电子注对谐振腔振荡频率和电磁场分布的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大功率速调管是一种基于速度调制原理将电子注能量转换成微波能量的微波真空器件,并且在宽带雷达系统、电子对抗和通信系统等领域有了广泛的应用。谐振腔是速调管放大器当前微波频段大功率高增益的主要核心部件。速调管的谐振腔可分为3类,即输入谐振腔,中间谐振腔和输出谐振腔。输入谐振腔的功能是输入外加微波信号,在谐振腔间隙上建立微波电场,调制电子注。中间腔的功能是提高速调管的增益、带宽和效率。输出腔的功能是将群聚电子注的能量转换成微波能量。谐振腔作为速调管的高频互作用电路,其特性对速调管的效率、增益和带宽的性能具有决定性的影响。在速调管工作时会有电子注穿越谐振腔,使得谐振腔的性能发生变化。而谐振腔本征值问题是电磁工程领域的一个重要课题,一方面腔体中不同模式的场型分析直接和此问题有关,另一方面,很多腔体的最优化设计又往往以该问题的求解为基础。无源情况下的各种谐振腔中谐振频率的大小,电磁场的分布,各种模式的分析都是研究这些腔体非常重要的参考。因此本文研究了电子注穿越谐振腔时对谐振腔的振荡频率和电磁场分布的影响。本文的研究内容如下:
     一、首先概述了速调管的结构,工作原理,发展历程,发展现状以及谐振腔的理论。
     二、通过区域划分,建立填充有电子注的谐振腔物理模型,在原有的波动方程的基础上,在边界匹配条件下进行推导得到了电子注区域的电磁场分布和真空区域的电磁场分布。并且通过进一步的推导,得到了T0m0模式下的特征方程。
     三、通过数值计算,得到了谐振腔TM010模式和TM020模式的谐振频率ω随着电子注的等离子体频率ωp的变化,并且采用了图解法求解本征值方程的方法对计算结果进行了验证。随着等离子体的频率不断增大时,谐振频率也会不断增大。当等离子体的频率为40GHz以上时,谐振腔的谐振频率变化不大。最后通过计算仿真,得到了TM010模式和TM020模式的谐振腔的电磁场分布随着等离子体频率的变化情况,并且对其进行了分析研究。由研究结果得知,当等离子体的频率超越谐振腔的谐振频率时,谐振腔内的电磁场分布会有很大的变化,这对于大功率速调管的稳定性将有着重要影响。电子注对谐振腔的影响规律适用于其它类型的大功率微波源,所以对于速调管和其它类型微波源的研制也具有重要的参考价值。
The high power klystron is a microwave vacuum device based on the principle of velocity modulation converting the electron beam energy to the microwave energy, which is a wide range of applications in areas such as broadband radar systems, electronic warfare and communications systems.The resonant cavity is the main core components of the klystron. The klystron resonant cavity can be divided into three categories, the input cavity, the middle of the cavity and the output cavity.The function of the input cavity is inputing the microwave signal, and producing microwave electric field in the cavity gap as to modulate electron beam. The function of the middle cavity is to improve the gain, bandwidth and efficiency of the klystron. The function of the output cavity is to convert the cluster electron beam energy into microwave energy. As a high-frequency interaction circuits of the klystron, the resonant cavity's characteristics have a decisive impact on efficiency, gain and bandwidth performance of the klystron. When the klystron works, the electron beam will through the resonant cavity, which makes the resonant cavity's performance change. The eigenvalue problem of the resonant cavity is an important topic of electromagnetic engineering fields. On the one hand, the different modes analysis of the cavity field is directly related to this issue, on the other hand, the optimization design of many cavity is often based on the solving of the problem. The size of the resonant frequency, the distribution of the electromagnetic field and the analysis of the various modes are the most important reference when studying these cavities. This article studies the influence of the resonant frequency and electromagnetic field distribution in the resonant cavity traversed by electron beam. The contents of this paper are as follows.
     Firstly, we briefly describe the structure, working principle and the the development of the klystron as well as the theory of the resonant cavity.
     Secondly, through zoning, a physical model of the resonant cavity filled with the electron beam was established. On the basis of the original wave equation, the electromagnetic field distribution of the electron beam region and the vacuum region are educed in the boundary matching conditions. And the eigenfrequency equations of the TM0m0mode are educed by further educing.
     Thirdly the resonant frequency of the TM010mode and the TM020mode changes with the plasma frequency can be got by calculating. And uses a graphical method for solving the eigenvalue equation to verify the calculation results. The results show that with the increasing of the plasma frequency, the resonant frequency will continue to increase. When the plasma frequency exceed40GHz, the resonant frequency o changes little. Finally, The resonant cavity's electromagnetic field distribution of the TM010mode and the TM020changes with the plasma frequency also can be got by simulating. When the plasma frequency increases, it will make the electromagnetic field distribution change. And the results show that, when the plasma frequency exceeds the resonant frequency, the electromagnetic field distribution of the resonant cavity will change greatly, which will have an important impact on the stability of the high power klystron. The impact of the law of the resonant cavity filled with electron beam also applies to other types of high-power microwave source. So it will have important reference value for the development of the klystron and other types of microwave sources.
引文
[1]Gelvich E A, Zhery E V. A new generation of power klystrons on the base of multiple-beam design [C]. IEEE Microwave Theory and Techniques Soc,1991.1319-1329.
    [2]电子管设计手册编委会.大功率速调管设计手册[M].北京:国防工业出版社,1979.
    [3]钮得禄,丁耀根,刘从懋等.10%带宽兆瓦级速调管放大器[J].电子科学学刊,1983,5(3):177-178.
    [4]丁耀根.宽带速调管输出段的时间积分程序[J].电子科学学刊,1983,5(4):238-246.
    [5]丁耀根,钮得禄,陆孝厚等.S波段2.5兆瓦宽频带大功率速调管的研制[J].电子科学学刊,1985,7(4):247-253.
    [6]甘本祓,吴万春编.现代微波滤波器的结构与设计(下册)[M].北京:科学出版社,1974.
    [7]丁耀根,刘铁山,赵京君.影响宽带大功率速调管性能的若干技术问题的研究[C].中国电子学会真空电子学分会微波管学术会议,北京:1991,2-4.
    [8]L. Song, P. Ferguson, L. Ives, et al., Development of an X-band 50 MW multiple beam klystron[J], Proceedings Of the Fifth IVEC, Monterey, USA,2004,286-287.
    [9]I.A.Freydovich, E.A.Knapp, P.V.Nevsky, et al., A variable high-power multi-beam klystron design[J], Nuclear Instruments & Methods in Physics Research, A539,2005, 63-73.
    [10]Y. H. Chin, Design and performance of L-band and S-band multi-beam klystrons[J], Proc.24th Linear Accel. Conf., Victoria, BC, Canada,2008,369-373.
    [11]T. Habermann, A. Balkcum, R.Begum, et al., High-power high-efficiency L-band multiple-beam klystron development at CPI[J], IEEE Trans. on plasma science,38 (6), 2010,1264-1269.
    [12]谢家麟,赵永祥,速调管群聚理论[M].北京:科学出版社,1966.
    [13]Hai Li, Yu, S.S., Theory of inductively detuned traveling wave structures[J], Nuclear Instruments & Methods in Physics Research, A_361, no.1-2,1995,21-26.
    [14]Shin, Y.M., Park, G.S., Scheitrum, G.P., Caryotakis G., Circuit analysis of an extended interaction klystron[J], Journal of the Korean Physical Society,44(5),2004,1239-1245.
    [15]R.W.Gould and A.W.Trivelplece, A new mode of wave propagation on electron beams, Symposium on Electronic Wavegudes[J], Polytechnic Institute of Brooklyn, April, 1958.
    [16]F.A.Blum, L.O.Bauer, R.W.Gould, et al., Mcrowave scattering and noise emission from afterglow plasmas in magnetic field[J], The Physics of Fluids,12(5),1969,1018-1027.
    [17]E.A.Gelvich, E.V.Zhery,et al.A New Generation of Power Klystrons on the Base of Multiple-Beam Design[J].IEEE MTT-S, Digest,1991:1319-1329.
    [18]Edward A.Gelvich,Ludvik M.Borisov,et al.the New Generation of High-Power Multiple-Beam Klystrons[J].IEEE Trans.on MTT,1993,41(1):15-19.
    [19]A.S.Pobedonostsev, E.A.Gelvich.Multiple-Beam Microwave Tubes[J]. IEEE MIT-S Digest,1993:1131 - 1134.
    [20]丁耀根,彭钧,S波段多注速调管的研制[J].电子科学学刊,1996,18(2):221-224.
    [21]BAA White Paper.Proposal Multiple Beam Klystron[J].The U.S.A Version, Stanford University, May 22,1997.
    [22]R H Abrams,B Levush,A A Mondelli,R K Parker.Vacuum Electronics for the 21th Century.IEEE Microwave Magazine,Sep 2001:61-72.
    [23]丁耀根,彭钧等,多注速调管的研究进展.中国电子学会真空电子分会第十一界学术年会论文集,1997年8月,青岛:118-121.
    [24]电子管设计手册编辑委员会,大功率速调管设计手册[M],北京:国防工业出版社,1979年第1版.
    [25]J R Pierce.Theory and Design of Electron Beams.1954, ChapterlO.
    [26]中国科学院电子学研究所编,微波管电子光学系统设计手册[M],北京:国防工业出版社,1981年第一版.
    [27]M. A. Allen, G. S. Kino, On the theory of strongly coupled cavity chains[J], IEEE Trans. MTT,1960 8(3),362-272,.
    [28]H. J. Curnow, A general equivalent circuit for coupled-cavity slow-wave structures [J], IEEE Trans. on MTT,1995 13(5),671-675.
    [29]丁耀根,彭均,多注速调管一一种新型大功率微波放大器[J],电子科学学刊.1996,18(1):64-71.
    [30]赵京君,丁耀根,刘铁山,改进宽带速调管等激励功率频率特性的方法[J],电子 科学学刊,1992,4(1):58-63.
    [31]丁耀根等,大功率速调管的研究进展.中国科学院电子学研究所建所40周年学术论文集,1990,5(1):58-63.
    [32]丁耀根等,S波段2.5 MW宽频带大功率速调管的研制.电子科学学刊,1985,7(4):247—253.
    [33]林福民,丁耀根,刘铁山,孙小欣,宽带速调管滤波器加载输出腔间隙阻抗的频率特性的模拟计算方法[J],电子与信息学报,2003,25(12):982—989.
    [34]E.Lien and D.Robinson,Study and investigation leading to the design of broadbandhigh-power klystron amplifiers[J],Technical Report for United States Army Electronics Command, No.ECOM-02157-1,March,1967.
    [35]林福民,丁耀根,沈斌,强耦合双间隙微波谐振腔的特性分析[J].电子与信息学报,2003,25(7):982—989.
    [36]刘俊平.低功耗MPT谐振腔改进设计与实验研究[D].西北工业大学图书馆:西北工业大学,2006.
    [37]林福民,丁耀根,多注速调管π模耦合双间隙腔截止波导输出回路研究[J],强激光与粒子束,2006,18(12),247-253.
    [38]林福民,王志勇,黄焕新,反射系数相位法计算谐振腔外观品质因素的局限性[J],强激光与粒子束,2005,9(17),156-159.
    [39]都培伟.双间隙输出腔速调管的注波互作用程序设计[D].电子科技大学图书馆:电子科技大学,2009
    [40]吴红丽.微带环形谐振腔双模带通滤波器的研究[D].南京邮电大学图书馆:南京邮电大学,2006.
    [41]钮得禄,丁耀根,刘从懋等10%带宽兆瓦级速调管放大器[J],电子科学学刊,1983,5(3),177-178.
    [42]丁耀根,宽带速调管输出段的时间积分程序[J],电子科学学刊,1883,5(4),238-246.
    [43]丁耀根,钮得禄,陆孝厚等,S波段2.5兆瓦宽频带大功率速调管的研制[J],电子科学学刊,1985,7(4),247-253.
    [44]丁耀根,陆孝厚,具有两节滤波器的速调管宽带输出端的设计方法[J],电子学通讯,1982,4(3),168—174.
    [45]曾亚文.微波器件谐振腔特征模式分析的算法研究[D].电子科技大学图书馆:电子科技大学,2008
    [46]林福民,丁耀根,刘铁山,等.宽带速调管滤波器加载输出腔间隙阻抗的频率特性的模拟计算方法[J].电子与信息学报.2003,25(12):1798-1804.
    [47]董和平,丁耀根,王进华.速调管输出腔高阶TM模式间隙阻抗的模拟计算[J].电子与信息学报.2007,29(10):2517-2520.
    [48]林福民,丁耀根,张志强,等.速调管双间隙腔的间隙阻抗矩阵频率特性的模拟计算方法[J].电子与信息学报,2004,26(9):1480-1486.
    [49]林福民,丁耀根.L波段多注速调管同轴线滤波器宽带输出回路的研究与设计[J].电子与信息学报,2004,26(5):813-819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700