基于微带谐振结构的新型液体介电常数测量探头研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物质的介电常数作为麦克斯韦方程组的本构参数之一,具有重要的物理意义。介电常数描述了介质的电极化特性,是电磁学应用中不可缺少的知识,因而研究介电常数的测量方法成为了基础而关键的问题。
     微带线由于具有成本低、体积小、重量轻、易于共形等优点得到了广泛应用。在介电常数测量领域,利用微带线已经设计了多种测量结构,这些结构大致可分为谐振型和非谐振型两类。当介质的复介电常数在一定范围内随频率变化不敏感时,相对于非谐振结构而言,谐振结构可以达到相对更高的测量精度。本文针对微带谐振结构在测量中、高损耗液体的介电常数上存在的不足,展开相关研究得到了一些结果,希望可以对该领域的研究有所帮助。
     本文改进了半波长、终端开路的微带线谐振器,设计了基于交指结构的耦合电容,并采用Rogers公司出品的RT/Duroid 5880材料进行加工制作。在微带线基板一侧的上方3mm处覆盖接地的金属盖,避免微带谐振器与待测样品直接接触;在接地板上腐蚀出一条与谐振器等长,位于谐振器正下方中心位置的辐射缝,待测样品通过辐射缝影响谐振器的谐振频率和品质因数。实验研究表明:即使将该结构置于中、高损耗的待测液体中用于测量介电常数时,也可以正常谐振。
     分析了该测量探头的等效电路模型,得到了电路描述方程。研究了基于加权最小二乘曲线拟合技术的品质因数提取算法,并采用Fortran语言编程实现。该方法利用测量得到的反射系数,计算出探头置于待测样品中的谐振频率、有载品质因数、空载品质因数及耦合系数。研究表明:基于加权最小二乘法的品质因数提取算法计算精度高,可以自动消除测量噪声,加权函数能够提取出测量数据中变化最敏感的部分。
     研究了传输线特征参数计算中使用的二维时域有限差分法2D-FDTD,并采用该方法分析了设计的测量探头,用Fortran语言编程实现。从理论上解释了待测样品的介电常数和电导率对探头的谐振频率和空载品质因数影响的原因。研究表明:2D-FDTD法具有计算速度快、内存需求低的优点;探头的谐振频率随样品介电常数的升高而降低,随电导率的升高而降低;探头的空载品质因数随样品介电常数的升高而升高,随电导率的升高而降低。
     结合加权最小二乘品质因数提取算法和2D-FDTD法,提出了校准方法和基于三次样条插值的迭代算法。通过测量探头置于待测样品中的反射系数,计算样品的复介电常数。对甲醇/L醇混合溶液的等效复介电常数进行了测量,验证了探头和算法的有效性。
     当待测液体的复介电常数在一定范围内随频率变化不敏感时,本文设计的探头及提出的相关算法在对中、高损耗液体的复介电常数的在线测量上具有一定的优势。
The permittivity of dielectrics has extremely important physical meanings sinceit is one parameter of the constitute relations in Maxwell's equations. Thepermittivity describes the characteristics of the electric polarization in materials,which is a key parameter in electromagnetics. Therefore, the accurate permittivitymeasurements are important fundamental subjects.
     Microstrip transmission lines are widely applied in radio frequency andmicrowave circuit design because it is low cost, compact, light weight and easilyconformal. At present, various structures of permittivity measurements have beenproposed by using microstrip transmission lines, which can be categorized to eitherresonant or non-resonant type. When the permittivity of a material is non-sensitivewith respect to the frequency, the measurement accuracy of the resonant structure isgenerally higher than that of the non-resonant structure, but it is difficult to measuremedium or high loss materials. Thus, the thesis aims at solving the problem.
     An improved half-lambda open-circuit microstrip resonator with interdigitalcoupling capacitors has been designed and fabricated on RT/Duroid 5880 substrate.A 3mm height metallic cover is welded on the top side of the substrate for protectingthe resonator from directly contacting to materials under test. On the bottom side, aslot is etched on the ground, which is just located beneath the resonant microstripline on the top layer. The permittivity of materials under test will influence theresonant frequency and the quality factor of the microstrip resonator through the etched slot. Experimental results showed that the proposed sensor could be appliedto measure the permittivity of medium or high loss liquids.
     The equivalent circuit model and description equation of the sensor areobtained. The weighted least-square curve fitting procedure is applied to extract theresonant frequency, the loaded/unloaded quality factor and the coupling coefficientfrom the measured S parameters of the sensor. Results showed that the algorithmprovided high calculation accuracy and could automatically suppress the noise inmeasurements. The weighted function could extract the most sensitive part of themeasured data.
     The proposed sensor is analyzed by a two dimensional finite difference timedomain (2D-FDTD) method, which is suitable for calculating the intrinsicparameters of a transmission line. Numerical simulations showed that the 2D-FDTDmethod was fast and required less memory. The resonant frequency of the sensordecreases when the permittivity or conductivity of materials under test increases.The unloaded quality factor of the sensor increases when the permittivity ofmaterials under test increases, and it also decreases when the conductivity ofmaterials under test increases.
     Combined with the 2D-FDTD method and the weighted least-square curvefitting procedure for quality factor calculation, a calibration procedure and apermittivity reconstruction algorithm based on iterative cubic spline interpolationare proposed in this thesis. The complex permittivity can be obtained from themeasured reflection coefficients of the sensor immerged in liquid materials undertest at different frequencies. The proposed sensor and corresponding algorithms arevalidated by measuring the equivalent complex permittivity of a CH_3OH/C_2H_5OHmixture. Results showed that the novel sensor was Suitable for the on-linepermittivity measurements of medium or high loss liquids whose permittivity werenon-sensitive with respect to the frequency.
引文
[1] 孙目珍,电介质物理基础[M],华南理工大学出版社,2005年,第一版。
    [2] S. R. Robert, A. Von Hippel, "A new method for measuring dielectric constant and loss in the range of centimeter waves" [J], J. Appl. Phys., 1946, 17(7): 610-616.
    [3] H. Zheng, and C. E. Smith, "Permittivity measurement using a short open-ended coaxial line probe" [J], IEEE Microw. Guided Wave Lett., 1991, 1(11): 337-339.
    [4] D.V. Blackham, and R. D. Pollard, "An improved technique for permittivity measurements using a coaxial probe" [J], IEEE Trans. Instrum. Meas., 1997, 46(5): 1093-1099.
    [5] S. Hoshina, Y. Kanai, and M. Miyakawa, "A numerical study on the measurement region of an open-ended coaxial probe used for complex permittivity measurement" [J], IEEE Trans. Magn., 2001, 37(5): 3311-3314.
    [6] 金钦汉,戴树栅,黄卡玛,微波化学[M],北京:科学出版社,1999年,第一版。
    [7] 董树义,微波测量[M],北京:北京理工大学出版社,1991年,第二版。
    [8] 唐宗熙,张彪,“用自由空间法测试介质电磁参数”[J],电子学报,2006,34(1):189-192。
    [9] K. Preis, et al., "Time-domain analysis of quasistatic electric fields in media with frequency-dependent permittivity" [J], IEEE Trans. Magn., 2004, 40(2): 1302-1305.
    [10] Y. Kantor, "Dielectric constant measurements using printed circuit techniques at microwave frequency" [J], Electrotechnical Conference, 1998, 1: 101-105.
    [11] P. Queffelec, et al., "A microstrip device for the broad band simultaneous measurement of complex permeability and permittivity" [J], IEEE Trans. Magn., 1994, 30(2): 224-231.
    [12] P. Queffelec, and P. Gelin, "Influence of higher order modes on the measurements of complex permittivity and permeability of materials using a microstrip discontinuity" [J], IEEE Trans. Microw. Theory Tech., 1996, 44(6): 816-824.
    [13] M. Q. Lee, and S. Nam, "An accurate broadband measurement of substrate dielectric constant" [J], IEEE Microw. Guided Wave Lett., 1996, 6(4): 168-170.
    [14] B. Kang, et al., "Nondestructive measurement of complex permittivity and permeability using multilayered coplanar waveguide structures" [J], IEEE Microw. Wireless Compon. Lett., 2005, 15(5): 381-383.
    [15] R. J. Biczek, C. Chan, and R. Mittra, "Determination of the ralative permittivity using a microstrip patch antenna" [J], AEU, Band 43, Heft 2, 1989: 105-109.
    [16] D. Shimin, "A new method for measuring dielectric constant using the resonant frequency of a patch antenna" [J], IEEE Trans. Microw. Theory Tech., 1986, 34(9): 923-931.
    [17] Y. K. Verma and A. K. Verma, "Accurate determination of dielectric constant of substrate material using modified Wolff model" [J], IEEE MTT-S Int. Microw. Syrup. Dig., 2000: 1411-1414.
    [18] T. Itoh, "A new method for measuring properties of dielectric materials using a microstrip cavity" [J], IEEE Trans. Microw. Theory Tech., 1974: 572-576.
    [19] A. K. Verma, Nasimuddin, and A. S. Omar, "Microstrip resonator sensors for determination of complex permittivity of materials in sheet, liquid and paste forms" [J], IEE Proc.-Microw. Antennas Propag., 2005, 152(1): 47-54.
    [20] P. Troughton, "Measurement techinique in microstrip" [J], Electron. Lett., 1969, 5: 25-26.
    [21] S. A. Ivanov, and V. N. Peshlov, "Ring-resonator method—Effective procedure for investigation of microstrip line" [J], IEEE Microw. Wireless Compon. Lett., 2003, 13(6): 244-246.
    [22] M. Kirschning, and R. Jansen, "Accurate model for effective dielectric constant with validity up to millimeter-wave frequencies" [J], Electron. Lett., 1982, 18: 272-273.
    [23] P. A. Bernard, and J. M. Gautray, "Measurement of dielectric constant using a microstrip ring resonator" [J], IEEE Trans. Microw. Theory Tech., 1991, 39(3): 592-595.
    [24] B. A. Tonkin, "Automated microwave measurements of microstrip ring resonators at low temperatures" [J], IEEE Trans. Appl. Supercond., 1997, 7(2): 1865-1868.
    [25] S. Du, "A new method for measuring dielectric constant using the resonant frequency of a patch antenna" [J], IEEE Trans. Microw. Theory Tech., 1986, 34(9): 923-931.
    [26] M. Bogosanovich, "Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials" [J], IEEE Trans. Instrum. Meas., 2000, 49(5): 1144-1148.
    [27] David M. Pozar, Microwave Engineering (second edition) [M], John Wiley & Sons, Inc., 1998.
    [28] 刘长军,黄卡玛,闫丽萍,射频通信电路设计[M],北京:科学出版社,2005年,第 一版。
    [29] E. O. Hammerstad and O. Jensen, "Accurate models for microstrip computer-aided design" [J], IEEE MTT-S, 1980, Digest: 407-409.
    [30] H. Wheeler, "Transmission line properties of parallel strips separated by a dielectric sheet" [J], IEEE Trans. MTT-13, 1965: 172-185.
    [31] E. O. Hammerstad, "Equations for microstrip circuit design" [C], in Proceeding of the European Microwave Conference, Hamburg, Germany, 1975: 268-272.
    [32] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications [M], John Wiley & Sons, Inc., 2001.
    [33] 蒲洋,刘长军,闫丽萍,范如东,“基于交指谐振结构的微带低通滤波器改进设计”[J],电讯技术,2007,47(2):51-54。
    [34] G. D. Alley, "Interdigital capacitors and their application to lumped-element microwave integrated circuits" [J], IEEE Trans. MTT-18, 1970: 1028-1033.
    [35] D. Kajfez, "Random and systematic uncertainties of reflection-type Q-factor measurement with network analyzer" [J], IEEE Trans. Microw. Theory Tech., 2003, 51 (2): 512-519.
    [36] J. R. Bray and L. Roy, "Measuring the unloaded, loaded, and external quality factors of one-and two-port resonators using scattering-parameter magnitudes at fractional power levels" [J], IEE Proc.-Microw. Antennas Propag., 2004, 151 (4): 345-350.
    [37] E. y. Sun and S. H. Chao, "Unloaded Q measurement—the critical-points method" [J], IEEE Trans. Microw. Theory Tech., 1995, 43(8): 1893-1896.
    [38] J. M. Drozd and W. T. Joines, "Determining Q using S parameter data" [J], IEEE Trans. Microw. Theory Tech., 1996, 44(11): 2123-2127.
    [39] D. Kajfez, "Linear fractional curve fitting for measurement of high Q factors" [J], IEEE Trans. Microw. Theory Tech., 1994, 42(7): 1149-1153.
    [40] D. Kajfez, "Q-factor measurement with a scalar network analyzer" [J], IEE Proc.-Microw. Antennas Progag., 1995, 142(5): 369-372.
    [41] D. Kajfez, Q Factor [M], Oxford, MS: Vector Forum, 1994.
    [42] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media" [J], IEEE Trans. Antennas Propagat., 1966, 14(3): 302-307.
    [43] 蒲洋,闫丽萍,刘长军,“并行FDTD算法初步研究”[J],四川大学学报(自然科学版), 2005,42(5):1051-1053。
    [44] 葛德彪,闰玉波,电磁波时域有限差分方法[M],西安:西安电子科技大学出版社,2002年4月,第一版。
    [45] V. J. Brankovic, D. V. Krupezevic and F. Amdt, "An efficient two-dimensional graded mesh finite-difference time-domain algorithm for shielded or open waveguide structures" [J], IEEE Trans. Microw. Theory Tech., 1992, 40(12): 2272-2277.
    [46] S. Xiao and R. Vahldieck, "An efficient 2-D FDTD algorithm using real variables" [J], IEEE Microw. Guided Wave Lett., 1993, 3(5): 127-129.
    [47] S. Xiao, R. Vahldieck and H. Jin, "Full-wave analysis of guided wave structures using a novel 2-D FDTD" [J], IEEE Microw. Guided Wave Lett., 1992, 2(5): 165-167.
    [48] S. Hofschen and I. Wolff, "Simulation of an elevated coplanar waveguide using 2-D FDTD" [J], IEEE Microw. Guided Wave Lett., 1996, 6(1): 28-30.
    [49] I. P. Hong and H. K. Park, "Dispersion characteristics of a unilateral fin-line using 2D FDTD" [J], Electro. Lett., 1996, 32(21): 1992-1994.
    [50] S. Hofschen and I. Wolff, "Improvement of the two-dimensional FDTD method for the Simulation of normal-and superconducting planar waveguides using time series analysis" [J], IEEE Trans. Microw. Theory Tech., 1996, 44(8): 1487-1490.
    [51] A. Asi and L. Shafai, "Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2D-FDTD" [J], Electro. Lett., 1992, 28(15): 1451-1452.
    [52] M. Fujii and S. Kobayashi, "Accurate analysis of losses in waveguide structures by compact two-dimensional FDTD method combined with autoregressive signal analysis" [J], IEEE Trans. Microw. Theory Tech., 1996, 44(6): 970-975.
    [53] F. Liu, J. E. Schutt-Aine and J. Chen, "Full-wave analysis and modeling of multiconductor transmission lines via 2-D-FDTD and signal-processing techniques" [J], IEEE Trans. Microw. Theory Tech., 2002, 50(2): 570-577.
    [54] F. Liu, Efficient Full-wave Analysis and Modeling of Interconnects by FDTD and Signal Processing Techniques [D], Ph. D. Dissertation, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 2001.
    [55] A. C. Cangellaris, "Numerical stability and numerical dispersion of a compact 2-D/FDTD method used for the dispersion analysis of waveguides" [J], IEEE Microw. Guided Wave Lett., 1993, 3(1): 3-5.
    [56] 黄卡玛,赵翔,电磁场中的逆问题及应用[M],北京:科学出版社,2005年10月,第一版。
    [57] Ari Sihvola, Electromagnetic Mixing Formulas and Applications [M], Padstow: The Institution of Electrical Engineers, 1999.
    [58] 华伟,包建军,杨晓庆,黄卡玛,“2.45GHz微波频率下有机二元体系溶液等效介电系数新特性的实验研究”[J],电子学报,2006,34(5):828-832。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700