改性吸附剂海芥菜对重金属离子Cu~(2+),Ni~(2+)的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用大连特产海芥菜为研究对象,对其进行改性,研究其对重金属离子镍和铜的吸附能力,论文主要通过震荡实验研究改性吸附剂对重金属离子镍和铜吸附参数,并通过吸附数学模型模拟其吸附行为。主要用到吸附等温模型有Langmuir,Freundlich,Temkin,另外动力学模型有一级反应动力学,二级反应动力学和扩散方程,并对其机理进行探讨研究。首次将生物吸附剂与膜反应器联用,为其工业应用提供有效数据。
     在震荡试验中,选用了低浓度下的吸附情况进行考察,通过主要参数的变化(初始浓度5-50 mg/L,吸附剂投加量0.1-0.5g,pH3-7,吸附时间0-120min),知道吸附量随着浓度的升高而升高,随着吸附剂投加量的增加而降低,镍和铜的吸附最佳pH值分别为4.7和4.0,吸附时间均约为100min。在吸附平衡时,镍和铜的最大吸附量分别为24.71mg/g和38.82mg/g。等温吸附模型中,镍离子的吸附更加接近Langmuir,而铜离子的吸附则更加接近Temkin方程。动力学实验则二者同样满足二级动力学方程。
     机理探讨中主要探讨海藻酸盐与CaCl_2的反应关系,水溶液中重金属离子的存在状态,以及吸附剂的傅立叶红外光谱解析。在吸附剂的处理过程中,Ca~(2+)的引入使得原本链状的海藻酸盐形成了网状结构;重金属溶液中的离子状态与溶液中的pH值有关,在对应最优pH值下,两种离子均以[M~(2+)]态存在,而不是[M(OH)~+]形式,也即吸附过程中没有发生沉淀行为;红外谱图显示,在处理和吸附过程中,主要是吸附剂的-OH和对应的C=O键发生移动较多,也就是说改性和吸附过程主要与—COOH有关,在吸附的过程中不只有离子交换,还有络合吸附。
     在膜反应器实验中,主要研究了铜离子溶液与反应器的关系,膜在反应器中的作用,和连续反应实验的研究。结果表明,吸附剂的吸附对浓度越大的吸附量越大,初始浓度为45mg/L时,可达到24mg/g左右,对浓度低的则去除率较高,初始浓度为10mg/L时,最高可达80%以上;膜在反应器中阻隔大分子作用明显,初始浓度为10mg/L时,透膜浓度和直取浓度最大可差1mg/L左右;连续实验简单的研究了连续进水的情况,可以为保持连续进水而固定时间更换吸附剂的连续反应器实验提供依据。根据实验结果,可以采用多级串联膜反应器来达到重金属离子回收的目的。
Biosorption of nickel and copper ions from aqueous solution onto treated alga biomass Undaria pinnatifida which was artificially cultured in Dalian has been studied and the Langmuir,Freundlich and Temkine equilibrium isotherms,pseudo-first-order,pseudo-second -order and intra-particle diffusion kinetic model were determined respectively.Mechanism and membrane reactor experiment are brought at the second and final part.
     Within the test range(initial concentration 5-50 mg/L,biosorption doze 0.1-0.5 g,pH 3-7), biosorption performance for metal ions showed an increase in specific metal uptake capacity with an increasing in initial ions concentration and decreasing in biosorbent doze.The optimized condition of pH value for nickel and copper is 4.7 and 4.0 respectively,while contact time is about 100 min.At equilibrium,the maximum total uptake by Undaria pinnatifida was 24.71 mg/g for nickel and 38.82 mg/g for copper.The results for nickel and copper fit well to the Langmuir and the Temkin isotherm respectively.Pseudo-second-order model described well the sorption kinetic of nickel and copper ions in comparison to pseudo-first-order and intra-particle diffusion kinetic model.
     Then the mechanism about the adsorbent and the ions has been discussed.It is deemed to the adsorbent was changed from a catenarian to a retiary structure after treated.It is propitious to adsorb the metal ions.Ions of the solution can be considered to be[M~(2+)]than[M(OH)~+]at the optimized pH value.FTIR results indicate that the CaCl_2 treated biosorbent impacted the -OH and C=O stretching.It means that adsorption is closely contact with the -COOH.It also indicate that the ion on the biomass surface may not only due to the ion exchange but also due to the chelation interaction during the adsorption process.
     The final part aims at developing a simple and practical methods to study the effect of a submerged membrane adsorption hybrid system.Adsorption kinetic study was first carried out with treated biomass for removing copper ions from a synthetic wastewater.A series of short-term experiments were conducted with preadsorption at different operating conditions such as biosorption time and continuous.Biosorption performance for the membrane reactor show a higher capacity to the higher initial concentration.It has a ion removal of 50%at the intial concentration 45mg/L and 80%at the intial concentration 10mg/L.It is suggested that a multipolar reacter can be used for reclaiming the metal ions.
引文
[1]韩吉,薛国东.水污染及水污染的生物治理.吉林水利,2008,1(308):44-46
    [2]Wageman R,Baricl J.Speciation and rate of copper from leake water with implications to toxicity.WaterRes,1979,13:515-523.
    [3]刘清,王之健,汤鸿霄.铜的形态分布与Daphnia magna急性毒性关系.环境化学,1998,17(1):14-18.
    [4]Kaplan D,Stadler T.Algal biotechnology.London:Elsevier Applied Science,1988.179.
    [5]阎海,潘纲,霍润兰.铜、锌和锰抑制月形藻生长的毒性效应.中国环境科学,2001,21(4):365-368.
    [6]谷巍,施国新,韩承辉.汞、镉污染对轮叶狐尾藻的毒害.中国环境科学,2001,21(4):371-375.
    [7]戴家银,郑微云,王淑红.铜和锌离子对真绸幼鱼组织酶活性的影响.环境科学,1998,9(5):60-62.
    [8]Weir P.A.Hine C.H.Effects of various metals on behavior of conditioned goldfish.Environmental Health,1970(2):45-51.
    [9]Skerfving S,Haansson K,Lindsten J.Chromosome breakage in humans exposed to methyl mercury through fish consumption.Environmental Health,1970(21):133-139.
    [10]Mcintosh A.W,Kevern N.R.Toxicity of copper to zooplankton.Environmental Quality,1974(3):166-170.
    [11]Maxfield D,Rodriguez J.M.Buettner M.et al.Heavy metal pollution in the sediments of the Coeurd,Alene river delta.Environment Pollution,1974(7):1-6.
    [12]杨志明,薛志钢.浅议“清洁生产”思维在环境影响评价中的应用.环境保护,1996,11:28-31.
    [13]陆柱.绿色化学及其技术在水处理的应用.精细化工,2000,17(9):515-518.
    [14]孟祥和,胡国飞.重金属废水处理北京化学工业出版社,2000.
    [15]刘剑彤,肖邦定,陈珠金.曝气混凝一体法去除碱性废水中砷的研究.中国环境科学,1997,17(2):184-187.
    [16]毛银海,郭泽林.氧化钙二段中和沉淀法处理铜矿酸性废水的应用与改造.给水排水,2003,29(5):46-50.
    [17]陈仕安.铀水治厂废水治理的主要技术、措施与展望.铀矿冶,1998,17(4):263-266.
    [18]Tien-Yunjchu.Active versus passive water quality monitoring programs for wasterwater discharge.WPCF,1978,50(9):2234-2236.
    [19]刘素萍,罗彬.石灰法处理重金属废水研究成果工程设计与研究,1999,(2):55-58.
    [20]吴国平.铜冶炼厂污水的环保治理.剖析石灰石-石灰两段中和法的技术特点.南昌有色冶金设计研究院/有色冶金设计与研究,1999,20(3):25-29.
    [21]刘森,董德明.光催化法处理电镀含铬废水的研究.吉林大学学报(自然科学版),1998,33(4):98-102.
    [22]刘俊良,杨全利,刘明德.含铬废水处理技术综述.河北科技图苑,1997,37(3):13-15.
    [23]牛晓霞.含铬废水的处理方法综述.洛阳大学学报,1999,14(4):39-43.
    [24]罗胜联.有色重金属废水处理与循环利用研究.中南大学.博士学位论文.2006.
    [25]张剑波,冯金敏.离子吸附技术在废水处理中的应用和发展.环境污染治理技术与设备,2000,1(1):46-50
    [26]陈文森,陈炳稳.两性离子交换树脂对含锌废水的处理.化工时刊.2004,18(1):47-48.
    [27]罗道成,易平贵,陈安国等.腐植酸树脂对电镀废水中重金属离子的吸附.材料保护,2002,35(4):54-56.
    [28]Boyd G.E.Adamson A.W.Myers Jr.L.S.The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites Ⅱ Kinetics.Journal of the American Chemistry Society,1947,69(10):2836-2848.
    [29]董晓雯,肖振业,梁玻琪.电化学法综合利用废杜镁丝.环境科学,1998,19(1):58-61.
    [30]Ray H.C,Karl Oberholser,et al.Nature of bonding between metallic and algal cell walls.Environ Sci.Technol,1981,15:1212-1217.
    [31]吴涓,李清彪等.重金属生物吸附的研究进展.离子交换与吸附,1998,2:180-187.
    [32]Jesus R,Lujan,Dennll,et al..Metal Ion Binding by Algae and Higher Plant.Solvent Extraction and Ion Exchange,1994,12(4):803-816.
    [33]Filip,Daniel S,Peter,Thomas,et al.Residual Heavy Metal removal by and Algae-Intermittent Sand Filtration System.Water Research,1979,30):303-313.
    [34]Tsezos M and Volesky B.The Role of Chitin In Uranium Adsorption by R.arrhizus,Biomsss:kinetic and Uptake Parameters.Water Air Soil Pollut,1987,33:359-371.
    [35]Tsezos M.Recovery of Uranium from Biological Adsorbent-desorption Equilibrium,Biotechnol Bioeng,1984,26(8):973-981.
    [36]Deshkar A.M,Bokade S.S,dara S.S,Modified Bardwickia Binata Bank for Adsorption of Mercury(Ⅱ)from water,Water Research,1990,24(8):1011-1016.
    [37]Kuyucak N,Volesky B.Accumulation of cobalt by marine alga.Biotech.Bioeng.1989,33:809-814.
    [38]Fehrmann C.,Pohl P.Cadmium adsorption by the non-living bomass of microalgae grown in axenic mass culture.J.Appl.Phycol,1993,5:555-562.
    [39]Kuyucak N.Volesky B.The mechanism of cobalt biosorpion.Biotech.Bioene,1989,33:823-831.
    [40]Holan Z.Volesky B.Biotech.Bioeng.Prasetyo I.Biosorption of Cadmium by biomass of marine algae.1993,41:819-825.
    [41]Winter,C.Cadmium adsorption by nonliying biomass of the semi-macroscopic brown alga Ectocarpus siliculo grown in axenic mass culture and localization of the adsorbed Cd by transmission electron microscopy.J.Appl.Phycol,1994,16:479-487.
    [42]Holan Z.Volesky B.Biosorption of lead and nickel by biomass of marine algae.Biotechnol.Bioeng.1994,43:1001-1009.
    [43]莫健伟,姚兴尔,张谷兰等.海藻去除水中双偶氮染料机理及重金属离子研究.中国环境科学,1997,17(3):113-1160.
    [44]Holan Z.R and Volesky B.Biosorption of Lead and Nickel by Biomass of Marine Algae.Biotechnol.Bioeng,1994,43:1001-1009.
    [45]Hong-kang Wang and John M.Wood.Bioaccumulation of Nickel by Algae,Environ Sci.Technol,1984,18(2):106-109.
    [46]Tsezos M.Recovery of Uranium from Biological Adsorbent-desorption Equilibrium.Biotechnol.Bioeng,1984,26(8):973-981.
    [47]Ray H.Crist,Karl Oberholser,et.al.Nature of bonding between metallic and algal cell walls.Environ.Sci.Technol.1981,15:1212-1217.
    [48]Holan Z,Volesky B.Biosorption of Lead and Nickel by Biomass of Marine Algae.Biotechnol Bioeng,1994,43:1001-1009.
    [49]volesky B,May H,holan Z.R.Cadmium biosorption by Saccharomyces cerevisiae Biotechnol.Bioeng,1993,41:826-829.
    [50]Wood,5.M.Environ.Sci.Technol,1993(17):583.
    [51]Gardea-Torresdey J.L et al.Characterization of Cr(Ⅵ)Binding and Reduction to Cr(Ⅲ)by the Agricultural Byproducts of Avena Monida(oat)Biomass.Journal of Hazardous Materials 2000 B80:175-188.
    [52]Charlos D.Scott.Communication to the Editor Removal of Dissolved Metal by Plant Issue..Biotechnol.Bioeng.1992,39:1064-1608.
    [53]Nourbakhsh M.A comparative study of various biosorbents for removal of Cr(Ⅵ)ions from industrial waste waters.Process Biochemistry,1994,29:1-5.
    [54]Volesky,B.Cadmium biosorption by Saccharomyces cerevisiae.Biotechnol.Bioeng.1993.141:826-829.
    [55]Low K,Lee C,Tai C.Biosorption of copper by water hyacinth roots.J.Environ.Sci.Health A.199429(1):171-188.
    [56]林荣根,周俊良,黄朋林.螺旋藻吸附水溶液中铜离子的初步研究.海洋环境科学,1998.17(2):8-11.
    [57]Zhou J.L,Huang P.L,Lin R.G.Sorption and desorption of Cuand Cd by macroalgae and microaolgae.Environmental Pollution,1998,101:67-75.
    [58]雅非群.用海藻制备“绿色”水处理剂的研究.大连理工大学硕士论文.2002.
    [59]Tsezos M..Recovery of Uranium from Biological Adsorbent-desorption Equilibrium,Biotechnol.Bioeng,1984,26(8):973-981.
    [60]Holan Z.,and Volesky B.Biosorption of Lead and Nickel by Biomass of Marine Algae.Biotechnol.Bioeng,1994,43:1001-1009.
    [61]Wang.Y et al.Advanced landfill leachate treatment using an integrated membrane process,Desalination,2002,149(1):109-114.
    [62]顾平等.中空膜生物床处理生活污水的中试研究.中国给水排水,2000,16(3):5-8.
    [63]王春玲等.复合式MBR处理印染废水.污染防治技术,2003,16(4):28-31.
    [64]王佳涵.膜反应器在水处理中的应用.天津工业大学硕士论文.2007.
    [65]Vijayaraghavan K,Padmesh T.V.N,Palanivelu K,Velan M.Biosorption of nickel(Ⅱ)ions onto Sargassum wightii:Application of two-parameter and three-parameter isotherm models,J.Hazard.Mater,2006,(B133):304-308.
    [66]Ho Y.S,Chiu W.T,Wang C.C.Regression analysis for the sorption isotherms of basic dyes on sugarcane dust.Bioresource Technol,2005(96):1285-1291.
    [67]Tobin J.M,Cooper D.G,Neufeld R.J.Uptake of metal ions by Rhizopus arrhizus biomass,Appl.Environ.Microb,1984(47):821-824.
    [68]Iqbal M,Saeed A.Production of an immobilized hybrid biosorbent for the sorption of Ni(Ⅱ)from aqueous solution.Process Biochem,2007(42):148-157.
    [69]Zafar M.N,Nadeem R,Hanif M.A.Biosorption of nickel from protonated rice bran.J.Hazard.Mater,2007(143):478-485.
    [70] Yin P.H, Yu Q.M, Jin B, Ling Z. Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater. Water Res., 1999(33):1960-1963.
    [71] Huang J.P, Huang C.P, A. Morehart. The removal of Cu(II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Res, 1990(24):433-439.
    [72] Vijayaraghavan K, Padmesh T.V.N, Palanivelu K, Velan M. Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models, J. Hazard. Mater. 2006(B133):304-308.
    [73]Poots V.J.P, McKay J, Healy J. Removal of basic dye from effluent using wood as an adsorbent, J. Water Pollut. Contr. Federation, 1978:926-934.
    [74]Gerringa L.J.A, P Herman.M.J, Poortvliet T.C.W. Comparison of the linear Van den Berg/Ruzic transformation and a non-linear fit of the Langmuir isotherm applied to Cu speciation data in the estuarine environment, Mar. Chem. 1995(48):131-142.
    [75]Poots V.J.P, McKay J, Healy J. Removal of basic dye from effluent using wood as an adsorbent, J. Water Pollut. Contr. Federation, 1978:926-934.
    [76] Ma W., Ya F.Q, Han M, Wang R. Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle, J. Hazard. Mater, 2007(143):296-302.
    [77]Hanif M.A, Nadeem R, Rahid U, Zafar M.N. Assessing pollution levels in effluents of industries in city zone of Faisalabad, Pakistan, J. Appl. Sci, 2005,5 (10):1713-1717.
    [78] Iqbal M, Saeed A. Production of an immobilized hybrid biosorbent for the sorption of Ni(II) from aqueous solution. Process Biochem. 2007 (42):148-157.
    [79] Choksi P.M, Joshi V.Y. Adsorption kinetic study for the removal of nickel(II) and aluminum(III) from an aqueous solution by natural adsorbents, Desalination. 2007 (208): 216-231.
    
    [80]刘学虎.用海藻制备“绿色”水处理剂的研究.大连理工大学硕士论文.2002.
    
    [81] Alloway B.J. Heavy metals in soil. NJ: John Wiley and Sons, Inc, 1990.
    
    [82]Reddad Z, Gerente C, Andres Y, Le Cloirec P. Adsorption of several metalions onto a low-cost biosorbent: kinetic and equilibrium studies. EnvironSci Technol 2002,36:2067-73.
    [83] Shriner, R.L., Hermann, C.K.F., Morrill, T.C., Curtin, Fuson D.Y, R.C. The Systematic Identification of Organic Compounds. Seventhed. Wiley. New York, 1998,324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700