S波段长脉冲相对论速调管放大器的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对论速调管放大器(Relativistic Klystron Amplifier)是一种高功率、高效率的微波器件。论文针对S波段长脉冲强流RKA进行了深入的理论分析,并开展了相应的实验研究,取得了与理论相符的实验结果。
     论文理论分析分为三个方面:
     1.采用三维模型,分析了RKA中强流相对论电子束(Intense Relativistic Electron Beams)与谐振腔间隙中的角向均匀和非均匀模式相互作用的动力学过程,分析结果证实,角向非均匀模式与电子束相互作用后会造成电子束的发散,为此提出了采用腔体较长的高阶模输入腔和输出腔,设计和调试出了场强角向分布比较均匀的输入腔和输出腔,减轻了电子束的发散问题,保证了强流调制长脉冲电子束的长距离稳定传输,在S波段RKA谐振腔的设计和微波调试实验中得到应用。
     2.采用电磁场的等效原理,并利用格林函数积分法严格求解了大耦合孔同轴输出腔的本征频率、有载品质因数和特性阻抗等高频参数,建立了完整的三维解析表达式,为微波提取腔的计算机辅助计算和设计建立了解析分析模型和详细的计算公式,在S波段RKA输出腔的计算中得到应用。
     3.分析了长脉冲IREB经过强电场作用间隙形成电子反射及自激振荡的物理过程,为此对谐振腔的参数设计提出了“参差模式”的设置方案,优化分析和模拟了三轴输出腔,减少了反射电子,抑制了自激振荡的形成,同时微波提取效率达到35%,比同轴输出腔提高了9个百分点。
     根据理论分析结果,设计了S波段RKA,并采用PIC程序进行了数值模拟,确定了谐振腔的基本电参数和几何尺寸,给出了束流群聚的最佳位置、RKA运行的最佳参数与性能,以此进行了相应的高功率微波器件实验。
     RKA的实验研究包括高频系统(包括输入腔、输出腔和辐射喇叭)的工程设计和实验调试,以及束流调制与微波提取的实验研究。在高频系统实验研究中,调试出了谐振频率、有载品质因数和场强角向分布等参数符合设计要求的输入腔和输出腔,减小了不均匀模式对电子束发散的影响。在RKA的微波实验中,通过优化调试输入腔、中间腔和输出腔参数,解决了长脉冲IREB的长距离稳定传输和群聚问题,减缓了RKA自激振荡的建立,减轻了强流调制电子束和输出微波的脉冲缩短问题。在螺旋线型强流脉冲加速器(电子束参数为550kV、4kA、210ns)的驱动下,输出微波功率580MW、频率2.85GHz、脉宽140ns,效率26%,增益34dB,与理论分析和模拟结果相吻合。
Relativistic Klystron Amplifier (RKA) is one kind of microwave devices with high output microwave power and high efficiency. S-band long pulse intense current RKA are theoretical investigated deeply, and the corresponding conclusions are used to design and guide the RKA experiments. The experimental results are consistent with the theoretical results.
    The theoretical studies are divided into three parts:
    1. The dynamics of interaction between Intense Relativistic Electron Beams (IREB) and symmetric mode and asymmetric modes of cavity in RKA is analyzed three dimensionally. The interaction between IREB and asymmetric mode, which leads to the collapse of IREB, is obtained. The input cavity and the output cavity, which work in higher mode with long dimension, are proposed to decrease such influence. The collapse of IREB is controlled and IREB can drift longer. The results of theoretical studies are used in the design and adjustment of cavities in s-band RKA.
    2. The coaxial output-cavity with large coupling holes is theoretical analyzed based on equivalent principle of field and integral method of Green functions. The resonant frequency and loaded Q value and characteristic impedance of the cavity are solved by three dimensions. The results ared used in the calculation of cavities.
    3. Space-charge-limited current and energy distribution of annular IREB in coaxial drifting pipe and in cylinder drifting pipe are analyzed. The physical process of reflected electron and self-excited oscillation is described when the long pulse IREB drifts through the gaps of cavities with high electrical field. The structure of uneven mode of cavities in RKA is proposed, and the triaxial output cavity is designed and simulated with particle in cell (PIC), which depresses self-excited oscillation and enhances the efficiency of RKA.
    The S-band RKA is designed according to above theoretical studies, which is also verified by PIC codes. The geometrical and electrical parameters of cavities are obtained by Mafia code. The structure and the working parameters of RKA are also optimized by PIC code.
    The experiment includes structural design and parameter adjustment of cavities and antenna, as well as the modulation measurement of electron beams and output microwave. The asymmetric modes of input cavity and output cavity are significantly redued, whose resonance frequency and loaded Q value meet with the design. These structures
引文
1. James Benford, John Swegle. High Power Microwave [M]. Arech House, norwood, MA, 1991
    2. Barker R J, Schamiloglu E. High-Power Microwave Sources and Technologies [M]. New York: IEEE, 2001.
    3. Varian R and Varian S. A high frequency oscillator and amplifier [J]. J Appl. Phys. 1939, 10:321
    5. Lee T D, Konrad G, Okaxaki Y. Design and performance of a 150-MW klystron at S-band [J]. IEEE Trans. Plasma Sci., 1985,13:545-552
    6. Allen M A, Callin R S, Deruyder H. Recent progress in relativistic klystron research. Particle Accelerators, 1990,30:189
    7. Goodman D, Brix D, and Danly B. Induction linac driven relativistic klystron and cyclotron autoresonance maser experiments [J]. Intense microwave and particle beams II, ed. Howard Brandt, Proc. SPIE, 1991,1061:217
    8. Friedman M, Krall J, Lau Y. Y. Serlin V. Externally modulated IREBs [J]. J. Appl. Phys. 1988, 55(26): 3353-3379
    9. Friedman M. Ury M. Production and focusing of high power relativistic annular electron beam [J]. Rev. Sci. Instrum. 1970, 41(9):1334-I335
    10. Friedman M. Autoacceleration of IREBs [J]. Phys. Rev. Lett. 1973, 31(18):1107-1109
    11. Friedman M. Formation of a virtual cathode by a REB flowing throng a cavity [J]. Appl. Phys. Lett. 1974,24(7):303-305
    12. Friedman M. Automodulation of IREBs [J]. Phys. Rev. Lett. 1974, 32(3)92-94
    13. Friedman M. Emission of intense microwave radiation from an Automodulated IREBs [J]. Appl. Phys. Lett. 1975, 26(7):366-367
    14. Friedman M. Modulation of intense relativistic electron beams by an external microwave source [J]. Phys. Rev. Lett. 1985, 55(26):2860-2863
    15. Friedman M, Krall J, Lau Y. Y. Serlin V. Efficient generation of multigigawatt RF power by a RKA [J]. Rev. Sci. Instrum. 1990, 61(1):171-181
    16. Friedman M, And Serlin V, Krall J, Lau Y. Y. Relativistic klystron amplifier I high power operation. Intense Microwave and Particle Beams II, ed. Proc. SPIE, 1991,1407:2-7
    17. Serlin V, Friedman M, Krall J, Lau Y. Y. RKA—II: high frequency operation. Intense Microwave and Particle Beams II. Ed. proc. SPIE, 1991,1407:8-13
    18. Serlin V, Friedman M. High frequency operation of the RKA. Intense Microwave and Particle Beams Ⅱ ed. Proc. SPIE, 1992, 1629: 8~14
    19. Friedman M, Serlin V, Lampe M, hubbard R, Colombant D, Slinker S. Intense electron beams modulation by inductively loaded wide gaps for RKA [J]. Phys. Rev. Lett. 1995,74(2): 322~325
    20. Friedman M, Fernsler R, Lampe M, Hubbard R, Colombant D, Slinker S. Efficient conversion of the energy of IREBs into rf waves [J]. Phys. Rev. Lett. 1995, 75(6): 1214~1217
    21. Serlin V, and Friedman M. Development and optimization of the RKA [J]. IEEE Trans. plasma Sci. 1994, 22(5): 692~700
    22. Krall J. RKA—Ⅳ: simulation studies of a coaxial-geometry RKA. Intense Microwave and Particle Beams Ⅱ, ed. proc. SPIE, 1991, 1074: 23~31
    23. Fazio M V, Haynes W B, Carlsten B E, Stringfield R M. A 500MW, lus pulse length high current RKA [J]. IEEE Trans. Plasma Sci. 1994, 22(5): 740~749
    24. Catravas P. Experimental studies of the MIT 3.3GHz RKAs. SPIE 1994, 2154: 130~145
    25. Levine J S, Harteneck B D. Repetively pulsed relativistic klystron amplifier [J]. Appl. Phys. Lett. 1994,65(17):21334~2135
    26.电子管设计手册编辑委员会.大功率速调管设计手册[M].北京:国防工业出版社,1979
    27.谢家麟,赵永祥著.速调管群聚理论[M].北京:科学技术出版社,1960
    28.王平山,黄华,陈天才,甘延青,陈洪斌.X波段三腔相对论速调管放大器实验[A]。第一届高功率微波学术研讨会论文集,西安,1994
    29.夏连胜,王平山,黄华,陈天才,甘延青.环形电子束X波段RKA实验研究[J]、强激光与粒子束,1996,8(1):1~6
    30.黄华,王平山,夏连胜,陈天才,甘延青.X波段四腔相对论速调管放大器实验[A].第四届高能电子学学术交流会论文集,四川绵阳,1995:216~219
    31.黄华,王平山,吴中发,甘延青,陈洪斌,雷方燕,王文斗.L波段单次短脉冲相对论速调管放大器的初步研究[J].强激光与粒子束,1998,10(1):135~139
    32.黄华,范植开,马乔生,谭杰,甘延青.L波段长脉冲相对论速调管放大器的初步研究[J].强激光与粒子束,2002,14(6):915~919.
    33.黄华,孟凡宝,常安碧,马乔生,张永辉,甘延青,罗敏,陈代兵.强流短脉冲相对论速调管放大器的实验研究[J].强激光与粒子束,2004,16(10):1291~1294.
    34. Agee F J. Evolution of pulse shortening research in narrow band, high power microwave sources [J]. IEEE Trans on Plas. Sci., 1998,26(3):235
    35.Agee F J,黄华编译.窄带高功率微波源脉冲缩短评述[J].高功率微波技术,2003,11(4):31~42
    36. Banna S, Nation J A, Schachter L, and Wang P. The interaction of symmetric and asymmetric modes in a high-power traveling wave amplifier [J]. IEEE Trans. On Plasma Science, 2000, 28(3): 798.
    37. Wang R, Xu Z., Nation J A, Banna S. and Schachter L. High efficiency high power microwave amplification in a non-uniform TWT [J]. IEEE Trans. On Plasma Science, 2000,28(6): 2262
    38.黄华,范植开,谭杰,马乔生,甘延青.长脉冲相对论速调管中束流脉冲缩短的研究[J].物理学报,2004,53(4):1129
    39.黄华,范植开,孟凡宝,谭杰,罗光耀,李正红,吴勇.S波段长脉冲相对论速调管放大器的初步研究[J].高功率微波技术,2005,13(3):1~8
    40.黄华,范植开,孟凡宝,谭杰,罗光耀,曹绍云,吴勇,雷禄容,李正红,张北镇,李春霞.S波段长脉冲相对论速调管中自激振荡的抑制.04学科学术年会论文集,2005
    41.刘庆想.X波段渡越管振荡器的粒子模拟和优化设计[A].应用电子学研究所高功率微波技术研究室论文集(1998-2001),四川绵阳,2001:91-99.
    42.范植开.渡越管振荡器的理论研究与原理性实验[D].北京:中国工程物理研究院研究生部,1999
    43.何琥.X波段渡越管振荡器的理论和实验研究[D].北京:中国工程物理研究院研究生部,2003
    44.陈代兵.X波段五腔渡越管振荡器的理论和实验研究[D].北京:中国工程物理研究院研究生部,2002
    45.李正红,孟凡宝,常安碧,黄华,马乔生.两腔高功率微波振荡器研究[J].物理学报,2005,54:3578
    46.刘国治.同轴相对论返波管的数值模拟[J].强激光与粒子束,2001,13(2):179~184.
    47. Hendrichs K J, Hayworth M D, Englert T, Shiffier D, Baca G, Coleman P D, Bowers L, Lemke R W, Spencer T A, and Arman M J. Increasing the RF energy per pulse of an RKO [J]. IEEE Trans. On Plasma Science, 1998, 26(3):320-325.
    48.黄华,王平山,甘延青.大耦合孔对RKA谐振腔参数的影响[J].电子科技大学学报,1998,27(2):166~170.
    49. The Mafia Collaboration. 2000
    50. The HFSS Collaboration. 2001
    51.黄华,李正红,江金生.相对论速调管单重入式圆柱谐振腔的解析分析[J].强激光与粒子束,2000,12(4):501~504
    52.Collin R E.Field theory of guided waves[M].New York:IEEE, 1990
    53.符果行.电磁场中的格林函数法[M].北京:高等教育出版社,1993:1-80.
    54. Stinson D C. Intermediate Mathematics of Electromagnetics [M]. Prentice-hall, Inc., Englewood Cliffs, New Jersey, 1976: 30~176
    55.斯廷逊D C著,王昌翟,刘天惠 译.电磁学中的数学[M].北京:国防工业出版社,1982:132~194
    56.楼仁海,符果行,袁敬闳.电磁理论[M].成都:电子科技大学出版社,1996:60-125
    57.张克潜,李德杰.微波与光电子学中的电磁理论[M].北京:电子工业出版社,1994:319~323
    58. Miller R B. Pulse shortening in high-peak-power reltron tube [J]s. IEEE Trans. On Plasma Science, 1998, 26(3): 340~347.
    59. Friedman M, Serlin V, Lampe M, hubbard R, Colombant D, Slinker.S. Intense electron beams modulation by inductively loaded wide gaps for RKA [J]. Phys. Rev. Lett. 1995,74(2):322~325
    60. Friedman M, Fernsler R, Lampe M, hubbard R, Colombant D, Slinker S. Efficient conversion of the energy of IREBs into rf waves [J]. Phys. Rev. Lett. 1995, 75(6): 1214~1217
    61.黄华.L波段相对论速调管放大器设计的理论分析与实验研究[D].北京:中国工程物理研究院研究生部,2001:54-59
    62.Luo Yingxong.Self-field of charged particles[M].Beijing:science and technology Press,1994
    63.黄华,孟凡宝,范植开,李正红.相对论速调管放大器三轴输出腔的研究[J].高功率微波技术,2005,13(2):1~8;物理学报,2006(待发).
    64. Carlsten B E, Faehl R J, Fazio M V, Haynes W B, Stringfield R M. Intense space-charge beam physics relevant to relativistic klystron amplifiers [J]. IEEE Trans. Plasma Sci. 1994 22(5):719~729
    65. Carlsten B E, Faehl R J, Fazio M V, Haynes W B, Stringfield R M. Beam-cavity interaction physics for mildly relativistic, intense-beam klystron amplifiers [J]. IEEE Trans. Plasma Sci. 1994, 22(5): 730~739
    66.王平山,胡克松,苏毅.强流相对论空心电子束运动轨迹[J].电子科大学报,1989,18(4):326~331
    67.黄华,孟凡宝,范植开,李正红.S波段相对论速调管放大器的粒子模拟与优化设计[J].强辐射技术与应用束,2005,4(3):23~29
    68. Vladimir R Taraknov. User's Manual for Code KARAT [M]. Berkeley Research Associates, Inc. 1995
    69.张敏.CST微波工作室用户全书[M].成都:电子科技大学出版社,2004
    70.谭杰,范植开,胡克松,曹绍云,罗光耀,李春霞,张北镇,吴勇.重复频率长脉冲电子束源初步调试.四川省电子学会高能电子学专业委员会第四届学术交流会论文集.,绵阳,2005:120
    71.罗光耀,谭杰,范植开.长脉冲恒流源磁场的设计与分析.中国国防科技报告,2005
    72.郭焱华.C波段磁绝缘线振荡器的理论与实验研究[D].北京:中国工程物理研究院研究生部,2005
    73. H. S. Uhm. A model of RKO. IEEE Trans on Plas. Sci., 1994, 22:706
    74. Benford J and Benford G. Survey of pulse shortening in high-power microwave sources [J]. IEEE Trans. Plasma Sci., 1997, 25(2): 311~317
    75. Caryotakis G. High power microwave tubes, in the laboratory and on line [J]. IEEE Trans. Plasma Science, 1994, 22(5): 683~691
    76.吴中发.3Gw,3.5GHz重复频率RKA的可行性数值模拟研究[A].全国第五届高功率微波学术研讨会论文集,广东株海,2002
    77.崔学芳.C波段双间隙输出腔的理论分析与实验研究[D].北京:中国工程物理研究院研究生部,2000
    78. Hendricks K J, Coleman P D, Haworth M D, Spencer T A, Arman M J, and Bowers L. Issues for generation of long pulse, intense annular relativistic electron beams for relativistic klystron devices [J]. Proc. SPIE 1995, 2557: 9~20.
    79. Louginsland J W. Lau Y Y. Hendricks K. J and Coleman P D. A model of injection-Locked relativistic klystron oscillator [J]. IEEE Trans. Plasma Sci., 1996,24(3):935~937
    80.刘盛纲.微波电子学导轮[M].北京:国防工业出版社,1985:84
    81. Lee T G. Multiple extraction cavities for high-power klystron [J]. IEEE Trans. On E. D., 1993, 40(7): 1329~1340.
    82. Phillips R M, Sprehn D W. High-power klystrons for the next linear collider [J]. Proceedings of the IEEE, 1999,87(5):738~745
    83.丁武.窄带高功率微波源的功率极限[J].高功率微波技术,2004,12(1):1~4
    84.黄华,刘庆想.海军研究实验室相对论速调管的发展综述[J].高功率微波技术,2004,10(4):19~35
    85.朱敏,吴鸿适.速调管双重入式柱形腔的计算[J].电子学报,1981,4:8~15
    86.黄华,王平山,甘延青,陈洪斌,雷方燕.L波段相对论速调管放大器输入腔的研究[J].强激光与粒子束,1997,9(4):573-577
    87.黄华,常安碧,谭杰,马乔生,甘延青.强流相对论电子束群聚的空间电荷波理论分析[J].电子科技大学学报,2001,30(1):53~57
    88.顾茂章,张克潜 编著.微波技术[M].北京:清华大学出版社,1989
    89.张兆镗 编著.微波管高频系统的测量[M].北京:国防工业出版社,1983
    90. Friedman M. Present and future developments of high power RKA [J]. Intense Microwave and particle Beams Ⅱ, ed. proc. SPIE, 1992,1629: 2~8
    91. Friedman M. Self-modulation of an intense relativistic electron beam [J]. J. Appl. Phys., 1984, 56(9): 2459-2474.
    92. Benford J and Benford G. Survey of pulse shortening in high-power microwave sources [J]. IEEE Trans. Plasma Sci., 1997, 25(2): 311
    93. Hendricks K J, Coleman P D, Lemke R W, Arman M J, and Bowers L. The extraction of 1 GW of RF power from an injection locked relativistic klystron oscillator [J]. Phys. Rev. Lett., 1996, 76: 154
    94.黄华,范植开,孟凡宝,谭杰,罗光耀,曹绍云,李正红,雷禄容,吴勇,张北镇,李春霞.S波段长脉冲相对论速调管研究[J].强激光与粒子束,2006,2006,18(6)
    1.黄华,范植开,谭杰,马乔生,甘延青.相对论速调管放大器束流脉冲缩短的研究[J].物理学报,2004,53(4):1129~1135.
    2.黄华,孟凡宝,常安碧,马乔生,张永辉,甘延青,罗敏,陈代兵.强流短脉冲相对论速调管放大器的实验研究[J].强激光与粒子束,2004,16(10):1291~1294.
    3.黄华,孟凡宝,范植开,李正红.大耦合孔同轴输出腔的3维解析分析[J].强激光与粒子束,2004,16(6):915~919;IEEE MPAE2005论文集:1465.
    4.黄华,孟凡宝,范植开,李正红.相对论速调管放大器三轴输出腔的研究[J].高功率微波技术,2005,13(2):1~8;物理学报,2006,55(10).
    5.黄华,范植开,孟凡宝,谭杰,罗光耀,曹绍云,李正红,雷禄容,吴勇,张北镇,李春霞.S波段长脉冲相对论速调管研究[J].强激光与粒子束,2006,18(6).
    6.黄华,范植开,孟凡宝,谭杰,罗光耀,曹绍云,李正红,雷禄容,吴勇,张北镇,李春霞.S波段长脉冲相对论速调管中自激振荡的抑制[A].中国工程物理研究院04学科学术年会论文集,绵阳,2005;高功率微波技术,2006,14(2):1~8.
    7.黄华,范植开,孟凡宝,谭杰,罗光耀,李正红,吴勇.S波段长脉冲相对论速调管放大器的初步研究[J].高功率微波技术,2005,13(3):1~8.
    8.李正红,黄华,常安碧,孟凡宝.任意时间分布电子束与单间隙微波腔的非线性自恰过程研究[J].物理学报,2005,54(4):1564~1571.
    9.李正红,需凡宝,常安碧,黄华,马乔生.两腔高功率微波振荡器研究[J].物理学报,2005,54(8):3578~3582.
    10.黄华,孟凡宝,范植开,李正红.S波段相对论速调管放大器的粒子模拟与优化设计[J].强辐射技术与应用,2005,4(3):32~37.
    11.黄华,孟凡宝.Super-Reltron性能综述[J].高功率微波技术,2005,13(4):20~28.
    12.黄华,刘庆想.美国海军研究实验室相对论速调管发展综述[J].高功率微波技术,2003,11(2):19~33.
    13.黄华编译.窄带HPM器件脉冲缩短研究评述[J].高功率微波技术,2004,12(4):31~42.
    14.黄华,高功率微波源(第七章:相对论速惆管)[M].北京:原子能出版社,2006,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700