基于操纵稳定性的混合动力客车平顺性评价与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们对客车安全性和舒适性要求的逐渐提高,导致汽车设计者对平顺性和操纵稳定性提出了更高要求,尤其是人们对高品质生活的追求,导致客车的平顺性成为设计和优化的主要性能。随着全球“节能减排”号召的大力实施,汽车行业开始研究混合动力汽车(Hybrid Electrical Vehicle,简称HEV),本文提出针对混合动力客车平顺性的分析、评价和优化设计方法进行研究,由于车辆的平顺性与操纵稳定性相互关联,相互影响,因此本文的平顺性研究是在满足其操纵稳定性的前提下进行的。本课题结合某企业将某一款畅销客车改装成混合动力客车项目,在研究其结构布置引起质量参数改变的前提下,应用ADAMS整车模型仿真其平顺性和操纵稳定性,然后基于操纵稳定性构建混合动力客车平顺性评价体系,并对平顺性优化设计方法展开系统研究。
     (1)整车虚拟建模技术与平顺性、操纵稳定性分析
     模型是车辆性能分析的基础,因此需要研究车辆虚拟建模技术。
     首先,针对后悬架中最复杂的钢板弹簧元件,提出改进中性面法建立钢板弹簧模型,并对比分析了仿真与试验刚度值,模型建立速度较快,精度较高。
     其次,创建FTire轮胎模型,重构虚拟试验场路面,以建立精度较高的整车刚柔耦合模型,其性能均能满足要求。
     最后,将已建立的悬架、转向、轮胎、路面和车身子系统整合为整车模型,分别进行车辆的平顺性和操纵稳定性仿真分析,再分别进行实车试验,验证了仿真结果的准确性,说明建立的普通客车的整车模型是准确的,可以用来做仿真试验。为后续混合动力客车的模型建立提供了一种可行的建模方法。
     (2)混合动力客车结构布置及对平顺性和操纵稳定性的影响分析
     将普通客车改装成混合动力客车,为了满足混合动力客车的动力性、经济性和能量控制等要求,必须对普通客车结构进行以加装总成部件为主的改装设计。对于后加装的总成部件,尤其是电机、电机控制器、电池模块等重要总成部件,不仅作用大,而且其体积和质量均很大。因此,需要认真设计其布置位置,尽量使混合动力客车与原车的前、后轴荷相差不大,以保证车辆的各方面性能。尤其是7个电池模块需要分成3个部分分别安装,以保证整车性能。然后针对整车布置参数的变化,分别分析质量参数对整车平顺性和操纵稳定性的影响。
     (3)基于操纵稳定性的混合动力客车平顺性评价方法与系统开发
     因为平顺性与操纵稳定性的相互影响关系,针对混合动力客车的平顺性和操纵稳定性分析结果,将评价操纵稳定性的近30个指标进行降维处理,得出对操纵稳定性累计贡献率达99%的10个指标,将各指标的贡献率确定为指标权重,用圆心角度表示权重,提出操纵稳定性评价的改进网状图法。将加权加速度均方根值与最有代表性的4个操纵稳定性评价指标组合,提出一种基于操纵稳定性的混合动力客车平顺性评价方法。最后应用VS2008 C#语言开发了混合动力客车平顺性评价系统,方便了用户评价使用。
     (4)基于操纵稳定性的混合动力客车平顺性优化
     混合动力客车总质量的增加使该车平顺性略有提高,但是整车布置参数的变化又使车辆的轴荷分配发生改变、质心位置后移,进而导致车辆的操纵稳定性变差。针对上述情况,以保证操纵稳定性、优化平顺性为目的,深入分析混合动力客车改装设计对车辆平顺性产生的影响以及各因素的影响规律。为了同时保证车辆的操纵稳定性,对该车的前横向稳定杆进行改型设计。然后,采用遗传算法优化的神经网络对混合动力客车的平顺性优化,除了悬架的刚度和阻尼之外,还将加装的两组电池质心的纵坐标作为优化变量,在保证该车操纵稳定性的前提下,得出平顺性优化方案。最后通过仿真试验对优化后的车辆平顺性和操纵稳定性进行了分析与评价。
     本文的创新之处在于:
     (1)提出一种建立钢板弹簧仿真模型的新方法——改进中性面法,在仿真其刚度时,应用板——球式加载,能更快速、准确的仿真其刚度值,为整车虚拟试验奠定基础。
     (2)依据混合动力客车前、后轴荷与原车相一致原则,对于加装的电机、电机控制器、电池模块等体积和质量较大的部件进行布置,并提出将加装的电池模块分解,分别安装在车架中段和末段的左右两侧,以保证整车性能。
     (3)提出操纵稳定性评价的改进网状图法,用圆心角分别表示操纵稳定性的各指标权重,该方法可以方便、直观地看到操纵稳定性的计分状况。进而提出基于操纵稳定性的混合动力客车平顺性评价方法,可以同时对有关联性的平顺性和操纵稳定性进行综合评价,并应用VS2008 C#语言开发出面向用户的评价系统,方便用户使用。
     (4)应用遗传算法优化的神经网络法对混合动力客车平顺性进行优化,除了悬架刚度和阻尼以外,将加装的电池质心的纵坐标也作为优化变量,切实考虑了混合动力客车的结构特点。该优化方法考虑了操纵稳定性的要求,尽量优化混合动力客车的平顺性,以适应人们对乘坐舒适性的极大追求。
     本文为混合动力客车平顺性、操纵稳定性等主要使用性能分析提供重要的仿真建模方法参考,为混合动力客车的结构设计提供了一种布置方案,为平顺性和操纵稳定性评价方法的完善提供充分依据,为混合动力客车性能优化提供一种新的理论。
The gradual increase in passenger safety and comfort requirements, leading automotive designers have put forward higher requirements for the ride comfort and handling stability. With implementing strongly the call of "saving energy and reducing emission" in the global, the automotive industry began to study hybrid vehicles (Hybrid Electrical Vehicle, referred to as HEV). The analysis, evaluation and optimization on ride comfort and handling stability of hybrid bus become research focus at present. In this paper, combining with a bus improvement to a hybrid bus, the changes of the structural arrangement and quality parameters were studied, and simulated its ride comfort and handling stability by modeling with ADAMS, and then, the ride comfort evaluation system of hybrid bus based on handling stability was built, at the same time, and the corresponding optimal design theory research were done in depth.
     (1) Vehicle virtual modeling techniques for ride comfort and handling stability analysis
     Firstly, for the most complex leaf springs in rear suspension, an improved neutral face method was proposed to build the model, and simulation values was comparatively analyzed with the test stiffness. The modeling method was more high speed and high precision.
     Secondly, FTire tire model was built and virtual proving ground road was reconstructed. The road roughness measurement test was completed by application of multi-function laser detector. The data was processed by interpolation method. The grid combination road model was reconstructed to provide a realistic testing ground model for bus ride comfort simulation analysis.
     Thirdly, the high precision rigid-flexible coupling model was established, by which the prototype bus ride comfort and handling stability were simulated respectively, and the performance met requirements.
     Finally, the simulation results of ride comfort and handling stability of the bus were verified by real vehicle tests that were accurate. So, it is that the vehicle model was accurate, and which provided a biable modeling method and basic reference for the subsequent hybrid bus modeling.
     (2) Hybrid bus structural arrangement and its effects on ride comfort and handling stability
     When the ordinary bus was converted to the hybrid bus, the requirements of the power, economy and energy control should be meet firstly. For the added installation parts, their size and quality were great, especially motor, motor controller, battery modules and other important components. Because of their important roles, their layout position must be designed carefully, so as to change as little as possible the hybrid bus front and rear axle load compared with the original bus, to ensure all of the vehicle performance. Particularly, seven battery modules were divided into three parts and installed respectively, by which ensured hybrid bus performance. Then based on the changes of the vehicle layout parameters, the effect on ride comfort and handling stability of the hybrid bus were analyzed respectively.
     (3) Ride comfort evaluation method and system development of hybrid bus based on handling stability
     There was the impact each other between ride comfort and handling stability. Taking into account the analysis results of ride comfort and handling stability of hybrid bus, nearly 30 handling stability evaluation indexes were reduced the dimension, the 10 indexes of the cumulative contribution reached 99% were obtained, and the contribution rate of each index was as the index weight that represent in central angles, the improved handling stability evaluation network map method was proposed. The ride comfort evaluation method on hybrid bus based on handling stability was proposed by combining the weighted RMS values with the most representative of four handling stability evaluation indexes. Finally, the evaluation program was developed by VS2008 C# language, to facilitate the user evaluation.
     (4) Ride comfort optimization on the hybrid bus based on handling stability
     The increase of the hybrid bus total mass mad the bus's ride to increase slightly, but the change of layout parameters mad the axle load distribution change, the mass center changing, which led to deterioration of the handling and stability. Aimed to ensure handling stability, optimize ride comfort, analyzed deeply the impact by hybrid bus improved designing and the law of the various factors. To improve the handling stability simultaneously, the front horizontal stabilizer was designed improved, and ride comfort optimization on the hybrid bus based on handling stability was implemented by using the genetic algorithm optimizing neural network method. In addition to stiffness and damper of the suspensions, two body vertical coordinals of the installationed batteries were as the optimization variables, in the premise of ensuring handling and stability of hybrid bus, ride comfort optimization program on hybrid bus was obtained. Finally, the analysis and evaluation on the hybrid bus ride comfort and handling stability after optimization were completed by simulation experiments.
     The innovations of this paper were,
     1, improved neutral surface method was proposed to build leaf spring model. When simulating leaf spring stiffness, by board-ball loading way, the stiffness could be simulated more quickly and accurately. It is the foundation of the bus virtual test.
     2, under the principle of ensuring front and rear axle load little difference from the hybrid bus to the original layout, the important parts added installation, such as the motor, motor controller, battery modules and so on were arranged. A program that battery modules were divided into three parts and installed in the middle frame and the right and left sides of the last paragraph was proposed to ensure hybrid bus performance.
     3, the improved handling stability evaluation network map method was proposed, the central angels was used to denote respectively the index weights of the handling stability, which could make the scoring of handling stability be saw more easily and intuitively. Then, the ride comfort evaluation method was proposed of hybrid bus based on handling stability. The method could simultaneously evaluate the ride comfort and handling stability easily and intuitively. By using VS2008 C#, the evaluation program of hybrid bus was developed to facilitate to the user.
     4, Ride comfort optimization method on hybrid bus based on handling stability was proposed by applying genetic algorithm optimizing neural network. In addition to stiffness and damper of the suspensions, two body vertical coordinals of the installationed batteries were as the optimization variables, which effectively taking into account the structure characteristics of the hybrid buses. The method considering the requirements of handling stability, try to optimize the ride comfort of the hybrid bus to accommodate the great pursuit of people's comfort.
     The paper provides the important simulation modeling method for hybrid bus performances analysis,for example the ride comfort and handling stability, provides a arrangement project for structural design, provides sufficient basis for improved hybrid bus ride comfort evaluation method, and provides new theory to optimize ride comfort of hybrid bus.
引文
[1]Scott M. Hartley. Cedarville College, Can Government and Industry Work Together to Develop Technology:a Case Study of the Partnership for a New Generation of Vehicles (Pngv) [C]. SAE Paper No:951046.
    [2]Valerie Hovland, Ahmad Pesaran, Richard M. Mohring, Ian A. Eason, Rolf Schaller,Doanh Tran, Tom Smith, Greg Smith. Water and heat balance in a fuel cell vehicle with a sodium borohydride hydrogen fuel processor [C].SAE Paper No:2003-01-2271.
    [3]游国平,郭宽友,陈德兵,等.混合动力客车技术路线分析[J].客车技术与研究,2010,(3):1-4.
    [4]Hybrid Electric Transit Buses:NYCT diesel hybrid-electric buses, Program Status Upstate Report, Produced for US Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), NREL/BR-540-31668, December 2001.
    [5]Dr. Thomas A. Lynch, Lehr Eliason. Energy and environmental performance of existing and emerging public transportation technologies technical report [C]//USDOT Grant No. TRS93-G-0019-NUT14-FSU4,1999.
    [6]科学技术部.“十五”863计划能源技术领域--电动汽车专项课题申请指南[C],2001,10.
    [7]刘明辉.混合动力客车整车控制策略及总成参数匹配研究[C].吉林大学博士学位论文,2005,6.
    [8]陈汉玉,左承基,袁银男,张彤.轻度混合动力汽车运行模式控制[J].农业工程学报,2011,27(10):61-67.
    [9]张承慧,李珂,崔纳新,等.混合动力电动汽车能量及驱动系统的关键控制问题研究进展[J].山东大学学报(工学版),2011,41(5):1-8.
    [10]房立存,秦世引.并联混合动力电动汽车最优控制及实例仿真[J].系统仿真学报,2007,19(1):110-113.
    [11]林歆悠,孙冬野,秦大同,尹燕莉.混联式混合动力客车全局优化控制策略研究[J].中国机械工程,2011,22(18):2259-2263.
    [12]叶心,秦大同,胡明辉,等.ISG型中度混合动力AMT汽车换挡综合控制[J].汽车工程,2011,33(9):798-804.
    [13]王晓娟,邓庆斌,董伟,李振.基于AVL CRUISE仿真的插电式混合动力汽车变速器设计[J].汽车技术,2011,(9):15-18.
    [14]陈延礼,刘顺安,尚涛.液驱混合动力车辆优化结构的脉动特性[J].吉林大学学报(丁:学版),2011,41(5):1326-1330.
    [15]舒红,刘文杰,袁景敏,等.混联型混合动力汽车能量管理策略优化[J].农业机械学报,2009,40(3):31-35.
    [16]Sundstrom O. Guzzella L, Soltic P, et al. Optimal hybridization in two parallel hybrid electric vehicles using dynamic programming[C]//Proc. of the 17th IFAC World Congress. Seoul, Korea,2008:462-464.
    [17]胡春花,何仁,李楠.基于切换系统的混合动力客车能量控制系统优化设计[J].江苏大学学报(自然科学版),2011,32(5):497-501.
    [18]张恒秋,李守成,张涌,刘建.基于混合动力汽车动力性的模拟计算[J].机械设计与制造,2011,(9):215-217.
    [19]朱道伟,谢辉,严英,等.基于道路工况自学习的混合动力城市客车控制策略动态优化[J].机械工程学报,2010,46(6):33-38.
    [20]J.维滕伯格著,谢传锋译.多刚体系统动力学[M].北京:航空学院出版社,1986,7
    [21]刘延柱,洪嘉振,杨海兴.多刚体系统动力学[M].北京:高等教育出版社,1989,3
    [22]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1996,7.
    [23]张越今.多体动力学在轿车动力学仿真及优化研究中的应用[D].清华大学博士学位论文,1997,11.
    [24]魏学颜.用十自由度模型进行汽车平顺性的计算机模拟[C].平顺性专业委员会论文,1983.
    [25]张建文.空气弹簧非线性有限元分析和空气悬架大客车隔振性能的研究[D].吉林大学博士学位论文,2003.
    [26]管西强.基于多体理论的城市客车空气悬架系统分析与实验研究[D].上海交通大学博士学位论文,2004.
    [27]宋传学,蔡章林,安晓娟.车辆平顺性的虚拟仿真及试验[].吉林大学学报(工学版),2007,(2):259-262.
    [28]陈宪忠.时域内轿车行驶平顺性建模及仿真研究[D].吉林大学硕士学位论文,2002.
    [29]王连明,宋宝玉,周岩,郑胜军.汽车平顺性建模及其仿真研究[J].哈尔滨工业大学学报,1998,(5):80-84.
    [30]杜子学,李明.乘用车平顺性预测与分析软件的开发[J].中国公路学报,2000,(4):108-110.
    [31]舒红.多刚体系统动力学在车辆平顺性建模中的应用[J].西安公路交通大学学报,1995,(2):38-44.
    [32]容一鸣,阳杰.车辆随机输入的动态仿真和试验研究[J].汽车工程,2001,(5):349-351.
    [33]孙景工,宋传学.采用单轴激振法对改善轻型载货汽车平顺性的研究[J].汽车技术,1995,(6):17-20.
    [34]林逸.带有非完整约束的汽车多刚体系统动力学研究[D].吉林工业大学:博士学位论 文,1989.5.
    [35]Josip Tambaca. Derivation of a model of leaf springs[C].Proceedings of the Conference on Applied Mathematics and Scientific Computing,2005:305-315.
    [36]Santosh S.Gosavi, Makarand GKhaparde. Effect of variation in suspension spring stiffness on the fatigue life of CAR BIW[C], SAE Paper No:2007-01-0385.
    [37]Lei Li, Changgao Xia and Wei Qin. Analysis of kinetic characteristic and structural parameter optimization of multi-link suspension [C], SAE Paper No:2007-01-3558.
    [38]John C. Ziegert, Beshah Ayalew, Vincent Lee and Souharda Raghavendra, Andreas Obieglo. Compliant link suspension [C], SAE Paper No:2009-01-0225.
    [39]姚亮.基于虚拟样机技术的某军用专用车平顺性研究[D].南京理工大学硕士学位论文,2006,6.
    [40]Il Dong Moon, Ho-Sang Yoon and Chae-Youn oh. A flexible multi-body dynamic model for analyzing the hysteretic characteristics and the dynamic stress of a taper leaf spring [J], Journal of Mechanical Science and Technology,2006,10 (20):1638-1645.
    [41]蒋国平,李守成.刚柔耦合建模技术在横置钢板弹簧独立悬架中的应用[J].武汉理工大学学报(交通科学与工程版),2006,(8):728-731.
    [42]郑银环,张仲甫.汽车钢板弹簧多柔体建模及仿真研究[J].湖北工业大学学报,2007,(4):35-36.
    [43]吴碧磊.重型汽车动力学性能仿真研究与优化设计[D].吉林大学博士学位论文,2008,6.
    [44]秦东晨,潘筱,陈立平等.汽车钢板弹簧多体模型建立的一种方法[J].武汉理工大学学报,2007,(5):111-114.
    [45]王其东,方锡邦,卢剑伟等.汽车钢板弹簧多体动力学建模及动特性仿真研究[J].合肥工业大学学报(自然科学版),1999,22(6):35-39.
    [46]徐红山,吴训成,杨栋.柔性体板簧建模与仿真应用[J].拖拉机与农用运输车,2008,(12):63-64.
    [47]Gurudevan Devarajan, Colin J.Dodds.Suspension Testing Using Wheel Forces on a 3 DOF Road Load Simulator[C]. SAE Paper No:2008-01-0223.
    [48]徐延海.随机路面谱的计算机模拟[J].农业机械学报,2007,38(1):33-36.
    [49]王若平,李成彬,张不扬,王国林.分形模型在路面不平度模拟中的应用[J].吉林大学学报,2010,40(4):991-994.
    [50]王若平,李成彬,王国林,杨彦鹏.汽车仿真中三维路面模型生成系统开发[J].汽车工程,2009,31(11):1049-1052.
    [51]International Standard Organization. ISO 2631-1—1985. Evaluation of human exposure to whole-body vibration-Part1:General requirements[S].
    [52]International Standard Organization. ISO 2631-1—1997. Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-Part 1:General requirements[S].
    [53]British Standards Institution. BS6841—1987. Measurement and evaluation of human exposure to whole-body mechanical vibration and repeated shock[S].
    [54]R. Lundstrom, P. Holmlund. Absorption of energy during whole-body vibration exposure [J], Journal of Sound and Vibration,1998,215 (4):789-799.
    [55]Ronnie Lundstrom, Patrik Holmlund, Lennart Lindberg. Absorption of energy during vertical whole-body vibration exposure [J], Journal of Biomechanics,1998, (31):317-326.
    [56]顾俊芳,张新.国外地面车辆行驶平顺性的道路试验及评价方法[J].振动、测试与诊断,1983, (4):39-44.
    [57]吴志成,陈思忠,杨林等.越野车辆平顺性评价方法研究[J].兵工学报,2007,28(11):1393-1396.
    [58]王秉刚,张志光,孟祥符.对汽车平顺性物理量评价指标的试验验证及讨论[J].汽车技术,1982,(3):2-7.
    [59]长春汽车研究所.GB 49701985.汽车平顺性随机输入行驶试验方法[S].
    [60]马广发.汽车平顺性的试验研究及评价指标的探讨[J].汽车工程,1983,(1):20-27.
    [61]卢士富.GB报批稿《客车平顺性评价指标及限值》的实践[J].客车技术与研究,1990,12(3):221-225.
    [62]卢士富.关于国际标准ISO2631的认识和修改[J].西安公路学院学报,1993,13(4):58-63.
    [63]赵六奇,刘锋.参照国际标准ISO2631的新草案修订汽车平顺性的评价方法[J].汽车工程,1993,15(6):371-377.
    [64]陈荫三,高利.卧姿人体承受全身振动降低舒适界限的研究[J].汽车工程,1991,13(4):208-213.
    [65]杜子学.基于乘用车型平顺性分析的新指标[J].西南交通大学学报,2000,35(2):152-154.
    [66]郑郧.汽车振动舒适性的测量与评价[J].客车技术与研究,2000,22(4):23-26.
    [67]杨荣山,袁仲荣,黄向东,等.基于近似模型的车辆操纵稳定性及平顺性的优化研究[J].汽车技术,2009(7):18-22.
    [68]宗长富,陈双,冯刚,等.基于频率加权滤波的汽车平顺性评价[J].吉林大学学报(工学版),2011,41(6):1517-1521.
    [69]王秉刚.应用数学统计方法进行汽车平顺性的感觉评价[J].汽车技术,1984,(1):25-29,54.
    [70]刘建中,铃木近,青木弘行等.汽车乘坐舒适性主观评价模型的构筑[J].汽车技术,1994, (9):11-20.
    [71]刘杰,李朝峰,张新敏,闻邦椿.烦恼率模型在车辆平顺性评价研究中的应用[J].振动、测试与诊断,2010,30(3):254-256.
    [72]杨树凯.独立悬架性能评价指标与评价方法及其在双横臂与多连杆式悬架上的仿真实现[D].吉林大学硕士学位论文,2004,4.
    [73]张立军,陈学文,朱博.SY6480轻型客车平顺性试验及评价[J].辽宁工程技术大学学报,2004,(8):532-535.
    [74]王树凤,余群,柴山,刚宪约.基于虚拟技术的车辆操纵稳定性评价系统[J].农业机械学报,2007,38(7):32-34.
    [75]Kazuhito Kato, Satoshi Kitazaki and Takayuki Sonoda, Effects of driver's head motion and visual information on perception of ride comfort[C]. SAE Paper No:2009-01-1223.
    [76]黄建兴,赵又群.人—车闭环操纵稳定性综合评价及其虚拟样机实现[J].机械工程学报,2010,46(10):102-108.
    [77]王彦会,郭孔辉,鲁丙武,等.基于多元统计分析的车辆操纵稳定性客观评价[J].吉林大学学报(工学版),2011,41(9):6-11.
    [78]吴浩,王德平,杨兴旺,林逸.装备EPS系统特锐样车操纵稳定性客观评价[J].汽车技术,2007,(1):5-7.
    [79]郭宽友.汽车操纵稳定性的影响因素及评价方法研究[J].重庆工学院学报(自然科学版),2007,21(7):53-56.
    [80]乐升彬.前双横臂独立悬架的建模仿真与改进设计[D].吉林大学硕士学位论文,2004,5.
    [81]汗随风,刘竞一,邓日青.基于ADAMS的双横臂独立悬架的仿真分析及优化设计[J].湖北汽车工业学院学报,2007,(6):12-15.
    [82]秦东晨.面向运动型多功能车操纵稳定性的建模、仿真与优化[D].华中科技大学博士学位论文,2007,6.
    [83]Alireza Kasaiezadeh, Mohammad Rafiee Jahromi and Aria Alasty, Fatigue Life Assessment Approach to Ride Comfort Optimization of a Passenger Car under Random Road Execution Conditions [C]. SAE Paper No:2005-01-0805.
    [84]陈黎卿,黄民锋,王继先等.基于操纵稳定性的双横臂扭杆独立悬架多目标遗传优化设计[J].合肥工业大学学报(自然科学版),2007,(9):1103-1106.
    [85]邢天伟.基于田口方法的整车平顺性仿真及优化[D].吉林大学博十学位论文,2008,6.
    [86]孙丽,何仁,刘文光,陈士安.板簧的改进中性面法柔体建模与刚度分析[J].江苏大学学报(自然科学版),2010,(2):1-4.
    [87]YOUNG-JIN Y. Frictional behavior of automotive leafspring[C].Proceedings of the 4th Korea-Russia International Symposium on Science and Technology.2000:5-10.
    [88]Hale-Heighway B, Murray C, Douglas S, et al. Multi-body dynamic modeling of commercial vehicles [J]. Computing & Control Engineering Journal,2002, (4):11-15.
    [89]Guerrero N, Marante ME, Julio RP. Model of local buckling in steel hollow structural elements subjected to biaxial bending [J]. J Constr Steel Res,2007,63 (6):779-790.
    [90]管欣,吴振昕,詹军.基于递推动力学的汽车悬架实时仿真模型[J].江苏大学学报(自然科学版),2007,28(4):297-300.
    [91]Jonker, J.B., Meijaard, J.P. Definition of deformation parameters for beam elements and their use in flexible multibody system analysis[J], In:Arczewski, K., Fraczek, J., Wojtyra, M.(eds.) Multibody Dynamics 2009, ECCOMAS Thematic Conference,2009.
    [92]岑少起,潘筱,秦东晨.ADAMS在汽车操纵稳定性仿真中的应用研究[J].郑州大学学报(工学版),2006,27(3):55-58.
    [93]J.P.Meijaard, D.M.Brouwer, J.B. Jonker. Analytical and experimental investigation of a parallel leaf spring guidance [J]. Multibody System Dynamics,2009,9.
    [94]潘筱.汽车前悬架运动学及整车操纵稳定性仿真[D].郑州大学硕士学位论文,2006,10.
    [95]范成建,熊光明等.虚拟样机软件MSC.ADAMS应用与提高[M].北京:机械工业出版社,2006.
    [96]Y.E.Ko and C.K.Song. Vehicle modeling with nonlinear tires for vehicle stability analysis [J], International Journal of Automotive Technology,2010,3 (11):339-344.
    [97]Michael Gipser. FTire:10 years of development and application [J]. Esslingen University of Applied Sciences, German,2008.
    [98]Hans R. Dorfi, Tire cleat impact and force transmission:modeling based on FTIRE and correlation to experimental data [J]. SAE (2004-01-1575)
    [99]沈建荣,陈敏玲等起草GB/T 2978-1997,轿车轮胎系列[S].北京:中国标准出版社,1997.
    [100]盛志忠,易德文,杨恶恶.三线摆法测刚体的转动惯量所用近似方法对测量结果的影响[J].大学物理,2004,23(2):44-46.
    [101]宋超,潘钧俊等.用三线摆方法测试物体转动惯量的误差问题[J].力学与实践,2003,25(1):59-61.
    [102]赵学荟,侯文.考虑摆线拉伸效应的三线摆测量转动惯量方法的研究[J].宇航计测技术,2006,26(6):26-29.
    [103]何燕,马连湘.速率及气压对轮胎胎面胶摩擦性能的影响[J].轮胎工业,2006,(10):585-588.
    [104]管迪华,李梅.不同宽度轮辋对轮胎静刚度特性影响的试验分析[J].汽车技术,2007,(1):31-33.
    [105]管迪华,彭会等.轮胎模态试验的分析研究[J].汽车工程,2005,26(6):691-695.
    [106]严金霞,张开斌,谢飞,等.FTire模型的建立方法研究[J].汽车技术,2011(10):13-16.
    [107][美]MSC.Software著,刑俊文,陶永忠译MSC.ADAMS-View高级培训教程[M].北京:清华大学出版社,2004,7.
    [108]王国强,张进平,马若丁.虚拟样机技术及其在Adams上的实践[M].西北工业大学出版社,2002,3.
    [109]陈军.MSC. ADAMS技术与工程分析实例[M].北京:中国水利电力出版社,2008,10.
    [110]陈立平.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005,1.
    [111]黄虎,刘新田等.前双横臂独立悬架运动对车轮定位参数的影响[J].上海工程技术大学学报,2008,(3):1-3.
    [112]隋震宇.Santana轿车前悬架弹性运动学特性的ADAMS建模与仿真[D].吉林大学硕士学位论文,2002,6.
    [113]朱茂桃,严金霞,王国林,高翔.基于ADAMS的三维虚拟道路的再现机械设计与制造[J].2010,(6):171-173.
    [114]李晓雷,韩宝坤.用小波变换分析路面不平度及振动响应[J].北京理工大学学报,2003,23(6):716-719.
    [115]张永林,钟毅芳.车辆路面不平度输入的随机激励时域模型[J].农业机械学报,2004,35(2):9-12.
    [116]初秀民,严新平,郝静.多功能高等级公路路况数据自动采集车设计[J].武汉理工大学学报(交通科技与工程版),2007,31(3):438-441.
    [117]刘佳.MPV车操纵稳定性的仿真与改进分析[D].吉林大学硕士学位论文,2008,4.
    [118]查云飞,钟志华,张义.菱形车回正性能分析与研究[J].中国机械工程,2009,22(20):2650-2653.
    [119]潘益威,徐进,邵毅明,甘守武.某型号微型车转向回正性能的虚拟试验研究[J].机械制造与自动化,2006,35(5):101-104.
    [120]杨兽梁.汽车转向回正性能仿真分析[J].装备制造技术,2006,(5):6-8.
    [121]谷正气,陈家骅,龚旭等.矿山电动轮自卸车回正性能研究[J].矿山机械,2008,36(13):36-38.
    [122]郭宽友.汽车操纵稳定性的影响因素及评价方法研究[J].重庆工学院学报(自然科学版),2007,21(7):53-56.
    [123]于永涛.混联式混合动力车辆优化设计与控制[D].吉林大学博士学位论文,2010,6.
    [124]彭裕平,王仲范.混合动力客车行驶模式和车辆特征[J].武汉理工大学学报(信息与管理工程版),2004,26(1):158-162.
    [125]王鹏辉.并联混合动力公交底盘总体设计[J].合肥工业大学学报(自然科学版),2009,(32):34-37.
    [126]张文春.汽车理论(第2版)[M].机械工业出版社,2009,12.
    [127]顾君,宁国宝,余卓平.燃料电池汽车整车纵向质心位置对车辆稳定性的影响[J].机械设计,2010,27(6):22-26.
    [128]吴红艳.基于汽车独立悬架特性的整车操纵稳定性研究[D].合肥工业大学硕士学位论文,2008,6.
    [129]郭孔辉,金凌鸽,曹宇,白帆,崔传宝.车辆操纵稳定性客观评价指标的降维处理[J].汽车技术,2010,(2):1-4.
    [130]余志生.汽车理论(第5版)[M].机械工业出版社,2009,3.
    [131]牟向东,唐新蓬.富康轿车随动悬架中横向稳定杆的设计分析[J].重庆交通学院学报,2002,21(3):116-118.
    [132]Dipling, Jornsen reimpell, the automotive chassis:engineering principles [M], London: British Library Cataloguing in publication Data,2001.
    [133]王延克.基于响应面法的汽车悬架系统优化设计[D].西南交通大学研究生学位论文,2009,3.
    [134]丁能根,张宏兵,冉晓凤,薄颖.横向稳定杆性能计算及其影响因素分析[J].汽车技术,2007,(2):19-22.
    [135][美]T.D.Gillespie著,赵六奇等译.车辆动力学基础[M].北京:清华大学出版社,2006.
    [136]苏小平.依维柯汽车多体动力学仿真分析、优化研究及工程实现[D].南京理工大学博士学位论文,2004,4.
    [137]李军,谷中丽.汽车独立悬架簧载质量的分析计算[J].兵工学报,2000,(2):42-46.
    [138]顾信忠,张铁山.减振器阻尼比的确定[J].农业装备与车辆工程,2010,(12):28-31.
    [139]李孟良.中国城市乘用车实际行驶工况的研究[J].汽车工程,2006,28(6):553-558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700