纺纱钢丝圈热处理清洁生产技术及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热处理是强化金属材料性能的重要工艺措施,是保证和提高产品质量和寿命的关键因素,也是形成环境污染不可忽视的重要方面。目前国内钢丝圈大部分的淬火回火介质都采用油,存在很大的安全隐患,对环境污染严重,因此迫切需要一种较清洁的淬火回火介质取而代之。本文以清洁热处理技术为基本出发点,以纺纱钢丝圈为研究对象,对水基淬火回火介质进行了一系列系统而深入的研究。
     实验结果表明:(1) 0.25%聚乙烯醇(PVA)淬火液能适用于钢丝圈淬火,但生产中浓度不易测定,PVA易附着工件表面,实际生产操作难度大。并在试验的基础上得出,加热温度和保温时间是得到均匀组织和达到要求性能的重要因素,通过正交实验法确定了最佳热处理工艺。(2) 3%-7%聚醚(PAG)淬火剂满足钢丝圈淬火性能要求。随着浓度的上升,硬度值下降。经反复实验,5%-5.75%PAG得到的效果最好。(3)研制的水玻璃淬火液在浓度为8%~13%时满足钢丝圈淬火性能要求;改变浓度可调节冷却性能,浓度测定方便,易现场监测;有良好的防锈效果;所需原料来源广泛,价格便宜。(4)碱浴具有优良的温度分布优越性,用于钢丝圈的低温回火能达到油浴的效果。碱浴的配比很重要,其中碱和脱氧剂的用量对回火硬度影响显著。通过实验设计和分析,得出了较优配比。
     为了观察温度变化对钢丝圈淬火冷却过程的影响,进行了计算机模拟。利用ANSYS软件进行了温度场和应力场的分析,得出了各阶段温度分布图及不同节点的冷却曲线和应力分布图,进一步从理论上探讨了冷却介质的冷却机理,其结果对指导工程实际具有重要意义,同时探讨了先进计算机模拟技术在清洁热处理中的应用。
Heat treatment is most important in mechanical industry, but it is easy to cause environment pollution. Currently, the most common used quenching and tempering medium for steel ring travelers is oil. However, oil is expensive, easy to start fire and cause heavy pollution. Especially, it is time consuming to remove the oil stain on work pieces, which severely affect the product efficiency. Besides, the waste oil is not easy to recover. Therefore, there is an urgent need to look for clean medium to replace oil. The investigation into clean quenching and tempering medium is carried out based on clean heat treatment technology for steel ring travelers.
     The results show that:(1) in the heat treatment process, the heating temperature and holding time are vital factors to obtain uniform microstructure and good performance. The optimal heat treatment process is obtained by orthogonal experiments. (2) Based on experiments, it is found that 0.25% PVA solution can suit the quenching of 80steel. The cooling velocity can be adjusted by different concentration. But it is difficult to determine the concentration in practice and PVA easily attaches to the work piece’s surface, which will increase a lot of difficulties in practical operation. (3) 3%~7% PAG solution could attain the quenching requirement of steel ring traveler. The hardness decreases with the concentration increase. The best effect can obtain with the concentration of 5%~5.75%PAG through many repeat experiments. (4) The new sodium metasilicate solution with 8%~13% could attain the demand requirement. Its cool performance could be adjusted by different concentration which can be easily tested in practice. Besides, it has good antirust performance and its raw material is much cheaper. (5) The alkaline bath with the good temperature uniformity can satisfy the required hardness after temper as well as oil bath. Further more, the ratio of the main compositions of the alkaline bath is very important for its tempering effect. The results strongly indicate that the contents of alkali and the anti-oxidation reagent can significantly affect the hardness. Its optimal composition is derived based on orthogonal experiments and data analysis.
     The quenching process of steel ring traveler is simulated with ANSYS. The temperature distribution and stress distribution during every period and deferent nodes’cool curves are derived. The working mechanism of cooling is also discussed and the results and analysis reveal some insight into the computer simulation applied on the clean heat treatment.
引文
1.孙大涌.热处理行业可持续发展的思考[J].金属热处理,2001,26(9):61
    2.樊东黎.论清洁的热处理技术[J].国外金属热处理,1997,(1):1-4
    3.王禄春,宋锴.关于水溶性聚合物淬火介质推广应用的思考[J].热加工工艺,2006, 35(2):61-63
    4.王社民.在能源与环保制约下液体淬火介质的可持续发展[J].金属热处理,2004, 29(1):50-53
    5.赵家荣.清洁生产回顾与展望[J].节能与环保,2003,(2):4-9
    6.梁景波,王俊民.对我国加大推行清洁生产的思考[J].环境研究与监测,2006,19(6):11-13
    7.王旭,韩福荣.我国实施清洁生产的现状及对策研究[J].中国质量,2002,(3):18-20
    8.余德辉,魏晓琳.国家环保总局推进清洁生产工作重点[J].清洁生产简讯,2001,(3):1
    9.曾兆华,万继伟.清洁生产与可持续发展[J].泰州科技,2007,(5):24-27
    10.青特集团有限公司.节约发展、清洁发展是提高全球化市场竞争能力的选择[J].资源与发展,2007,(1):38-42
    11.王瑾.生态经济视野下的清洁生产技术[J].商场现代化,2006,(471):206-210
    12.孛海娃,解念锁.清洁热处理与环境保护[J].科技信息,2007,(29):508
    13.马永杰.清洁生产及清洁热处理的生产实践[J].铸造设备研究,2006,(6):50-51
    14.樊东黎.论清洁的热处理技术二[J].国外金属热处理,1997,(2):1-4
    15.陈玉华.重新认识亚共析钢淬火加热温度与保温时间[J].安庆师范学院学报(自然科学版),2000,6(2):84-86
    16.赵光铎.钢领、钢丝圈的热处理与表面处理[J].纺织器材,1991,22(3):30-37
    17.张克俭.对自来水作为淬火介质的两大缺点的研究[J].金属热处理,2005,30(1):66-71
    18.胡绍文,刘麦秋,李卫明.水基淬火介质PAG的使用[J].热加工工艺,2006,35(22):76-77
    19.刑献强.PAG淬火剂冷却特性与应用前景[J].金属制品,1997,23,(3) :28-31
    20.陈希原.PAG类聚合物水溶性淬火介质的选择、应用及维护[J].四川兵工学报, 1999,20(1):43-46
    21.湖南邵阳汽车保养厂热处理问答编写小组.热处理问答[M].北京:机械工业出版社, 1974:124-134
    22.陈春怀,周敬恩.淬火介质冷却能力的测定和应用[J].金属热处理,2001,26(11):28-31
    23.韩刚,杨桂华.清洁生产是表面技术开发研究的新起点[J].涂料涂装与电镀, 2005,3(6): 42-44
    24.温新林,王秀梅,张大庆,等.水溶性淬火介质在现代热处理中的应用[J].热加工工艺, 2007,36(6):58-60
    25.胡绍文,李卫明,刘麦秋.水溶性淬火介质[J].热加工工艺,2006,35(16):75-77
    26.刘杰.铍青铜复杂零件外形及薄壁件的热处理工艺改进[J].新技术新工艺, 2005,(6): 39-40
    27.李文辉.73型PVA水溶液在连杆热处理中的应用[J].热处理,1999,(4):30-31
    28.郑玉,陈守来.FEROQENCH2000水基淬火液在钢管热处理的实践[J].天津冶金,2004,(2):18-21
    29.吴有为.试验设计与数据处理[M].苏州:苏州大学出版社,2002:115-143
    30.次建格.水玻璃水性淬火液在曲轴热处理中的应用[J].热处理,2003,(10):39-40
    31.龚维强.水玻璃淬火剂[J].现代制造工程,1983,(1):25-26
    32.鞍山铁塔厂.水玻璃碱液淬火剂的使用[J].水利电力机械,1980,(2):15-17
    33.李玉娇.硅酸钠水溶液特性研究[J].钻采工艺,2007,(7):116-118
    34.吕利太.淬火介质[M].北京:中国农业机械出版社,1982:27-85
    35. TOTTEN G E.An overview of polymer quenchants [J]. Industry Heating, 1998, (11):29-31
    36. HILDER N A.The behaviour of polymer quenchants[J].Heat Treatment of Metals,1987,14 (2):31-46
    37.盖丽芳,尚会建,彭丽敏等.水溶性聚合物淬火介质及其发展[J].河北工业科技,2006.7, 4(6):257-260
    38.张克俭.淬火冷却介质及其应用技术漫谈(续)[J].热处理,2004,19(4):56-61
    39.叶菊兰,张连荣,李东生等.合成淬火剂PVA在钢制飞机刹车零件热处理中的应用[J].材料工程,1998,(8) :14-15
    40.樊东黎.热处理工艺材料的现状和展望(三) [J].国外金属热处理,2004,25,(1) :2-6
    41.王庆红.PAG水溶性淬火液在生产中的应用[J].安徽冶金科技职业学院学报,2006, 16:88-90
    42.彭立新.水玻璃水溶性淬火介质在合金钢热处理中的应用[J].金属热处理,1999, (2):45-46
    43.不二越热处理研究所.热处理须知[M].机械工业出版社,1988:83-90
    44.邹庆化.钢的成分回火温度与硬度之间的关系[J].金属热处理,1994(3):41-43
    45.高子腾译.计算机辅助确定结构钢淬火和回火工艺参数[J].国外金属热处理,1990, (3):49-50
    46.王荣滨.低温碱浴淬火剂的应用与再生方法[J].模具制造,2001,(2):50-52
    47.林兆.碱浴淬火剂的老化及再生[J].莆田学院学报,2002,3(9):60-62
    48. Lan C J, Liu W Y, Ke S T,etc.Potassium salt based alkaline bath for deposition of Zn-Fe alloys[J].Surface & coating technology,2006,201:3103-3108
    49.余洪波.工具钢热处理盐浴综述[J].电子工艺技术,2004,25(3):126-130
    50. The ASM Handbook Committee.Metals Handbook[M].USA:American Society for Metals,1981:73-126
    51.钟士红.几种钢的回火方程和回火动力学曲线[J].金属热处理,1983,(11):8-11
    52.赵振东.40Cr钢淬回火工艺参数计算及力学性能预测[J].机械工人(热),1995,(3):37-38
    53. Izabel Fernanda Machado. Technological advances in steels heat treatment[J].Materials Processing Technology,2006,114:169-173
    54. Ferguson B L,Li Z.,Freborg A M.Modeling heat treatment of steel parts [J]. Computational Materials Science,2006,34:274-281
    55.胡光立,李崇谟,吴锁春.钢的热处理[M].北京:国防工业出版社,1985:204-220
    56.热处理手册编委会.热处理手册第一卷[M].北京:机械工业出版社,1991:50-151
    57.李康.钢件喷水淬火冷却过程的有限元建模及温度场预测[D]:[硕士论文].山西:太原理工大学,2006
    58.聂理君,尹立孟,刘炳,等.ANSYS在淬火过程数值模拟的应用[J].新技术新工艺,2006, (5):43-44
    59.李辉平,赵国群,栾贻国,等.淬火过程有限元模拟技术的研究现状及其关键技术[J].山东大学学报(工学版),2004.10,34(5):116-120
    60.张敏.淬火冷却过程的数值模拟[D]:[硕士论文].武汉:武汉理工大学,2003
    61.李辉平,赵国群,牛山廷,等.基于有限元和最优化方法的淬火冷却过程反传热分析[J].金属学报,2005,41(2):167-172
    62.李强,王葛,陈乃录.淬冷过程工件温度场的计算机模拟与实验[J].燕山大学学报,2002, (4):297-230
    63.孔祥谦,王传薄.有限单元法在传热学中的应用[M].北京:科学出版社,1981:37-85
    64.匡奇.三维非线性有限元在热处理炉中的应用研究[D]:[硕士论文].上海:上海交通大学,2001
    65. Fernandes F M B, Denis S, Simon A.Mathematical Model Coupling Phase Transformation and Temperature Evolution during Quenching of Steels[J]. Materials Science and Technology,1985,1(10):838-844
    66.顾剑锋.淬火应力场的模拟的研究与表面换热系数的测算[D]:[博士论文].上海:上海交通大学,1998
    67. Denis S, Simon A, Beck G.钢马氏体淬火过程中的热力学行为分析及内应力[C].计算第三届国际材料热处理大会论文集:70-80
    68. Grange R A,Kiefer J M.Transformation of austenite on continuous cooling and its relation to transformation at constant temperature[J].AIME,1941,29:85-116
    69. Hawbolt E B,Chau B,Brimacombe J K.Kinetics of austenite-pearlite transformation ineutectoid carbon steel[J].Metallurgical Transactions A,1983,14A:1830-1815
    70. Pham T T,Hawbolt E B,Brimacombe J K.Predicting the onset of transformation under noncontinuous cooling conditions[J].Metallurgical and Materials Transactions A,1995, 26A:1987-1992
    71.田东.界面突变淬火过程的计算机计算及实验测试[D]:[硕士论文].上海:上海交通大学, 1998
    72. Agarwal P K,Brimacombe J K.Mathematical model of heat flow and austenite-pearlite transformation in eutectoid carbon steel rods for wire[J].Metallurgical Transactions B,1981,12B:121-133
    73. Hans Paul Hougardy,Kazumasa Yamazaki.An improved calculated calculation of the transformation of steels[J].Steel Research,1986,57(9):466-471
    74. Liu C C,Yao K F,Liu Z.Quantitative research on effects of stresses and strains on bainitic transformation kinetics and transformation plasticity[J].Materials Science and Technology,2000,16:643-647
    75. Kohlhéb R,Buza G,Réti T,etcl.Comparative analysis of kinetic models used for description of non-isothermal austenite transformation[J].Materials Science Forum,1994:163-165,667-672
    76.《热处理手册》编委会.热处理手册[M].北京:机械工业出版社,1992:120-141
    77.张朝晖主编.ANSYS8.0热分析教程与实例解析[M].北京:中国铁道出版社, 2005.6:157-373
    78.张智国,胡仁喜,陈继刚.ANSYS10.0热力学有限元分析实例指导教程[M].北京:机械工业出版社,2007.6:94-247
    79.李辉平,赵国群,栾贻国,等.淬火过程应力/应变场有限元模拟关键技术研究[J].塑性工程学报,2005,12(6):98-101
    80. ansys非线性收敛准则-结构论文[J/OL]. http://www.jzgcs.com/browse/jiegoujishu/6209249756901.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700