007). Metabolic engineering of carotenoid accumulation by creating a metabolic sink. Transgenic Res.16,581-585.
    Li, Z., Wakao, S., Fischer, B.B., et al. (2009). Sensing and responding to excess light. Annu. Rev. Plant Biol.60,239-260.
    Lieberman, M., Segev, O., Gilboa, N., et al. (2004). The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor. Appl. Genet.108, 1574-1581.
    Lin, Z.-F., Lin, G.-Z., and Peng, C.-L. (2009). Enhancement of susceptivity to photoinhibition and photooxidation in rice chlorophyll b-less mutants. Photosynthetica 47,46-54.
    Lindahl, M., and Kieselbach, T. (2009). Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria. J. Proteomics 72,416-438.
    Lindgren, L.O., Stalberg, K.G., and Hoglund, A.-S. (2003). Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiol.132,779-785.
    Liu, Y., Roof, S., Ye, Z., et al. (2004). Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc. Natl. Acad. Sci. USA 101,9897-9902.
    Lopez, A.B., van Eck, J., Conlin, B.J., et al. (2008). Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J. Exp. Bot.59,213-223.
    Lu, S., van Eck, J., Zhou, X., et al. (2006). The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18,3594-3605.
    Lukens, J.H., Mathews, D.E., and Durbin, R.D. (1987). Effect of tagetitoxin on the levels of ribulose 1,5-bisphosphate carboxylase, ribosomes, and RNA in plastids of wheat leaves. Plant Physiol.84,808-813.
    Muller, P., Li, X.-P., and Niyogi, K.K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiol.125,1558-1566.
    Mann, V., Harker, M., Pecker, I., et al. (2000). Metabolic engineering of astaxanthin production in tobacco flowers. Nat. Biotechnol.18,888-892.
    Maxwell, D.P., Laudenbach, D.E., and Huner, N.P.A. (1995). Redox regulation of light-harvesting complex Ⅱ and cab mRNA abundance in Dunaliella salina. Plant Physiol.109,787-795.
    Mazzella, M.A., Cerdan, P.D., Staneloni, R.J., et al. (2001). Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development 128,2291-2299.
    McCormac, A.C., and Terry, M.J. (2004). The nuclear genes Lhcb and HEMA1 are differentially sensitive to plastid signals and suggest distinct roles for the GUN1 and GUN5 plastid-signalling pathways during de-etiolation. Plant J.40,672-685.
    McNellis, T.W., and Deng, X.-W. (1995). Light control of seedling morphogenetic pattern. Plant Cell 7,1749-1761.
    Meinhard, M., and Grill, E. (2001). Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett.508,443-446.
    Meinhard, M., Rodriguez, P.L., and Grill, E. (2002). The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta 214,775-782.
    Meskauskiene, R., Nater, M., Goslings, D., et al. (2001). FLU:A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98, 12826-12831.
    Miernyk, J.A. (2001). The J-domain proteins of Arabidopsis thaliana:An unexpectedly large and diverse family of chaperones. Cell Stress Chaperones 6, 209-218.
    Miller, G., Shulaev, V., and Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiol. Plantarum 133,481-489.
    Mochizuki, N., Brusslan, J.A., Larkin, R., et al. (2001). Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl. Acad. Sci. USA 98, 2053-2058.
    Mochizuki, N., Tanaka, R., Tanaka, A., et al. (2008). The steady-state level of Mg-protoporphyrin Ⅸ is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 105,15184-15189.
    Moon, J., Zhu, L., Shen, H., et al. (2008). PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proc. Natl. Acad. Sci. USA 105,9433-9438.
    Morris, W.L., Ducreux, L.J.M., Hedden, P., el al. (2006). Overexpression of a bacterial 1-deoxy-D-xylulose 5-phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network:Implications for the control of the tuber life cycle. J. Exp. Bot.57,3007-3018.
    Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113,935-944.
    Moulin, M., McCormac, A.C., Terry, M.J., et al. (2008). Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc. Natl. Acad. Sci. USA 105, 15178-15183.
    Mullineaux, P.M., Karpinski, S., and Baker, N.R. (2006). Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol.141, 346-350.
    Mustilli, A.C., Fenzi, F., Ciliento, R., et al. (1999). Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11,145-157.
    Muthuramalingam, M., Seidel, T., Laxa, M., et al. (2009). Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast. Mol. Plant 2,1273-1288.
    Neta-Sharir, I., Isaacson, T., Lurie, S., et al. (2005). Dual role for tomato heat shock protein 21:Protecting photosystem Ⅱ from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17,1829-1838.
    Niyogi, K.K., Bjorkman, O., and Grossman, A.R. (1997). The roles of specific xanthophylls in□photoprotection. Proc. Natl. Acad. Sci. USA 94,14162-14167.
    Nott, A., Jung, H.S., Koussevitzky, S., et al (2006). Plastid-to-nucleus retrograde signaling. Annu. Rev. Plant Biol.57,739-759.
    Oelmuller, R., Levitan, I., Bergfeld, R., et al. (1986). Expression of nuclear genes as affected by treatments acting on the plastids. Planta 168,482-492.
    op den Camp, R.G.L., Przybyla, D., Ochsenbein, C., et al. (2003). Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15,2320-2332.
    Oster, U., Brunner, H., and Rudige, W. (1996). The greening process in cress seedlings. V. Possible interference of chlorophyll precursors, accumulated after thujaplicin treatment, with light regulated expression of Lhc genes. J. Photochem. Photobiol.B 36,255-261.
    Oswald, O., Martin, T., Dominy, P.J., et al. (2001). Plastid redox state and sugars: Interactive regulators of nuclear-encoded photosynthetic gene expression. Proc. Natl. Acad. Sci. USA 98,2047-2052.
    Paine, J.A., Shipton, C.A., Chaggar, S., et al. (2005). Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol.23, 482-487.
    Paolillo, D.J., Garvin, D.F., and Parthasarathy, M.V. (2004). The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. botrytis). Protoplasma 224, 245-253.
    Pecker, I., Gabbay, R., Cunningham, F.X., et al. (1996). Cloning and characterization of the cDNA for lycopene p-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol. Biol.30,807-819.
    Pei, Z.-M., Murata, Y., Benning, G., et al. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731-734.
    Pesaresi, P., Hertle, A., Pribil, M., et al. (2009). Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation. Plant Cell 21, 2402-2423.
    Petracek, M.E., Dickey, L.F., Nguyen, T.T., et al. (1998). Ferredoxin-1 mRNA is destabilized by changes in photosynthetic electron transport. Proc. Natl. Acad. Sci. USA 95,9009-9013.
    Pfannschmidt, T. (2003). Chloroplast redox signals:How photosynthesis controls its own genes. Trends Plant Sci.8,33-41.
    Pfannschmidta, T., Allenb, J.F., and Oelmuller, R. (2001). Principles of redox control in photosynthesis gene expression. Physiol. Plantarum 112,1-9.
    Piippo, M., Allahverdiyeva, Y., Paakkarinen, V., et al. (2006). Chloroplast-mediated regulation of nuclear genes in Arabidopsis thaliana in the absence of light stress. Physiol. Genomics 25,142-152.
    Pitzschke, A., Forzani, C., and Hirt, H. (2006). Reactive oxygen species signaling in plants. Antioxid. Redox Signal.8,1757-1764.
    Pursiheimo, S., Mulo, P., Rintamki, E., et al. (2001). Coregulation of light-harvesting complex Ⅱ phosphorylation and lhcb mRNA accumulation in winter rye. Plant J. 26,317-327.
    Qian, D., Zhou, D., Ju, R., et al. (1996). Protein farnesyltransferase in plants: Molecular characterization and involvement in cell cycle control. Plant Cell 8, 2381-2394.
    Romer, S., Fraser, P.D., Kiano, J.W., et al. (2000). Elevation of the provitamin A content of transgenic tomato plants. Nat. Biotechnol.18,666-669.
    Romer, S., Lubeck, J., Kauder, F., et al. (2002). Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab. Eng.4,263-272.
    Rapp, J.C., and Mullet, J.E. (1991). Chloroplast transcription is required to express the nuclear genes rbcS and cab plastid DNA copy number is regulated independently. Plant Mol. Biol.17,813-823.
    Razem, F.A., and Hill, R.D. (2007). Hydrogen peroxide affects abscisic acid binding to ABAP1 in barley aleurones. Biochem. Cell Biol.85,628-637.
    Reed, J.W., Nagatani, A., Elich, T.D., et al. (1994). Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol.104,1139-1149.
    Rock, C.D., and Zeevaart, J.A. (1991). The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc. Natl. Acad. Sci. USA 88, 7496-7499.
    Rodriguez-Villalon, A., Gas, E., and Rodriguez-Concepcion, M. (2009). Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J.60,424-435.
    Ronen, G., Carmel-Goren, L., Zamir, D., et al. (2000). An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. USA 97, 11102-11107.
    Ronen, G., Cohen, M., Zamir, D., et al. (1999). Regulation of carotenoid biosynthesis during tomato fruit development:Expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J.17,341-351.
    Rossel, J.B., Wilson, I.W., and Pogson, B.J. (2002). Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol.130, 1109-1120.
    Ruckle, M.E., DeMarco, S.M., and Larkin, R.M. (2007). Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis. Plant Cell 19,3944-3960.
    Ruppel, N.J., and Hangarter, R.P. (2007). Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana. BMC Plant Biol.7,7-37.
    Savenstrand, H., Olofsson, M., Samuelsson, M., et al. (2004). Induction of early light-inducible protein gene expression in Pisum sativum after exposure to low levels of UV-B irradiation and other environmental stresses. Plant Cell Rep.22, 532-536.
    Saha, D., Prasad, A.M., and Srinivasan, R. (2007). Pentatricopeptide repeat proteins and their emerging roles in plants. Plant Physiol. Biochem.45,521-534.
    Schurmann, P., and Jacquot, J.-P. (2000). Plant thioredoxin systems revisited. Annu. Rev. Plant Biol.51,371-400.
    Scolnik, P.A., Hinton, P., Greenblatt, I.M., et al. (1987). Somatic instability of carotenoid biosynthesis in the tomato ghost mutant and its effect on plastid development. Planta 171,11-18.
    Seo, M., and Koshiba, T. (2002). Complex regulation of ABA biosynthesis in plants. Trends Plant Sci.7,41-48.
    Shaikhali, J., Heiber, I., Seidel, T., et al. (2008). The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes. BMC Plant Biol.8,48-61.
    Shao, N., Vallon, O., Dent, R., et al. (2006). Defects in the cytochrome b6/f complex prevent light-induced expression of nuclear genes involved in chlorophyll biosynthesis. Plant Physiol.141,1128-1137.
    Shen, Y.Y., Wang, X.F., Wu, F.Q., et al. (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature 433,823-826.
    Shewmaker, C.K., Sheehy, J.A., Daley, M., et al. (1999). Seed-specific overexpression of phytoene synthase:Increase in carotenoids and other metabolic effects. Plant J.20,401-412.
    Shimada, H., Mochizuki, M., Ogura, K., et al. (2007). Arabidopsis cotyledon-specific chloroplast biogenesis factor CYO1 is a protein disulfide isomerase. Plant Cell 19,3157-3169.
    Slesak, I., Libik, M., Karpinska, B., et al. (2007). The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim. Pol.54,39-50.
    Steinbrenner, J., and Linden, H. (2003). Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis:Regulation by photosynthetic redox control. Plant Mol. Biol.52,343-356.
    Stephenson, P.G., Fankhauser, C., and Terry, M.J. (2009). PIF3 is a repressor of chloroplast development. Proc. Natl. Acad. Sci. USA 106,7654-7659.
    Steyn, W.J., Wand, S.J.E., Holcroft, D.M., et al. (2002). Anthocyanins in vegetative tissues:A proposed unified function in photoprotection. New Phytol.155, 349-361.
    Strand, A., Asami, T., Alonso, J., et al. (2003). Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421,79-83.
    Strand, A., Kleine, T., and Chory, J. (2007). Plastid-to-nucleus signaling. In:The Structure and Function of Plastids. (R.R. Wise, and J.K. Hoober, eds.), Springer, pp.183-197.
    Sullivan, J.A., and Gray, J.C. (1999). Plastid translation is required for the expression of nuclear photosynthesis genes in the dark and in roots of the pea lip1 mutant. Plant Cell 11,901-910.
    Surpin, M., Larkin, R.M., and Chory, J. (2002). Signal transduction between the chloroplast and the nucleus. Plant Cell 14, S327-S338.
    Susek, R.E., Ausubel, F.M., and Chory, J. (1993). Signal-transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene-expression from chloroplast development. Cell 74,787-799.
    Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., et al. (2008). Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321,952-956.
    Talbott, L.D., Shmayevich, I.J., Chung, Y., et al. (2003). Blue light and phytochrome-mediated stomatal opening in the npql and photlphot2 mutants of Arabidopsis. Plant Physiol.133,1522-1529.
    Terry, M.J., and Kendrick, R.E. (1999). Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol.119,143-152.
    Terry, M.J., Linley, P.J., and Kohchi, T. (2002). Making light of it:The role of plant haem oxygenases in phytochrome chromophore synthesis. Biochem. Soc. Trans. 30,604-609.
    Toledo-Ortiz, G., Huq, E., and Rodriguez-Concepcion, M. (2010). Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc. Natl. Acad. Sci. USA 107,11626-11631.
    Tullberg, A., Alexciev, K., Pfannschmidt, T., et al. (2000). Photosynthetic electron flow regulates transcription of the psaB gene in Pea (Pisum sativum L.) chloroplasts through the redox state of the plastoquinone pool. Plant Cell Physiol. 41,1045-1054.
    Tyagi, A.K., and Gaur, T. (2003). Light regulation of nuclear photosynthetic genes in higher plants. Crit. Rev. Plant Sci.22,417-452.
    von Gromoff, E.D., Alawady, A., Meinecke, L., et al. (2008). Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. Plant Cell 20,552-567.
    von Lintig, J., and Wyss, A. (2001). Molecular analysis of vitamin A formation: Cloning and characterization of β-carotene 15,15'-dioxygenase. Arch. Biochem. Biophys.385,47-52.
    von Lintig, J., Welsch, R., Bonk, M., et al. (1997). Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J.12,625-634.
    Wachter, A., Wolf, S., Steininger, H., et al. (2005). Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation:Implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J.41, 15-30.
    Wagner, D., Przybyla, D., op-den-Camp, R., et al. (2004). The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306, 1183-1185.
    Wang, P.-C., Du, Y.-Y., An, G.-Y., et al. (2006). Analysis of global expression profiles of Arabidopsis genes under abscisic acid and H2O2 applications. J. Integr. Plant Biol.48,62-74.
    Weigel, D., and Glazebrook, J. (2006). Transformation of Agrobacterium Using Electroporation. Cold Spring Harb Protoc, (doi:10.1101/pdb.prot4665).
    Welsch, R., Beyer, P., Hugueney, P., et al. (2000). Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta 211,846-854.
    Welsch, R., Wiist, F., Bar, C., et al. (2008). A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol.147,367-380.
    Wilhelm, C., Kramer, P., and Wild, A. (1985). Effect of different light qualities on the ultrastructure, thylakoid membrane composition and assimilation metabolism of Chlorella fusca. Physiol. Plantarum 64,359-364.
    Woitsch, S., and Romer, S. (2003). Expression of xanthophyll biosynthetic genes during light-dependent chloroplast differentiation. Plant Physiol.132, 1508-1517.
    Xu, P.-L., Guo, Y.-K., Bai, J.-G, et al. (2008). Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol. Plantarum 132,467-478.
    Yabuta, Y., Maruta, T., Yoshimura, K., et al. (2004). Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. Plant Cell Physiol.45,1586-1594.
    Yamamoto, H.Y. (1985). Xanthophyll cycles. Methods Enzymol.110,303-312.
    Yang, D.-H., Andersson, B., Aro, E.-M., et al. (2001). The redox state of the plastoquinone pool controls the level of the light-harvesting chlorophyll a/b binding protein complex Ⅱ (LHC Ⅱ) during photoacclimation. Photosynth. Res. 68,163-174.
    Ye, X., Al-Babili, S., Kloti, A., et al. (2000). Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287,303-305.
    Ye, Z.-W., Jiang, J.-G., and Wu, G.-H. (2008). Biosynthesis and regulation of carotenoids in Dunaliella:Progresses and prospects. Biotechnol. Adv.26, 352-360.
    Yoshida, R., Sato, T., Kanno, A., et al. (1998). Streptomycin mimics the cool temperature response in rice plants. J. Exp. Bot.49,221-227.
    Zhang, A., Jiang, M., Zhang, J., et al. (2007). Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol.175,36-50.
    Zhang, A., Jiang, M., Zhang, J., et al. (2006). Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol.141, 475-487.
    Zhou, R., Kroczynska, B., Hayman, G.T., et al (1995). AtJ2, an Arabidopsis homolog of Escherichia coli DnaJ. Plant Physiol.108,821-822.
    Zhou, X., Sun, T.-H., Wang, N., et al. (2011). The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1. New Phytol.190,89-100.
    Zhu, C., Bai, C., Sanahuja, G., et al. (2010). The regulation of carotenoid pigmentation in flowers. Arch. Biochem. Biophys.504,132-141.
    Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol.53,247-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700