粉碎度对辣椒中辣椒红色素稳定性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辣椒红色素是一种天然色素,色泽鲜艳、着色力强、安全无毒,而且具有营养、保健的功效,因此有着广泛的应用前景。天然色素的稳定性一般较差而使它们的应用受到了限制,但值得注意的是,其在细胞内的稳定性往往要好于提取之后。因此,本研究比较了不同粉碎粒度的红辣椒粉中辣椒红色素的光稳定性和热稳定性,并进一步探讨植物细胞的完整性对其内的色素的保护机制。
     研究结果表明:提高粉碎的细度一方面可以增加色素的提取率,另一方面粉碎度对辣椒粉中辣椒红色素的稳定性也有较大影响。不同粉碎度的辣椒粉中辣椒红色素稳定性随光照强度的增加而都有所降低,在4000lux光照强度的照射下,当辣椒粉的粉碎度在100目和150目时,光照6d后,辣椒粉中的辣椒红色素保存率分别为39.9%和20.8%;当粉碎度达到200目以上时,辣椒粉中辣椒红色素的稳定性迅速下降,照射6d后保存率为0;而正己烷溶解的辣椒红色素在相同条件下的保存率为4.5%。在热稳定性方面,较低温度下(20℃-40℃)辣椒红色素稳定性较好,储存6d后保存率仍保持在80%以上;当温度为100℃时,不同粉碎度的辣椒粉中的辣椒红色素的稳定性均迅速下降,10h后保存率降至60%。以上结果说明当辣椒细胞的完整结构受到破坏时,辣椒红色素逐渐失去了细胞的保护作用,稳定性变得较差。因此,综合考虑提取率和辣椒红色素在细胞内的稳定性,粉碎辣椒用以提取辣椒红色素时,粉碎度以100目左右为宜。
     通过用显微镜对新鲜辣椒细胞进行观察,发现有辣椒红色素存在于辣椒细胞质的有色体中。为了进一步确定辣椒红色素在细胞内的存在状态,通过测定收集的有色体可知,其蛋白质含量为5.73%±1.35%,其中可溶性蛋白质含量为2.58%±0.12%,说明在有色体中辣椒红色素可能是以辣椒红-蛋白质复合物形式存在的。
Paprika red is a kind of natural red pigment, which is bright in color, high color value, better tinting strength, non-toxic, healthy and therefore has broad application prospects. The stability of natural pigments are generally poor and limit their application. However, it is worthy of attention that the stability of natural pigments within the cell is better than been extracted. In this paper, the light and thermal stabilities of paprika red in paprika powder of different particle size were compared, and the integrity and protection mechanisms of plant cells were further explored.
     The results showed that the grinding degree can increase the rate of extraction of the pigment, but on the other hand, grinding degree has a greater impact on the stability of the paprika red in paprika. With the increase of light intensity, the stability of paprika red in paprika powder of different particle size decreased. With the exposure of4000lux light intensity, when the grinding degree was100mesh and150mesh, paprika red preservation rate was reduced to39.9%and20.8%after light irradiated for6d; when the grinding degree was more than200mesh, the stability of paprika red in paprika powder declined rapidly, and after6d the preservation rate was0%; the preservation rate of paprika red dissolved in n-hexane was4.5%. As for thermal stability, paprika red was stable in low temperature (20°C-40°C), the preservation rate was still remained above80%after6d, but when the temperature reached100°C, the stability of paprika red in paprika powder of different particle size rapid declined, and after10h the preservation rate dropped to60%. These results suggest that when the integrated structure of paprika cell was completely destroyed, cell lost its protective effect on paprika red. Therefore, considering the extraction rate and stability of paprika red in paprika cell, the optimal grinding degree was about100mesh.
     Fresh paprika cells were observed by microscope and found that paprika red was in the chromoplast of paprika cell cytoplasm. In order to further determined the states of paprika red in paprika cell, the chromoplast of cell was collected and the protein content was assayed to be5.73%+1.35%and the soluble protein content was2.58%+0.12%. It indicated that paprika red in chromoplast may be existed as capsanthin-protein complexes.
引文
Bruno AK, Wetzel CM. The early light-inducible protein (ELIP) gene is expressed during the chloroplast-to-chromoplast transition in ripening tomato fruit. Journal of Experimental Botany, 2004,55(408):2541-2548.
    Himyama O, Nakamura K, Hamada S. et al. Singlet oxygen quenching ability of naturally occurring carotenoids [J]. Lipids,1994,29:149-150.
    Wollman F A, Minai L, Nechushtai R. The biogenesis and assembly of photosynthetic proteins in thylakoid membranes. Biochim Biophys Acta,1999,1441(1):21-81.
    陈沽,陈庶米.超临界C02萃取辣椒红色素的研究初探[J].农业工程学报,1993,9(2):89-94.
    戴雄泽,刘志敏.初论我国辣椒产业的现状及发展趋势[J].辣椒杂志,2005,4:1-6.
    高福成.现代食品工业高新技术[M].北京:中国轻工业出版社,1997:21-56.
    郭学民,高忠明,等.非叶绿体质体概述[J].生物学教学,2010,35(9):6-10.
    胡子峰.凯氏定氮仪原理和校准的方法[J].技术交流,2011,3:49-50.
    黄宏伟.辣椒红色素的提取工艺[J].考试周刊,2010,12:189-190.
    贾中建.乳及乳制品中蛋白质测定应注意的事项探讨[J].中国卫生检验杂志,2006,16(11):1393.
    姜菲,姜爱丽,等.辣椒红色素提取工艺研究与进展[J].热点论坛,2007,7(1):4-8.
    金青哲,齐策,等.辣椒红色素的分离及光稳定性研究[J].食品与生物技术学报,2007,26(2):53-57.
    李贝贝,郭进魁,等.一种分析叶绿体类囊体膜色素蛋白复合物的蓝绿温和胶电泳系统[J].生物化学与生物物理进展,2003,30(4):639-643.
    李玫,尚明华,等.影响凯氏定氮准确性的因素[J].中国饲料,2003,9:25.
    李烨,张立杰,等.新疆红辣椒产业化发展探讨[J].农业科技通讯,2001,12:14-15.
    李玉红.红辣椒中红色素的提取与性质研究[J].天津化工,2001,6:21-22.
    林智.食品中蛋白质含量的测定[J].当代化工,2010,39(2):224-226.
    刘箭.生物化学实验教程[M].北京:科学出版社,2004:9-13.
    刘玉兰,李珊,等.食品中蛋白质含量测定方法的改进和应用[J].青岛医学院学报,1999,35(2):123-124.
    陆晓滨,李敬龙,等.提高凯氏定氮法蛋白质测定速度的研究[J].中国调味品,2003,1:37-39.
    路萍,于同泉,等.蛋白质测定方法评价[J].北京农学院学报,2006,21(2):65-69
    牛古丹,李东颖,等.辣椒红色素的提取及稳定性的研究[J].化学工程师,2006,5:60-61.
    汤大卫.微波提取[J].医药工程设计杂志,2003,(5):5-7.
    陶莎,杨建华,等.辣椒红色素的研究进展[J].食品工业科技,2008,8:307-309
    王芳芳.辣椒红色素分离纯化技术的研究[D].新疆:石河子大学,2009.
    王玉琪,陈舞勋,等.超临界萃取法制备辣椒红色素[J]化学工程,2008,36(8):9-12.
    魏凤环,田景振,等.超微粉碎技术[J].山东中医杂志,1999,18(12):559-560
    文树基.基础生物化学实验指导[M].西安:陕西科学技术出版社,1994:39-45.
    吴明光,钟灿兴.胡萝卜色素的分离和稳定性研究[J].食品工业,1995,3:8-11.
    西北农业大学.基础生物化学实验指导[M].西安:陕西科学技术出版社,1986,63-71.
    谢瑞红,王顺喜,等.超微粉碎技术的应用现状与发展趋势[J].中国粉体技术,2009,15(3):64-67
    徐秋兰,庞杰.辣椒化学成分的开发利用[J].中国辣椒,2003,(1):32-35.
    杨红梅,陈同欢,等.辣椒红色素的提取方法[J].中国高新技术企业,2010,33:35-36.
    姚敦义,工静之.质体[J].生物学通报,1990,4:3-5.
    余冰宾.基础生物化学实验指导[M].北京:清华大学出版社,2004,131-141.
    袁超,李鑫,等.辣椒红色素的超声波提取及稳定性研究[J].河南农业大学学报,2008,1:100-103.
    翟硕莉.辣椒红色素提取工艺研究[J].农业科技与装备,2011,7:30-31
    张炳文,郝征红.超微粉碎机在可食与药用动物资源开发中的应用[J].食品工业科技,2004,3:138-140
    张洁,于颖,等.超微粉碎技术在食品工业中的应用[J].农业科学研究,2010,31(1):51-54.
    张学锋,颜正财,等.辣椒红色素稳定性研究[J].中国酿造,2010,2:80-82.
    张志强,江英,等.辣椒红色素的稳定性及在食品中的应用研究[J].现代食品科技,2006,11(2):83-85.
    郑裕国,王远山,等.抗氧化剂的生产及应用[M].北京:化学工业出版社,2004.
    钟自力.植物的器官为什么呈现多种颜色[J].中学生物学,2002,6:4-5.
    周高宁,邹丽丽,等.超临界二氧化碳流体及其主要应用[J].安徽化工,2006,2:16-18
    周国海,于华忠,等.朝天椒中辣椒红色素稳定性的研究[J].食品科技,2007,2:170-174.
    周旭章,魏开华,等.辣椒红色素精制工艺的研究[J].林产化工通讯,1996,(6):9-11.
    朱治军,纪重光.现代分析仪器与测试方法[M].西安:西北大学出版社,1994:143-145
    邹学校主编.中国辣椒[M],北京:中国农业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700