柴油机曲轴轴系强度和主轴承润滑仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃机曲轴一轴承系统是内燃机的关键部件,其摩擦学、动力学性能分析和强度刚度计算是内燃机设计必须面临的问题,直接影响到内燃机工作的可靠性和耐久性。然而,长期以来,由于曲轴一轴承系统特殊的结构形式和复杂的受力状况,理论研究难度较大,其摩擦学性能、动力学行为的分析和强度刚度计算是在各自独立的领域里分别进行的。实际上,内燃机在运转时,各种机械行为是同时发生互相影响的。因此,进行曲轴一轴承系统摩擦学、动力学、刚度和强度耦合研究、提高曲轴一轴承系统理论分析的准确性,具有重要的理论意义和现实的应用价值。多体动力学和有限元法的发展使得较精确地分析曲轴动力学响应问题成为可能。
     本文运用有限元法和多体动力学仿真相结合的方法,对CA4D32柴油机曲轴轴系进行动力学分析仿真,其主要研究内容为:通过建立合理的柴油机曲轴轴系多体动力学模型,完成一个工作周期内的仿真,得到曲轴在实际工作周期内所表现出的动力响应特性,然后运用有限元分析软件对曲轴进行瞬态动力学分析。
     首先针对具体产品结构特点以及后续的功能分析特点来决定曲轴轴系模型的简化程度,建立了CA4D32柴油机轴系俩种有限元模型,根据下文多体动力学模型的需要建立了轴系缩减有限元模型,在此基础上建立了轴系多体动力学分析模型。然后通过轴系的有限元模态分析与厂方实验数据结果的对比,论证了轴系有限元模型的合理性。接着通过EXCITE多体动力学仿真,进行了柴油机额定转速下的正常工况下包括曲柄销受力、轴系自由端扭转位移、曲轴位移量、转速波动等参数的多体动力学分析,得到曲轴在实际工作周期内所表现出的动力响应特性,进一步验证多体动力学模型的正确性。同时进行轴承载荷分析,得到最小油膜厚度、最大油膜压力、主轴承轴心轨迹等,对主轴承的润滑状况进行分析,得到3#主轴承的润滑状况最为恶劣,需要优化处理。最后对曲轴进行应力应变分析,并与传统有限元法比较。计算表明,曲轴的最大应力在其许用应力范围内,且变形小,曲轴的刚度足够。不同时段最大应力均发生在主轴颈和曲柄臂连接处,因此主轴颈和曲柄臂连接处是结构设计和优化的重点。多体动力学结合有限元法的使用为曲轴的精确仿真,创新设计,改型设计及优化设计提供了强有力的技术保证。
Crankshaft bearing system is one of the most important components in Internal Combustion Engines (ICE). The analysis on dynamics, tribology, stiffness and strength for the crankshaft bearing system has to be done when engineers design a 1C engine. It directly affects reliability and durability of the engine. The multidisciplinary performance such as dynamics tribology stiffness and strength have been researched independently in the extent of respective discipline for a long period of time because crankshaft has a complex geometric structure and the crankshaft bearing system is applied by a complicated variable load. The multidisciplinary performances of the system happen simultaneously and affect each other as engine works. The coupling study on dynamics tribology stiffness and strength is very important both in theoretical and practice sense. The Multi-body system Dynamics and the finite element analysis make the precise analysis of crankshaft being true.
     A method that combined finite element method with multi-body dynamics simulation is applied to carry on dynamics analysis simulation on the CA4D32 diesel engine crankshaft system in this article. Its main research content is: Establishes reasonable diesel engine crankshaft system dynamics model, completes the simulation in an action cycle, and obtains the power response characteristic which displays in one operation cycle. Then it carries on the transient dynamics analysis on crankshaft using finite element analysis software.
     First, in view of the concrete product unique features as well as the following functional analysis characteristic simplify the crankshaft system. The two kinds of CA4D32 diesel engine shafting models according to different simplified degrees are created. shafting condensed models used for the following multi-body dynamics model are established, and the multi-body dynamics model is also created. Then, the result of shafting model analysis is contracted with factory experiment data. It proves the shafting models are reasonable. According to the results of EXCITE multi-body dynamics simulation, The multi-body dynamics analysis of the diesel engine shafting, which consists of crank force, torsional displacement of the shafting free end, shafting displacement, speed motion and so on, is implemented. Obtaining the power response characteristic which displays in one operation cycle proves the multi-body dynamics model reasonable further. Simultaneously carries on the bearing load analysis, and obtains the minimum oil film thickness, the peak oil film pressure, orbital path of main bearings and so on. The lubrication condition of main bearings is analyzed. We can know lubrication condition of the third main bearing is bad, which needs optimization. Last, it carries on the transient analysis of the crankshaft, and comparison with the traditional finite element method. The results indicate that, the maximum stress of the crankshaft is within its allowable scope, the rigidity of crankshaft is enough and the distortion is slight. The maximum stress of different time interval is all occurred on the joints of main journal and connecting rod journal. Therefore, the joints are important points in the structural design and optimization. Using multi-body dynamics and 3D finite element method, has provided the powerful technical guarantee for precise dynamics simulation of crankshaft, and the innovation design, the modification design and the optimized design.
引文
[1]陈大荣.船舶内燃机设计.国防工业出版社,1995:105-109,132-134,136.
    [2]贾锡印.船舶内燃机结构.哈尔滨工程大学出版社,1995:2-6.
    [3]朱衍勇,董毅,司红,于桂玲,张志军.柴油机曲轴和轴瓦的磨损失效分析.电子显微学报,2003,22(6):617-618.
    [4]汪森.内燃机曲轴轴承流体动力学润滑研究:(硕士生学位论文).昆明:昆明理工大学,2006.
    [5]张直明等.滑动轴承的流体动力润滑理论.北京:高等教育出版社,1984.
    [6]鱼春燕.曲轴性能分析及其优化设计:(硕士生学位论文).镇江:江苏大学,2005。
    [7]徐卫国,黄荣华等.曲轴强度计算新方法的研究.内燃机工程,2004,25(5):51-55.[8]丁培杰,吴昌华.柴油机曲轴计算方法发展的回顾、现状与展望.内燃机工程,2003,24(3):74-79.
    [9]郭振旺,姚辉.柴油机曲轴强度的三维有限元分析.柴油机,2005,27(3):18-20.
    [10]丁彦闯,牛天兰等.柴油机曲轴整体三维应力精细分析.内燃机工程,1999,2l(4):32-35.
    [11]Zissimos P.Mourelatos.A f'mite element analysis of beams on elastic foundation including shear and axial effects.Computers & Structures,1987,27(3):323-331.
    [12]孙军,桂长林,李震.内燃机曲轴强度研究的现状、讨论与展望.内燃机学报,2002,20(2):170一184.
    [13]柴油机设计手册编辑委员会。柴油机设计手册(上).中国农业机械出版社,1984.
    [14]施兴之.连续梁法计算曲轴应力的研究.内燃机学报,1991,9(2):169-176.
    [15]长春汽车研究所.国外柴油机曲轴强度研究.第一机械工业部科学技术情报研究所,1980.
    [16]郝志勇,王东华.多缸机曲轴连续梁计算法的改进.内燃机学报,1984,2(3):263-280.
    [17]苏铁熊,张儒华,蔡坪等.利用有限元法研究曲轴弯曲应力的变化规律.车用发动机,1995,(4):35-40.
    [18]方华,王大灵,李盛成.493型柴油机曲轴有限元分析及可靠度计算.设计·计算·研究,1998,(8):11-13.
    [19]冯国胜,张幽彤,张玉申.柴油机曲轴静动特性的三维有限元分析.内燃机工程,2003,24(2):74-77.
    [20]薛远,蓝军,张殿昌.柴油机曲轴应力状态的计算与分析.天津大学学报,1988,31(6):762-766.
    [21]王良国,胡德波.368Q型发动机曲轴疲劳强度有限元分析.内燃机学报,2000,18(3):270-274.
    [22]蓝军,薛远,付光畸.曲轴油孔应力集中的三维有限元分析.内燃机学报,2000,18(2):220-222.
    [23]丁彦闯,牛天兰,吴昌华.柴油机曲轴整体三维应力精细分析.内燃机工程,1999,(4):32-42.
    [24]徐卫国,黄荣华,左朝风等.曲轴强度计算新方法的研究.内燃机土程,2004,25(5):51-55.
    [25]Omidreza Ubrat,Zissimos P.Mourelatos,Kexin Hu,Nickolas Vlahopoulos.An Ulastohydrodynamic Coupling of a Rotating Crankshaft and a Flexible Engine Block,Transactions of the ASMF,2004,126:233-241.
    [26]Roger B.Dailly,David J.Bell.Crankshaft Durability of Rover K-Series Ungine:Comparison of UNGDYN Analysis with Dynamic measurements.5th Ricardo Software User Conference,Detroit,March 2000.
    [27]Ilya Piraner,Christine Pflueger,Oliver Bouthier,Cummins.Crankshaft and Beating Analysis Process.2002 North American MD I User Conference,2002.
    [28]Martin F.S..Developments in engine bearing design.Tribology International,1983,16(3):147-164.
    [29]陈伯贤,裘祖干,张慧生.流体润滑理论及其应用.北京:机械工业出版社,1991,9.
    [30]Conway J.M.,Martin F.A.,Gojont R..Refinement of engine bearing design techniques.Tribology International,1991,24(2):119-27.
    [31]Simon K,Scott Chen.Some resolved and unresolved areas in journal orbit analysis.SAE 92048b.
    [32]Du H.Y.I.Simulation of Flexible Rotating Crankshaft with Flexible Engine Block and Hydrodynamic Beatings for a V6 Engine.SAE Paper 1999-01-1752.
    [33]Kumar A.,Booker J.F.A mass and energy conserving finite element lubrication algorithm.ASME Journal of Tribology,1994,116:667-671.
    [34]Paranjpe R.S.A transient thermohydrodynamic analysis including mass conserving cavitation for dynamically loaded journal bearings.ASME Journal of Tribology,1995,117:369-378.
    [35]Hahn H.W..Dynamically loaded journal bearings of finite length.Presented at conference on Lubrication and Wear Clut.Mech.Eng,1957.
    [36]Holland J..Beitrag Zur Erfassung der Schmierverhaltniss in Verdrermungskraff maschinen.VDI-Forsch-Heft 475,1959.
    [37]Booker J.F.Dynamically loaded journal bearings--Mobility method of solution.ASME J.Basic Eng,1965.
    [38]Paranjpe R.S.A Study of Dynamically Loaded Engine Bearings Using a Transient Thermohydrodynamic Analysis.STLE Tribology Transactions,1996,39(3):636-644.[39]Hirani H.A Hybrid Solution Scheme for Performance Evaluation of Crankshaft Bearings.ASME Journal of Tribology,2000,122(4):733-740.
    [40]Fantino B..Viscosity Effects on the Dynamic Characteristics of an Elastic Engine Bearing.SAE 852074(SP-640).
    [41]Lahmar M.Comparison of the dynamic behaviour of two misaligned crankshaft bearings.Proceedings of the Institute of Mechanical Engineers(Journal of Automobile Engineering,2000.214(D8):991-997.
    [42]Lahmar M..The effect of misalignment on performance characteristics of engine main crankshaft bearings.European Journal of Mechanics A/Solids,2002 21:703-714.
    [43]何芝仙.内燃机曲轴.轴承系统动力学摩擦学刚度和强度耦合研究:(博士学位论文).合肥:合肥工业大学,2006.
    [44]Daryl L.Logan,伍义生,吴永礼等译.有限元法基础教程(第三版).北京:电子工业出版社,2003:1.2.
    [45]祝效华,余志祥.ANSYS高级工程有限元分析范例精选.北京:电子工业出版社,2004:2-3.
    [46]休斯敦,刘又午.多体系统动力学.天津:天津大学出版社,1987.
    [47]洪嘉振.多体系统动力学理论、计算方法和应用.上海交通大学出版社,1992:1.64.
    [48]杨辉,洪嘉振,余征跃.刚柔耦合建模理论的试验验证.力学学报,2003,35(2):253-256.
    [49]陈凯潇.多体系统动力学应用丁轻型客车数字化模型的研究:(硕士学位论文).长春:吉林大学,2002.
    [50]洪嘉振.计算多体系统动力学.高等教育出版社.
    [5l]郝志勇,段秀兵,程金林.柴油机曲轴轴系的柔性多体动力学仿真分析.铁道机车车辆,2003,23(1):86-89.
    [52]博嘉科技.有限元分析软件-ANSYS融会与贯通.北京:中国水利水电出版社,2002.
    [53]Daryl L.Logan,伍义生,吴永礼等译.有限元法基础教程(第三版).北京:电子工业出版社,2003.
    [54]Zissimos P.Mourelatos.A crankshaft system model for structural dynamic analysis of internal combustion engines.Computers & Structures,2001,79(20-21):2009-2027.
    [55]张义民.《机械振动力学》.吉林科学技术出版社,2000.
    [56]ABAQUSANALYSIS USER'S MANUAL.ABAQUS 6.4,2003.
    [57]焦洪宇,段敏.Pro/E模型导入ANSYS问题的研究.辽宁工学院学报,2004,24(6):37-39.
    [58]高咏涛,原军令,王占奎.ANSYS在结构分析中的应用及与CAD的连接.制造业信息化,2005.8:77-78.
    [59]马晓明,张冰蔚.对用PRO/E建模ANSYS做分析时导入模型问题的研究.机械研究与应用,2004,17(6):93-94.
    [60]杨平.柴油机结构系统的模态分析:(硕士学位论文).成都:电子科技大学,2004.
    [61]中国内燃机学会组编.吴炎庭,袁卫平主编.内燃机噪声振动与控制.机械工业出版社,2005.
    [62]Brandeis JP.The use of finite element techniques to predict engine vibration.SAE 820436,1982.
    [63]赵汝嘉.机械结构有限元分析.西安:两安交通大学出版社,1990.
    [64]杜平安,甘娥忠,于亚婷.有限元法一原理、建模及应用.北京:国防工业出版社,2004.
    [65]王助成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997:463-473.
    [66]倪振华.振动力学.西安:西安交通大学出版社,1989.
    [67]高秀华,郭建华.内燃机.化学工业出版社,2005,9:132.150.
    [68]胡金蕊.4DC柴油机曲轴轴系多体动力学仿真研究:(硕士学位论文).长春:吉林大学,2006.
    [69]李柱国.内燃机滑动轴承.上海:上海交通大学出版社,2003,17.18.
    [70]赵少汴.抗疲劳设计.北京:机械工业出版社,1994:189-194.
    [71]冯国胜,张幽彤,张玉申.柴油机曲轴静动特性的三维有限元分析.内燃机工程,2003.Vol.24.No.28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700