沉镍残液处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的高速发展、城市化的加速和人口急剧增长,各种废水给人类的生存环境带来了日益严重的危害,特别是重金属废水,对人类健康和环境的危害越来越严重,有效的去除废水中的多种重金属离子并不造成二次污染的任务已迫在眉睫。
     论文以云南元江镍业有限公司的沉镍残液作为研究对象,考察了铁氧体法和中和法处理模拟沉镍残液的工艺条件和处理效果。该残液呈酸性,含有大量镁离子和多种重金属离子,需要采用净化处理工艺中和酸性废液,同时去除重金属离子。
     确定了影响铁氧体法的工艺参数:pH值、温度、搅拌时间和投药比。试验结果表明,该法最佳操作条件为:pH值11左右,投料比10,温度50℃,搅拌时间25min。经铁氧铁法处理的沉镍残液,出水中重金属离子的浓度均达到了污水综合排放标准;处理后的铁氧体沉渣便于分离,沉渣化学性质稳定,粒度均匀,磁性强,可以通过处理回收利用。从沉渣中分离出来的磁性产物的X-射线衍射图谱及尖晶石型铁氧体Fe304的衍射图谱对比可以看出,运用该法所得的沉淀物中的磁性部分具有尖晶石型铁氧体的晶体结构。但铁氧体法处理大量废水,升温较为困难,消耗相当多的铁盐、一定数量的苛性钠及热能,且处理时间较长,使处理成本较高。
     中和法处理沉镍残液,对比研究了两种处理工艺。一种是用先用5%石灰乳调pH值到9.5左右,沉淀、过滤,再将上清液pH调到12.5左右;另一种是先用5%石灰调pH值到12.5左右,沉淀、过滤,再用聚合硫酸铁将上清液pH调到8.5左右。同时考察了污泥回流及污泥回流方式对以上两种处理工艺的影响。试验结果表明,经过这两种处理工艺处理的沉镍残液,出水中重金属离子浓度均达到了污水综合排放标准。对于第一种方法,先碱化污泥再中和的处理效果要比先酸化再中和好,最佳的污泥回流量分别为40%和50%,但出水pH值较高,无法直接排放。对于第二种方法,最佳的污泥回流量为30%~40%,出水pH值在8左右,可以直接排放,与同样条件下不采用污泥回流的处理工艺相比,其形成的污泥含水率从93.27%降到90.81%,生成的污泥量减少了1/4左右,沉降速率明显加快,同时也提高了处理效率,减少了药剂用量。
     论文通过对铁氧体法和中和法的比较认为,污泥回流-石灰中和-聚合硫酸铁回调法工艺合理、流程简单、操作方便、处理成本低,建议采用此法对该厂的沉镍残液进行处理。同时对试验中产生污泥提出了处理与处置建议。
Nowadays wastewater from different industries has brought increasing damage to human society, especially heavy metal wastewater, which made the environment and human health greatly suffered. So it is urgent to find effective ways to reduce manifold heavy metals from wastewater before it is dischared into the nature in case it should cause secondary pollution.
     This paper chose nickel precipitation residue liquor(from Yuanjiang nickel Industry Company in Yunnan province)as object and focused on the operation conditions and effects of two treatment process, ie.ferrite process and neutralization process, to find out a simple but effective way for the removal of heavy metals in the residue.
     In ferrite process, four influencing process parameters were set, ie.pH, temperature, stirring time and reagents adding ratio. The results showed that the optimum operating conditions were pH value of 11, temperature of 50℃, stirring time of 25min and reagents adding ratio of about 10. After the treatment, heavy metals concentration of the treated residue liquor was lower than that of the national wastewater discharge standard. The sediment from ferrite process can be reused or recycled, which has stable chemical properties, uniform granularity and strong magnetism and is easy to be separated. By comparation the X-ray diffraction pattern and the spinel ferrite Fe3O4 diffraction pattern, it can be seen that the magnetic part of the sediments has crystal structure of the spinel ferrites. However, ferrite process has some deficiencies, such as warmming difficulties, comsumption of ferric salt, caustic soda and heat energy, long processing time and higher processing costs.
     In neutralization process, two processes were compared. In one process,5% lime was put into the residue liquor to regulate its pH value to about 9.5 firstly. Then after precipitation and filtration, put lime into the supernatant to regulate its pH value to be about 12.5. In the other process, put 5% lime into wastewater to regulate its pH value to be about 12.5. After precipitation and filtration, put polymeric ferric sulfate (PFS) into supernatant to regulate its pH value to be about 8.5. At the same time, the impact of refluent sludge and the refluent way were studied. The results showed that the concentration of the heavy metals of the treated residue liquor was lower than that of the national wastewater discharge standard. For the first process, firstly alkalizing the sludge and then neutralizing is better than firstly acidulating sludge and then neutralizing, and the optimum volume of refluent sludge is 40% and 50%. But the pH value of the treated residue liquor is higher, and it can not be discharged directly. For the second process, the optimum volume of refluent sludge is 30%-40%, and the pH value of the treated residue liquor is about 8. So it can be discharged directly. Compared with processes without sludge refluece, the sludge moisture of the sludge refluence process decreased from 93.27% to 90.81%, resulting that:the sludge volume was reduced by 1/4; the sedimentation rate was more efficient; the processes was more efficient and reduced the reagent consuming as well.
     Through the comparation of the ferrite process and the neutralization process, it's concluded that sludge recycling-lime neutralization-PFS process is the optimum process for the nickel precipitation residue liquor. It's simple, easy-operation, cheaper and adapt to the wastewater from nickel smelter. At the same time, some advices were gived for treating sludge.
引文
[1]程磺鑫,马腾,安琪.我国水资源特征及其可持续利用的探索[J].湘潭师范学院学报(自然科学版),2005,27(2):19-21
    [2]Moon J W, Moon H S, Woo N C, et al. Evaluation of heavy metal contamination and implication of multiple sources from Hunchun basin, northeastern China [J]. Environmental Geology.2000,39(9):1039-1052
    [3]秦蓓蕾.论水资源的可持续开发利用[J].水利科技与经济,2006,12(2):71-72
    [4]徐运忠,吴国玺.我国水资源特点及开发利用[J].河南教育学报,2002,11(1):27-29
    [5]刘翰朝.我国21世纪水资源挑战与节水型社会经济模式的探讨[J].水利与建筑工程学报,2006,4(2):73-77
    [6]刘昌明,陈志恺.中国水资源现状评价和供需发展趋势分析[M].北京:中国水利水电出版社,2001
    [7]中国水利部.水资源调查评价结果[J].2007
    [8]胡皮.中国的水污染和饮用水安全[J].中国减灾,2007,8:19
    [9]国家环境保护总局.中国环境状况公报[J].2000-2007
    [10]国家环境保护总局.中国绿色国民经济核算研究报告[J].2007
    [11]康绍忠.新的农业科技革命与21世纪我国节水农业的发展[J].干旱地区农业研究,1998,6(1):11-17
    [12]Cotman M., Slovenia Zagorc-Koncan J., Drolc A.. Study of impacts of treated wastewater to the Krka river[J].Water Science and Technology,2001,44(6):47-54
    [13]廖自基.微量元素的环境化学及生物效应[M].北京:中国环境出版社,1985
    [14]Stoica, Anca-Iulia. Analytical studies on the Pollution of Arges River[J]. Critical Reviews in Analytical Chemistry,1999,29(3):243-247
    [15]S.Santos, R.Machado, M.Joana Neiva Correia, et al.. Treatment of acid mining waters[J]. Minerals Engineering,17(2004):225-232
    [16]王绍文,姜凤有.重金属废水治理技术[M].北京:冶金工业出版社,1993:1-15
    [17]钱小青,葛丽英,赵由才.冶金过程废水处理与利用[M].北京:冶金工业出版社,2008:18-20
    [18]张殿印.环保知识400问[M].北京:冶金工业出版社,2000:101
    [19]冀天宝.环保知识与工作问答[M].北京:化学工业出版社,1987:115
    [20]http://zhuanti.qm120.com/neike/huxi/ita/nzd/2008101543314.htm
    [21]钱小青,葛丽英,赵由才.冶金过程废水处理与利用[M].北京:冶金工业出版社,2008:35-48
    [22]张建梅,韩志萍,王亚军.重金属废水的治理和回收综述[J].湖州师范学院学报,2002,24(3):48-52
    [23]S.A.Mirbagheri, S.N.Hosseini. Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse[J]. Desalination,171(2004):85-93
    [24]瞿建国.高浓度酸性含铁废水处理的试验研究[J].上海环境科学,2001,20(9):441-443
    [25]Pepe Herrera S., Hiroyuki Uchiyama, Toshifumi Igarashi, et al.. Acid mine drainage treatment through a two-step neutralization ferrite-formation process in northern Japan:Physical and chemical characterization of the sludge[J]. Minerals Engineering,20(2007):1309-1314
    [26]谢红斌.分段中和法处理重金属废水的研究及应用[J].湖南有色金属,2003,19(4):35-37
    [27]彭容秋.重金属冶金工厂环境保护[M].湖南:中南大学出版社,2006:205-210
    [28]Jorgen Jonsson, Julia Jonsson, Lars Lovgren. Precipitation of secondary Fe(III) minerals from acid mine drainage[J]. Applied Geochemistry,21(2006):437-445.
    [29]廖国礼,吴超.资源开发环境重金属污染与控制[M].湖南:中南大学出版社,2006:282-288
    [30]赵由才,朱冬杰.湿法冶金污染控制技术[M].北京:冶金工业出版社,2003:146-147
    [31]贾金平,谢少艾,陈虹锦.电镀废水处理技术及工程实例[M].北京:化学工业出版社,2003:39-45
    [32]张学洪,王敦球,程利等.铁氧体法处理电解锌厂生产废水[J].环境科学与技术,2003,26(1):36-37
    [33]Perales-Perez, Oscar Tohji, Kazuyki Umetsu, et al.. Theory and Practice of the removal of heavy-metal ions by their precipitation as ferrite-type compounds from aqueous solution at ambient temperature[J]. Metallurgical Review of MMIJ,2001, 17(2):137-179
    [34]Tae-Hyoung Eom, Chang-Hwan Lee, Jun-Ho Kim, et al.. Development of an ion exchange system for plating wastewater treatment [J]. Desalination,180(2005): 163-172
    [35]徐新阳,尚·阿嘎布.矿山酸性含铜废水的处理研究[J].金属矿山,2006(11):76-78
    [36]Ahmad Barak, P.J.Hall, M.J. Heslop. Preparation and characterization of melamine-formaldehyde-DTPA chelating resin and its use as an adsorbent for heavy metals removal from wastewater[J]. Reactive & Functional Polymers,67 (2007): 585-600
    [37]Marina Sciban, Bogdanka Radetic, Zarko Kevresan, et al.. Adsorption of heavy metals from electroplating wastewater by wood sawdust[J]. Bioresource Technology, 2007,98(2):402-409
    [38]Pagnanelli F., Toro L., Veglio F.. Olive mill solid residues as heavy metal sorbent material:A preliminary study[J]. Waste Management,2002,22(8):901-907
    [39]Dinesh Mohan, Subhash Chander. Removal and recovery of metal ions from acid mine drainage using lignite—A low cost sorbent[J]. Journal of Hazardous Materials, B137(2006):1545-1553
    [40]C.K. Singh, J.N. Sahu, K.K. Mahalik, et al.. Studies on the removal of Pb(Ⅱ) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid[J]. Journal of Hazardous Materials,2007:1-8
    [41]Eun-Jae Shin, Alexander Lauve, Maxwell Carey, et al.. The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains[J]. Biomass and Bioenergy,2007:1-10
    [42]Parsons J.G., Hejazi M., Tiemann K.J., et al.. An XAS study of the binding of copper(Ⅱ), zinc(Ⅱ), chromium(Ⅲ) and chromium(Ⅵ) to hops biomass[J]. Microchemical Journal,2002,71 (2):211-219
    [43]Pino G.H., L.M. Souze De Mesquita, Torern M.L.,et al. Biosorption of cadmium by green coconut shell powder[J]. Minerals Engineering,2006,19(5):380-387
    [44]钟常明,许振良,方夕晖等.超低压反渗透膜处理矿山酸性废水及回用[J].水处理技术,2007,33(6):77-80
    [45]黄万抚.金铜矿山含重金属离子酸性废水处理工艺技术研究[D]:[博士后学位论文].北京:北京有色金属研究总院,2004:34-46
    [46]钟常明,方夕辉,许振良.纳滤膜脱除矿山酸性废水中重金属离子试验研究[J].环境科学与技术,2007,30(7):10-12
    [47]罗胜联.有色重金属废水处理与循环利用研究[D]:[博士学位论文].湖南:中南大学,2006
    [48]张乐华.电解法在废水处理中的研究进展[J].水处理技术,2002,28(5):253-255
    [49]Alena Luptakova, Maria Kusnierova. Bioremediation of acid mine drainage contaminated by SRB [J]. Hydrometallurgy,77(2005):97-102
    [50]祝玉学,桂誉漓.硫酸盐还原菌示范工程概述[J].国外金属矿山,2000(4):62-68
    [51]Tony Jong, David L.Parry. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs[J]. Water Research.2003,37(1):3379-3389
    [52]马尧,孙占学.矿山废水的危害及其治理中的微生物作用[J].科技情报开发与经济,2006,16(10):166-167
    [53]孙荟.日本矿山废水的治理[J].冶金矿山设计与建设,1998,30(1()):58-62
    [54]田翱宇,陈吉春.氧化亚铁硫杆菌及其在环境工程中的应用[J].环境技术,2003,4(16):16-18
    [55]傅之丹.含锌酸性废水处理工艺的研究[D]:[硕士学位论文].北京:北京科技大学,2004:9-10
    [56]Marios Tsezos, Bohumill Volesky. Biosorption of Uranium and Thorium[J]. Biotechnol,1981(23):593-604
    [57]Rogerio Laus, Reginaldo Geremias, Helder L.Vasconcelos, et al.. Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres[J]. Journal of Hazardous Materials,149(2007):471-474
    [58]裴锡理.生物化学法治理含金属废水的方法[P]. 中国专利,1322680.2001-11-21
    [59]Shelp.. The amelioration of acid mine drainage by an insitu electrochemical method:part 2, employing aluminium and zinc as sacrificial anodes[J]. Applied Geochemistry,1998(11):13
    [60]姚运先,王艺娟.人工湿地在酸性矿山废水处理中的应用[J].湖南有色金属,2005,21(4):26-29
    [61]Prasad M.N.V., Freitas H Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L.(holly oak)[J]. Environmental Pollution,2000, 110(2):277-283
    [62]Mostafa M. El-Sheekh, Wagieh A. El-Shouny, Mohamed E. H. Osman, et al.. Growth and heavy metals removal efficiency of Nostocmuscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents[J]. Environmental Toxicology and Pharmacology,2005,19(2):357-365
    [63]马前,张小龙.国内外重金属废水处理新技术的研究进展[J].环境工程学报,2007,1(7):10-14
    [64]Choi, West. Application of MINTQA2 to the Evaluation of Apatite as a Precipitant for Acid Mine Drainage Treatment[J]. Environment & Engineering Geoscience,2002,3(2):128
    [65]文美兰.磁性铁氧体Zn<,x>Fe<,3-x>O<,4>的光电子能谱研究[D]:[硕士学位论文].南京:东南大学,2006
    [66]J.斯密特,H.P.J.威因.铁氧体[M].北京:国防工业出版社,1966:146-155
    [67]杨巧珍.层状前驱体制备尖晶石铁氧体及其应用性能研究[D]:[博士学位论文].北京:北京化工大学,2005
    [68]周志刚.铁氧体磁性材料[M].北京:科学出版社,1981:7-12
    [69]E. Barrado, F. Prieto, J. Medina, et al.. Characterization of solid residues obtained on removal of Cr from waste water[J]. Journal of Alloys and Compounds,335(2002): 203-209
    [70]Wang W., Xu Z., Finch J.. Fundamental Study of Ambient Temperature Ferrite Process in Treatment of Acid Mine Drainage[J]. Environmental science and technology,1996,30(8):2604-2608
    [71]http://jpk.nenu.edu.cn/2005jpk/wlhx/whsy/html/shiyanjsyyq_gxd10_main.htm
    [721赵藻藩,周性尧,张悟铭等.仪器分析[M].高等教育出版社,1990:60-61
    [73]王绍文,姜凤有.重金属废水治理技术[M].北京:冶金工业出版社,1993:20-31
    [74]园丁.城市污泥处理技术取得新突破[J].污染防治技术,2008,21(2):60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700