有限点方法与数值激波不稳定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了有限点方法和数值激波不稳定现象。主要结果有:
     1.对二维光滑函数,推导与给出了在任一点上二阶方向微商的极值公式,即一阶微商的梯度公式。设给定三个互不平行方向上的二阶方向微商,或者给定两个不平行方向上的二阶微商及其混合微商,本文分别给出了二阶方向微商达到极大值和极小值的方向,以及相应的极大值公式与极小值公式。极大值方向与极小值方向是垂直的。
     2.利用二阶方向微商关系式,推导与给出了第二类一阶方向微商的四点近似公式;讨论了三点公式四点公式在不同意义下的差异;给出了从两点公式到五点公式的截断误差不断递减的结论。
     3.在二维非规则区域的散乱离散点集上,应用有限点公式,对多个算例,成功地和有效地数值求解了椭圆型方程的第一边值问题。数值结果表明,有限点方法具有较好的计算精度与收敛速度。一般说来,一阶微商具有接近二阶的精度,二阶微商具有接近一阶的精度。
     4.对双曲守恒律方程的有限点方法,开展了选点方法,人工粘性方法与格式构造研究,获得了初步成果与较深刻的认识:对间断较弱的二维问题,获得了较满意的二维图像;对一般的二维问题,需根据流场的方向性以及间断的形态,恰当地选择邻点与粘性。
     5.对二维流体力学有限体积方法应用中出现的激波不稳定现象,给出了混合格式的设计方法,取得了良好的消除激波不稳定性的效果。主要做法为:对连续性方程以及动量方程之一,采用已有的消除激波不稳定性通量,如混合HLL通量等;而对能量方程及另一动量方程仍采用原有通量。我们利用混合方法,有效地消除了Roe格式,HLLC格式和AUSMD格式等的数值激波不稳定现象。该方法计算效率高,激波分辨率好。
This thesis is about Finite Point Method (FPM) and numerical shock instability. The main results in this paper consist of the next parts as following:
     1. The formulae of the second-order directional differential's extremum at an arbitrary point in a computational domain are presented for 2-D smooth function. Given three second-order directional differentials in corresponding mutual non-parallel directions, or two second-order directional differentials in corresponding non-parallel directions and their second-order mixed differential, the maximum and minimum of the second-order directional differentials and the corresponding directions are presented. A conclusion is that the maximum direction and the minimum direction are perpendicular to each other.
     2. Based on the second-order directional differential formulae, the second type four-point formula about the first-order directional differential are derived; the three-point formula and four-point formula in a different sense of the difference are discussed; also, a conclusion is given that the truncation error of from two to five-point formula continues to decline.
     3. By FPM, the simulation to the second-order elliptic PDE on a set of 2-D scattering points in non-regular domain is proposed. Several test problems and their numerical results show that the FPM has good accuracy and convergence rate. Generally, the approximation of first-order differential is almost second-order accurate and the approximation of second-order differential is almost first-order accurate.
     4. In order to simulate the hyperbolic conservation laws by FPM, the method of choosing neighboring points, artificial viscosity and corresponding schemes are studied. The preliminary numerical results and their conclusions are given: for FPM, the satisfying results for many problems with weak discontinuities are obtained; as to the general problems, the better viscosity and better method for choosing neighboring points in accordance with the direction of the flow field and the form of discontinuities are under consideration.
     5. A hybrid method to eliminate the shock instability in 2-D Euler equations is proposed. On one hand, this paper chooses the fluxes that are free of shock instability to be used in mass equation and one of momentum equation. On the other hand, this paper chooses the fluxes that can resolve full-wave in Riemann problems and suffer from shock instability in another momentum equation and energy equation. This hybrid method does help to eliminate shock instability of the Roe solver, HLLC solver and AUSMD scheme. Furthermore, the hybrid method has a high computational efficiency and good resolution of shock.
引文
[1] Harten A, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys, 1983, 49:357-393.
    [2] Harten A, On a class of high resolution total variation stable finite difference schemes, SIAM J. Numer Anal, 1984, 21:1-23.
    [3] Van Leer B, Towards the ultimate conservative difference scheme II. J. Comput. Phys, 1974, 14:361-370.
    [4] Van Leer B. Towards the ultimate conservative difference scheme III. J. Comput. Phys, 1977, 23:263-275.
    [5] Van Leer B. Towards the ultimate conservative difference scheme IV. J. Comput. Phys, 1977, 23:276-299.
    [6] Van Leer B. Towards the ultimate conservative difference scheme V. J. Comput. Phys, 1979; 32:101-136.
    [7] Woodward P. and Colella P, The piecewise parabolic method(PPM) for gas-dynamics simulations, J. Comput. Phys, 1984, 54:174-201.
    [8] Harten A, Engquist B, Osher S. and Chakravathy R, Uniformly high order accurate essentially ono-oscillatory schemes III. J. Comput. Phys, 1987, 71:231-303.
    [9] Harten A, Engquist B, Osher S. and Chakravathy R, Some results on uniformly high order accurate essentially non-oscillatory schemes, Applied Nume Math, 1986, 2:347-378.
    [10] Harten A, and Osher S, Uniformly high order accurate essentially ono-oscillatory schemes. SIAM J. Numer Anal, 1987, 24:279-309.
    
    [11] Harten A, ENO schemes with subcell resolution, J. Comput. Phys, 1989, 83:148-184.
    [12] Liu X. D and Osher S, Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids, J. Comput. Phys, 1998, 142:304-338.
    [13] Jiang G-S and Shu C.W, Efficient implementation of weighted ENO schemes, J. Comput. Phys, 1996, 126:202-228.
    [14] SM C, Hu J and Shu C.W, A technique for treating negative weights in WENO schemes, J. Comput. Phys, 2002, 175:108 - 127.
    [15] Huang W Z and Russell R Y, Moving mesh partial differential equations (MMPDES) based on the equidistribution principle, SIAM J. Numer. Anal, 1994, 31:709 - 730.
    [16] Tang H Z, Tang T and Zhang P W, An adaptive mesh redistribution methods for non-linear Hamilton-Jacobi equations in two-and three-dimensions, J. Comput. Phys, 2003, 188:543-572 .
    [17] Tang H Z and Tang T, Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal, 2003, 41: 487-515.
    [18] Hui W.H, Li P.Y and Li Z.W, A unified coordinate system for solving the two-dimensional Euler equations, J. Comput. Phys, 1999, 153:596-637.
    
    [19] Yuan G. W, Shen L. J and Shen Z. J, Adaptive coordinate transformation methods, 计算物理, 2005, 22:7-12.
    [20]Hirt C W,Amsden A A and Cook J L.An arbitrary Lagrangian-Eulian computing method for all flow speeds,J.Comput.Phys,1974,14:76-85.
    [21]李德元,徐国荣,水鸿寿等,二维非定常流体力学数值方法,科学出版社,1987.
    [22]Amsden A A,Ruppel H M and Hirt C W,SALE:A simplified ALE computer program for fluid flow at all speeds,LA-8095,LANL,1980.
    [23]Benson D J,An efficient accurate,simple ALE method for nonlinear finite element programs,Comput.Meth.Appl.Mech.Engrg,1989,72:305-350.
    [24]Liu G R.Mesh free methods:moving beyond the finite element method,CRC Press,Boca Raton,2002.
    [25]张雄,刘岩,无网格法,清华大学出版社,2004.
    [26]Li Shaofan,Liu Wing Kam.Meshfree particle method,Springer,2004.
    [27]Li S and Liu W K.Meshfree and particle methods and their application,Appl.Mechanics Review,2001,27:1-80.
    [28]Belytschko T,Krongauz Y,Organ D,Fleming M and Krysl P,Meshless methods:an overview and recently developments,Computers Methods in Applied Mechanics and Engineering,1996,139:3-47.
    [29]Monaghan J J,Particle methods for hydrodynamics,Computer Physics Report,1985,3:71-124.
    [30]Monaghan J J,Smoothed particle hydrodynamics,Annual Review of Astronomical and Astrophysics,1992,30:543-574.
    [31]Monaghan J J,SPH without a tensile instability,J.Comput.Phys,2000,159:290-311.
    [32]Onate E,Idelsohn S,Zienkiewicz O C and Taylor R L,A Finite Point Method in Computational Mechanics Application to Convective Transport and Fluid Flow,Int.J.Num.Meth.Engrg,1996,39:3839-3866.
    [33]Onate E,Derivation of stabilized equations for advective-diffusive transport and fluid flow problems,Comput.Methods Appl.Mech.Engrg,1998,151:233-267.
    [34]Onate E,Perazzo F and Miquel J,A Finite Point Method for elasticity Problems,Comput.Srtuct,2001,79:2151-2163.
    [35]Onate E and Idelsohn S,A mesh-free finite point method for advective-diffusive transport and fluid flow problems,Computational Mechanics,1998,21:283-292.
    [36]Onate E,Idelsohn S,Zienkiewicz O C,Taylor R L and Sacco C,A Stabilized Finite Point for Analysis of Fluid Mechanics Problems,Comput.Methods Appl.Mech.Engrg,1996,139:315-346.
    [37]Sridar D and Balakrishnan N,An Upwind Finite Difference Scheme for Meshless Solvers,J.Comput.Phys.,2003,189:1-29.
    [38]Bitaraf M and Mohammadi S,Solving partial differential equations for plate bending problems using Finite Point Method.Proceedings of the ECCOMAS Thematic Conference on Meshless Methods,Edited by V.Leitao C.Alves,C.Duarte,Portugal,2005.
    [39]Bernand P S,A deterministic vortex sheet method for boundary layer flow.J.Comput.Phys,1995,117:132-145.
    [40]Chorin A J,Discretization of a vortex sheet,with a example of roll-up,J.Comput.Phys,1973,13:423-429.
    [41]Chorin A J.Vortex sheet approximation of boundary layers,J.Comput.Phys,1978,27:428-442.
    [42]Leonard A,Vortex methods for flow simulation,J.Comput.Phys,1980,37:289-335.
    [43]Leonard A,Computing three-dimensional incompressible flows with vortex elements,Ann.Rev.Fluid Mech,1985,17:523-529.
    [44]Chen J S,Pan C and Wu C T,Large deformation analysis of rubber based on a reproducing kernel particle method,Computational Mechanics,1997,19:153-168.
    [45]Jun S,Liu W K and Belytschko T,Explicit reproducing kernel particle method for large deformation problems,Int.J.Num.Meth.Engrg,1998,41:137-166.
    [46]Li S,Hao W and Liu W K,Meshfree simulations sheer banding under large deformation,International Journal of Solids and Structures,2000,37:7185-7206.
    [47]Libersky L D,Petschek A G,Carney T C and Hipp J R,High strain Lagrangian hydrodynamics,J.Compt.Phys,1993,109:67-75.
    [48]Wagner G J and Liu W K,Hierarchical enrichment for bridging scales and meshfree boundary conditions,Int.J.Num.Meth.Engrg,2001,50:507-524.
    [49]Li S and Liu W K,Numerical simulation of strain localization in inelastic solids using mesh-free methods,Int.Jo Num.Meth.Engrg,1998,48:285-309.
    [50]Kronganz Y and Belytschko T,Enforcement of essential boundary conditions in meshless approximations using finite elements,Computer Methods in Applied Mechanics and Engineering,1996,131:133-145.
    [51]Samarskii A A and Gulia A V,Stability of finite-difference schemes(In Russian),Nauka Publishers,Moscow,1973.
    [52]Samarskii A A,The theory of finite difference schemes(In Russian),Nauka Publishers,Moscow,1977.
    [53]Richtmyer R D and Morton K W,Difference methods for initial value problems,Willey-Interscience,New York,1967.
    [54]Zhou Yulin,Applications of discrete functional analysis to the finite difference method,Intern.Acad.Publishers,1990.
    [55]Zhou Yulin,Difference schemes with nonuniform meshes for nonlinear parabolic system,JCM,1996,14:319-335.
    [56]Zhou Yulin,Shen Longjun and Han Zhen,Finite difference method of first boundary problem for quasilinear parabolic systems,Science in China(Ser.A),1991,34:405-418.
    [57]Anderson J D,Computational fluid dynamics:the basis with applications.Mc Graw-Hill,1995.
    [58]Wilkins M L,Computers simulation of dynamics phenomena,Springer-Verlag,Berlin Heidelberg,1999.
    [59]Kuhnert J,An upwind finite pointset method for compressible Euler and Navier-Stokes equations,Springer Lecture Notes in Computational Science and Engineering:Meshfree Methods for Partial Differential Equations Ⅰ,vol.26,Springer,Berlin,2002.
    [60]沈隆钧,吕桂霞,沈智军,有限点方法研究,计算物理,2008,25:505-524.
    [61]Longjun Shen,Guixia Lv,Zhijun Shen,A Finite Point Method Based on Directional Differences,SIAM Journal on Numerical Analysis,accepted,2009.
    [62]吕桂霞,有限点方法研究的新进展,中国工程物理研究院博士后研究报告,2006年7月.
    [63]吕桂霞,沈隆钧,沈智军,非结构网格上温度扩散方程的能流计算方法,计算物理,2007,24:379-386.
    [64]Guixia Lv,Longjun Shen,Zhijun Shen,Numerical Methods for Energy Flux of Temperature Diffusion Equation on Unstructured Grids,Communication in numerical methods in engineering,accepted,2008.
    [65]孙顺凯,沈隆钧,严格追踪界面的一维多介质流体力学拉格朗日有限点方法.
    [66]Z.J.Shen,L.J.Shen,G.X.Lv and W.Chen,A Lagrangian finite point method solving two-dimensional fluid dynamic problem,Proceedings of the ECCOMAS Thematic Conference on Meshless Method,2005,D22.1-22.2.
    [67]沈智军,沈隆钧,吕桂霞,陈文,袁光伟,基于Riemann解的二维流体力学Lagrange有限点无网格方法,计算物理,2005,22:377-385.
    [68]Li Yin and Longjun Shen,Upwind isoparametric interpolation finite point method for 2D scalar conservation equation,Communications in Numerical Methods in Engineering,2008,24:2061-2075.
    [69]Li Yin,Guixia Lv and Longjun Shen,TVD finite point method for 2D conservation equation,Journal of Computer Mathematics.
    [70]Li Yin,Longjun Shen and Guixia Lv,Five-point positive meshless scheme for hyperbolic conservation laws,revised.
    [71]Li Yin,Guixia Lv and Longjun Shen,Relations of 3D directional derivatives and expressions of typical differential operators,Applied Mathematics a Jounal of Chinese Universities,accepted,2009,24.
    [72]Godunov S.K,A finite difference method for computation of discontinuous solutions of the equations of fluid dynamics.Mat.Sb.1959,47:271-306.
    [73]Harten A and Lax P D,A random choice finite difference scheme for hyperbolic conservation laws,SIAM J.Nume.Anal,1981,18:289-315.
    [74]Einfeldt B,On Godunov-type methods for gas dynamics.SIAM,J.Numer.Anal.1988,25:29-318.
    [75]Toro,E.F,Riemann solver and Numerical Methods for Fluid Dynamics,second ed.Springer,Berlin,1999.
    [76]Roe P.L,Approximate Riemann solvers,parameter vector and difference schemes,J.Comput.Phys,1981,43:357-372.
    [77]Osher S and Solomon F,Upwind schemes for hyperbolic systems of conservation laws,Math.Comput,1982,32:1379-1403.
    [78]Toro E.F,Spruce M and Speares W,Restoration of the contact surface in the HLL-Riemann solver,Shock Wave,1994,4:25-34.
    [79]Harten A,Lax P D and van Leer B,On upstream differencing and Godunov-type schemes for hyperbolic conservation laws,SIAM Review,1983,25:35-61.
    [80]Steger J.L and Warming R.F,Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods,J.Comput.Phys,1981,40:263-193.
    [81]Van Leer B,Flux-Vector Splitting for the Euler Equations,Technical Report ICASE 82-30,NASA Langley Research center,USA,1982.
    [82]Liou M.S and Steffen C.J,A new flux splitting scheme,J.Comput.Phys,1993,107:23-39.
    [83]Liou M.S,A sequel to AUSM:AUSM+,J.Comput.Phys,1996,129:364-382.
    [84]Kim K.H,Lee J.H and Rho O.H,An improvement of AUSM schemes by introducing the pressure-based weight functions,Comput.Fluids,1998,27:311-346.
    [85]Quirk J,A contribution to the Great Riemann Solver Debate,Int.J.Nume.Meth.Flu,1994, 18:555-574.
    [86]Wada Y and Liou M-S,An accurate and robust flux splitting scheme for shock and contact discontinuities,SIAM J.Sci.Comput,1997,18:633-657.
    [87]Pandolfi M and D'Ambrosio D,Numerical instabilities in upwind methods:analysis and cures for the "carbuncle" phenomenon.J.Comput.Phys,2001,166:271-301.
    [88]Sanders R,Morano E and Druguet M,Multidimensional dissipation for upwind schemes:stability and applications to gas dynamics,J.Comput.Phys,1998,145:511-37.
    [89]Gressier J and Moschetta J-M,Robustness versus Accuracy in Shock-Wave Computations,Inter.J.Nume.Meth.Flu,2000,33:313-332.
    [90]Chauvat Y,Moschetta J-M and Gressier J,Shock wave numerical structure and the carbuncle phenomenon,Inter.J.Nume.Meth.Flu,2004,47:903-909.
    [91]Liou M-S,Mass Flux Schemes and Connection to Shock Instability,J.Comput.Phys,2000,160:623-648.
    [92]Kim S.S,Kim C,Rho O.H and Hong S.K,Cures for the shock instability:Development of a shock-stable Roe scheme,J.Comput.Phys,2003,185:342-374.
    [93]Davis S,A rotationally biased upwind difference scheme for the Euler equations,J.Comput.Phys,1984,56:65-92.
    [94]Levy DW,Powell KG and Van Leer B,Use of a rotated Riemann Solver for the two-dimensional Euler equations,J.Comput.Phys,1993k,106:201-214.
    [95]Yu-Xin.Ren,A robust shock-capturing scheme based on rotated Riemann solvers,Computers &Fluids 2003,32:1379-1403.
    [96]Von Neumann J and Richtmyer R D A,A method for the numerical calculation of hydrodynamical shocks,J.Appl.Phys,1950,21:232-273.
    [97]White J.W,A new form of artificial viscosity,J.Comput.Phys,1973,12:553.
    [98]Wilkins M.L,Use of artificial viscosity in multidimesional fluid dynamic calculations,J.Comput.Phys,1980,36:281-303.
    [99]Wilkins M.L,Computer Simulation of Dynamic Phenomena,Springer;1 edition,1999.
    [100]Washizu K,Variational methods in elasticity and plasticity,Thirk edition,Pergamon Press,Oxford,England,1982.
    [101]Flanagan D P and Belytschko T,A uniform strain hexahedron and quadrilateral and orthogonal hourglass control,Int.J.Numer.Meth.Eng.1981,17:679-706.
    [102]Landshoff R,A numerical method for treating fluid flow in the pressence of shocks,Los Alamos Scitific Laboratory LA-1930,1955.
    [103]Takewaki H,Nishiguchi A,Yabe T.Cubic interpolated pseudo-particle method(CIP) for solve hyperbolic-type equations,J.Comput.Phys,1985,61:261-268.
    [104]Takewaki H and Yabe T.The cubic-interpolated pseudo-particle(CIP) Method:Application to nonlinear and multi-dimensional hyperbolic equations,J.Comput.Phys,1987,70:355-372.
    [105]Yabe T,Xiao F and Takayuki U,The constrained interpolation profile method for multiphase analysis,J.Comput.Phys,2001,169:556-593.
    [106]Jameson A,Schmidt W and Turkel E,Numerical solutions of the Euler equations by finite volume method using Runge-Kutta time steppling schemes,AIAA 81:1259.
    [107]Maccormack R W,Numerical solutions of the interaction of a shock wave with a laminar bound- ary layer.Lecture Notes in Physics.New York,Springer Verlag,1978.
    [108]Hung C M and Maccormack R W,Numerical solutions of three-dimensional shock-wave and turbulent boundary layer interaction,AIAA,16:1090-1096.
    [109]Morinishi K,Gridless type solutions for high reynolds number multielement flow fields,AIAA Paper,1995,95:1856.
    [110]Praveen C,A positive meshless method for hyperbolic equations,Report 2004-FM-16,Indian Institute of Science.
    [111]张小华,无网格方法在计算流体力学中的应用研究,西北工业大学学位论文,2006.
    [112]Kurganov A and Tadmor E,Solution of two-dimensional Riemann problem for gas dynamics without Riemann problem solvers,http://hdl.handle.net/2027.42/34949.
    [113]Schulz-Rinne C.W,Collins J.P.and Glaz H.M,Numerical solution of the Riemann problem for two-dimensional gas dynamics,SIAM J.Sci.Comput,1993,14:1394-1414.
    [114]Lax P.D.and Liu Xu-Dong,Solution of the Riemann problem of two-dimensional gas dynamics by positive schemes,SIAM J.Sci.Comput,1998,19:319-340.
    [115]Schulz-Rinne C.W,Classification of the Riemann problem for two-dimensional gas dynamics,SIAM J.Math.Anal,1993,24:76-88.
    [116]Nishikawa H and Kitamura K,Very simple,carbuncle free,boundary-layer-resolving,rotated-hybrid Riemann solvers,J.Comput.Phys,2008,227:2560-2581.
    [117]Woodward P and Colella P,The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks,J.Comput.Phys,1984,54:115-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700