预烧结氧化锆义齿高速铣削加工关键技术与装备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着CAD/CAM技术的不断深入及其在口腔修复领域中的广泛应用,使得修复体制作质量和效率大幅度提升。义齿数控高速加工技术是口腔CAD/CAM技术的关键组成部分,直接关系到义齿加工性能的优劣。由于其形貌复杂,所用材料又多为合金类或陶瓷类等难加工材料,导致其加工过程复杂繁冗,且产品质量难以得到保证。在此背景之下,本文结合义齿临床的应用需求,以预烧结氧化锆陶瓷义齿加工为研究对象,以高速铣削等关键技术为理论支撑,从预烧结氧化锆陶瓷材料的铣削性能及其加工工艺参数设计两个角度出发,系统地研究了高速铣削在义齿加工过程中的相关基础理论、方法及关键技术,并开发了一款小型双主轴四联动高速义齿加工机床。
     本文的主要研究内容和创新性成果如下:
     1、深入研究了义齿加工用预烧结氧化锆陶瓷铣削过程中的出口边缘碎裂机理,提出了一种可在加工过程中减小发生出口边缘碎裂的铣削参数优化方法。分析了导致铣削边缘碎裂现象的影响因素并辅以实验。结果表明:不同铣削方式及工件材料的性能参数,例如:硬度、断裂韧性、和微观颗粒的大小,对出口边缘碎裂宽度有较大影响。同时,在铣削中可通过控制铣削参数以达到减小边缘碎裂宽度。
     2、考虑到义齿成型质量受铣削预烧结氧化锆时刀具的磨损影响较大,采用按照设定等时间间隔的方法,获取了加工过程中刀具的磨损数据,提出了一种基于灰色系统理论的铣削刀具磨损量预报模型,并对刀具磨损量及其寿命进行了预报。通过与实测值的对比分析,验证了模型构建的合理性与准确性。
     3、基于对球头铣刀几何模型及高速加工切削参数的分析研究,构建了一种基于体积力微元的球头微径铣刀高速铣削力理论模型。系统研究了铣削行间距、进给速度、切削方式、工件形状等因素对义齿加工过程中所产生的铣削力的影响。通过平面铣削参数实验,利用多元正交回归分析法,提出了一种针对预烧结氧化锆陶瓷的铣削力经验预测模型,并采用模拟义齿形貌的变曲率工件铣削实验验证了该模型的合理性。
     4、给出了一种基于固定效应模型的预烧结氧化锆铣削表面粗糙度析因实验设计方案,研究了主轴转速、径向切削宽度和轴向切削深度等铣削参数对预烧结氧化锆表面粗糙度的影响程度。并运用二次回归正交实验方法,提出了一种针对预烧结氧化锆铣削参数的优化模型。求解出了减小工件表面粗糙度的更佳铣削参数,为优化预烧结氧化锆义齿的加工质量提供了可靠保障。
     5、基于对预烧结氧化锆瓷块的铣削实验及优化分析结果,选择了合理的义齿高速数控铣削加工参数及加工方式,运用JDPaint软件生成了义齿的铣削刀轨,并对几种刀轨进行了比较分析。在此基础之上,铣削加工出义齿预烧结氧化锆件,对其形貌及表面粗糙度进行检测。通过对测试数据的采集和分析得出义齿表面的加工质量较好,满足口腔医学修复的高精度需求,验证了上述模型构建和优化方法的合理性及可行性。
     6、基于“椅旁加工”的设计理念,针对义齿加工技术的特点,运用功能分析方法明确了义齿加工装备所需的功能模块,提出了一种面向义齿加工的桌面小型化双主轴四联动数字化制造装备的机械结构,并对其主结构关键部件进行了详细设计及合理布局。考虑到义齿加工对装备结构精度的需求,运用多体系统运动学理论和齐次变换矩阵,构建了该装备结构的空间误差模型,并研究了精度误差的主要来源和影响因素,为保证装备的加工精度提供了理论依据。采用规划的预烧结氧化锆义齿铣削参数,加工出满足口腔修复需求的义齿零件,验证了本装备的性能满足设计的要求。
With the development of science and technology, CAD/CAM technologies are graduallyapplied to dental medical treatment, which has greatly improved the quality and efficiency ofdental restoration. The high speed machining (HSM) technology is a key component of dentalrestoration CAD/CAM system for manufacturing denture, which directly related to the quality ofthe workpieces. Due to the complex morphology of denture and hard to machining raw materials(metalic alloy, ceramic), the machining process is complex and the quality is hard to achieved.Considering the demands of dental clinic, the relevant theories and key technologies of HSMused in manufacturing denture are deeply studied in this dissertation based on the experiments.The focuses of the study are the milling performance and machining parameters setting onmilling pre-sintered zirconia ceramics, and designing a digital oral equipment which with twospindles.
     The main contents and achievements are shown as follows:
     1. Researching on the phenomenon of exit chipping during in the denture milling on thepre-sintered zirconia ceramics, a new milling method which can dramatically reducing exitchipping has been introduced. The factors leading to phenomenon of exit chipping in millingpre-sintered zirconia has been analysed and verified in several experiments. It’s shown thatdifferent milling and the corresponding performance parameters (rigidity, fracture toughness,micro particle size) of material have effects on exit chipping. The width of exit chipping can bedecreased by optimizing milling parameters.
     2. Considering the wearing of cutter, milling pre-sintered zirconia has great effect onmachining denture quality; a prediction model of cutter wear has been introduced based on thegray system theory after analyzing the tool wear data collected by the same time interval. Thewearing capacity and lifetime of tool can be forecasted based on this model. The model's wasverified after analyzing and comparing the measured value in an experiment
     3. Studying on the geometric model of ball end mill and the high speed cutting parameters,the theory model of high speed milling force in micro-diameter cutter has been established on thebasis ofinfinitesimal of body force. The effets such as radial width of cut, feed rate, cuttingmethods and shape of the workpiece in the milling on cutting force of milling have been studiedsystematically. The empirical prediction model of milling force on machining pre-sinteredzirconia ceramics has been introduced by means of the method of multivariate orthogonalregression to analyse the data of plane milling experiment. The model's veracity was verifiedaccording to the result of milling experiment about simulate curvature changes in morphology ofdenture.
     4. On the basis of fixed-effect model, the factorial experiment on surface roughness ofmilling pre-sintered zirconia has been designed, then the effects of milling parameters such as spindle speed, radial width of cut and axial depth of cut have on the surface quality of workpiece.Using quadratic regression orthogonal experiment, an optimizing model has been established tooptimize the milling parameters when machining pre-sintered zirconiao to obtain the bestminimum surface roughness. The model provides reliable guarantees for denture’s machiningusing pre-sintered zirconia.
     5. Using JDPaint software to generate and analyze milling tool path for machining dentureon the basis ofthe milling experiments and result of optimizing analysis, then selecting therational machining parameters and modes to milling a pre-sintered zirconia denture. Itsmorphology and surface roughness have been observed. The results show good quality for needsof dental restoration in oral medicine. The rationality and feasibility of the aforementioned modelalso been verified by the experiment.
     6. Designing CNC equipment dedicated for prosthetic dentistry, the characteristics ofdenture processing have been analyzed using functional analysis approach. The mechanicalstructure of the processing system has been set up. The structure of equipment is four-axis withtwo spindles. With a view to compact its structure, the system’s structure also been analysed andoptimized to realized the concept of "the processing next to chair". On the basis of the theory ofMulti-body system and the actual situation of machine tool been studied, the model ofVolumetric error has been deduced and the main resources and affects were analyzed whichprovide the theoretical basis of accuracy.
引文
[1]马轩祥,赵铱民.口腔修复学第五版[M].北京:人民卫生出版社,2005.
    [2]戴宁.口腔修复体造型关键技术研究及其应用[D].[博士学位论文].南京:南京航空航天大学,2006.
    [3]余占海.口腔颌面美容修复学[M].北京:军事医学科学出版社,2003.
    [4] Tanaka N, Khan A M, Shintani H, et a1. Dental high-speed cutting of porousmachinable-ceramic resin composites and bovine enamel[J]. Journal of Materials Science:Materials in Medicine.1993,4(1):71-75.
    [5] Jackson M J, Hyde L J, Ahmed W. Diamond-coated cutting tools for biomedical applications[J].Journal of Materials Engineering and Performance.2004,13(4):421-430.
    [6] Vandenbroucke B, Kruth J P. Direct Digital Manufacturing of Complex Dental ProsthesesBio-Materials and Prototyping Applications in Medicine[M]. Springer US.2007:109-124.
    [7]李石保.牙科用PMMA一zro:仿生纳米复合材料的设计、制备、性能及应用研究[D].[博士学位论文].长沙:国防科学技术大学,2005
    [8] López de lacalle L N, J pérez, J I L, et al. Advanced cutting conditions for the milling ofaeronautical alloys[J]. Journal of Materials Processing Technology,2000,100(1-3):1-11.
    [9] Colwell L V, Quackenbush L J. A study of high speed milling of titanium alloys-Final report[J].ORA project05038,1962(9).
    [10] Hartung P D, Kramer B M. Tool Wear in Titanium Machining[J]. Annual CIRP,1982,31(1):75-80.
    [11] Gente A, Hoffmerister H W. Chip Formation in Machining Ti6A14V at Extremely high cuttingspeeds[J]. Annals of the CIRP,2001,50(l):49-52.
    [12] Mantle A L, Aspinwall D K. Surface integrity of a high speed milled gamma titaniumaluminide[J]. Journal of materials processing technology,2001,118(1-3):143-150.
    [13] Ezugwu E O, Wang Z M. Titanium alloys and their Machinability-A Review[J]. Journal ofMaterials Processing Technology,1997,68(3):262-274.
    [14] Ezugwu E O, Silva R B D, Bonney J, et al. Evaluation of the Performance of CBN Tools WhenTurning Ti-6Al-4V Alloy with High Pressure Coolant Supplies[J]. International Journal ofMachine Tool&Manufacture,2005,45(9):1009-1014.
    [15] Ezugwu E O, Bonneya J, Silva R B D, et al. Surface integrity of finished turned Ti-6Al-4Valloy with PCD tools using conventional and high pressure coolant supplies[J]. InternationalJournal of Machine Tool&Manufacture,2007,47(6):884-891.
    [16] Komanduri R, Reed Jr W R. Evaluation of carbide grades and a new cutting geometry formachining titanium alloys[J]. Wear,1983,92(1):113-123.
    [17] Komanduri R R. Some Clarifications on the Mechanics of Chip Formation When MachiningTitanium Alloys[J]. Wear,1982,76(1):15-34.
    [18] Toh C K. Surface topography analysis in high speed finish milling inclined hardened steel[J].Precision Engineering,2004,28(4):386-398.
    [19]耿国盛.钛合金高速铣削技术的基础研究[D].[博士学位论文].南京:南京航空航天大学,2006.
    [20]吴红兵,刘刚,柯映林等.钛合金的己加工表面残余应力的数值模拟[J].浙江大学学报(工学版),2007,41(8):1359-1393.
    [21]沈中,孙暄,刘钢等.基于平均切削厚度钛合金TC4铣削机理[J].上海交通大学学报,2007,41(4):614-623.
    [22]杜随更,吕超,任学军等.钛合金TC4高速铣削表面形貌及表层组织研究[J].航空学报,2008,29(6):1710-1715.
    [23] Isabelle D, Robert K J. State of the art of zirconia for dental applications[J] Dental materials,2008,24(3):299-307.
    [24] Alvaro D B, Robert K J. The Clinical Success of All-Ceramic Restorations[J] J Am Dent Assoc,2008,139(4):8-13.
    [25]仇越秀,苗鸿雁,夏傲等.牙科修复中陶瓷的应用[J].陶瓷科学与艺术,2004,4:38-43.
    [26]王娜,朱威.实用口腔修复技术[M].哈尔滨:黑龙江科学技术出版社,2005.
    [27] Rosenblurn M A, Schulman A. A review of all-ceramic restorations [J]. J Am Dent Asso,1997,128(3):297-307.
    [28] Kelly J R, Nishimura I, Campbell S D. Ceramics in dentistry: Historical roots and currentperspectives[J]. J Prosthet Dent,1996,75(1):18-32.
    [29]宋晓菲.牙科陶瓷高速手机调磨研究[D].[博士学位论文].天津:天津大学,2008.
    [30] Ralph G L, Mandy S Hr, Heike R, et al.. CAD/CAM-machining effects on Y-TZP zirconia[J]Dental Materials,2004,20(7):655–662.
    [31] Chang J H, Liu H C, Tuan W Hs. Effect of abrasive grinding on the strength of Y-TZP[J]Journal of the European Ceramic Society,2009,29(12):2665–2669.
    [32] Dianne R, Van P T. Engineering long term clinical success of advanced ceramic prostheses[J]Journal of Materials Science: Materials in Medicine,2007,18(1):47-567.
    [33] Brian T R, Malvin N J, Ricardo A Z, et al. Design features of a three-dimensional molar crownand related maximum principal stress. A finite element model study[J], dental materials,2010,26(2):156-163.
    [34] Coelhoa P G, Silva N R, Bonfantea E A, Guessc P C, et al. V P Thompson, Fatigue testing oftwo porcelain-zirconia all-ceramic crown systems[J], dental materials,2009,25(9):1112-1127.
    [35]闫霞,韩翼刚,宋晓菲等. Vita Mark Ⅱ齿科陶瓷体外口腔修复磨削表面粗糙度研究[J]金刚石与磨料磨具工程,2007,157(1):60-63.
    [36] Kato K, Shyu C S. Maching of semi-sintered zirconia and its full-sintreing for final shape[J].VBI-Ber,1996,1276:427-434.
    [37] Frank T F. Direct Ceramic Machining of Ceramic Dental Restorations[D], Zurich,2001.
    [38] Song J H, Evans J R G. Machinability of zirconia ceramic compacts[J]. J Eur Ceram Soc,1997,52(5):380-384.
    [39] Schulz H, Moriwaki T. High Speed Machining[J]. Annals of the CIRP,1992,41(2):637-642.
    [40] Smith K. Breaking the Speed Limit[J]. Cutting Tool Engineering,1994,46(5):35-40.
    [41] Komanduri R. High Speed Maehining[M]. NewYork: ASME,1984.
    [42]艾兴,刘战强,黄传真等.高速切削综合技术[J].航空制造技术,2002,(3):20-23.
    [43] Smith S, Tlusty J. Current trends in high-speed machining[J]. Transaction of the ASME, Journalof Machining and Engineering,1997,119(4):664-666.
    [44] Tlusty J. High-speed machining[J]. CIRP Annals Manufacturing Technology,1993,42(2):733-738.
    [45] Dewes R C, Aspinwall D K. A review of ultra high speed milling of hardened steels[J]. Journalof Materials Processing Technology,1997,69(1-3):1-7.
    [46]艾兴等.高速切削加工技术[M].北京:国防工业出版社,2003.
    [47] Norihiko, Narutaki. High-speed machining of titanium alloy[J]. Chinese journal of mechanicalengineering,2002,15(12):109-113.
    [48] Yang M, Park H.The Prediction of cutting Force in Ball-End Milling[J]. International Journal ofMachine Tools&Manufacture,1991,31(1):45~54.
    [49] Feng H Y, Menq C H. The Prediction of Cutting Forces in the Ball-End Milling Process-I,Model Formulation and Model Building Procedure[J]. International Journal of Machine Tools&Manufacture,1994,34(5):697~710.
    [50] Lee P, Altintas Y. Prediction of Ball-End Milling Forces from Orthogonal Cutting Data[J].International Journal of Machine Tools&Manufacture,1996,36(9):1059~1072.
    [51] Lamikiz A, Lopez de Lacalle L N, Sanchez J A, et al. Cutting force estimation in sculpturedsurface milling[J]. International Journal of Machine Tools&Manufacture,2004,44(14):1511~1526.
    [52] Lazoglu I. Sculpture surface machining: a generalized model of ball-end milling force system[J].International Journal of Machine Tools&Manufacture,2003,43(5):453~462.
    [53] Imani B M. An improved process simulation system for ball-end milling of sculpturedsurfaces[J]. International Journal of Machine Tools&Manufacture,1998,38(9):1089~1107.
    [54] Smith S. Power and stability limits in milling[J]. Annals of the CIRP,2000,49(1):309~312.
    [55] Smith S. The effect of tool length on stable metal removal rate in high speed milling[J]. Annalsof the CIRP,1998,47(1):307~310.
    [56] Ratchev S, Liu S, Huang W, et a1. An advanced FEA based force induced error compensationstrategy in milling[J].International Journal of Machine Tools and Manu facture,2006,46(5):542~551.
    [57] Ratchev S, Liu S, Becker A. Error compensation strategyin milling flexible thinwall parts.[J].Journal of Materials Processing Technology,2005,162-163(15):673~681.
    [58] Ratchev S, Phuah K, GLmmel, et a1. An experimental investigation of fixture workpiececontact behaviour for the dynamic simulation of complex fixture workpiece systems[J]. Journalof Materials Processing Technology,2005,164-65(15):1597~1606.
    [59]马万太,王宁生.考虑弹性变形时的球头铣刀切削力模型的研究[J].南京航空航天大学学报,1998,30(6):633-640.
    [60]阎兵,张大卫,徐安平等.球头刀铣削过程动力学模型[J].机械工程学报,2002,38(5):22-26.
    [61]刘志新.高速铣削过程动力学建模及其物理仿真研究[D].[博士学位论文].天津:天津大学,2006.
    [62]刘安民,彭程.高速铣削时颤振的诊断和稳定加工区域的预报[J].机械工程学报,2007,43(1):164~168.
    [63]李亮.薄壁零件的加工振动分析与加工工艺研究[D].[硕士学位论文].南京:南京航空航天大学,2005.
    [64] David W S, Shiv G K, Richard E D. A tool Force modle for three-dimendional cuttingoperations[J]. International Journal of Machine Tools&Manufacture,2000,40:1929-1950.
    [65] Lee K Y. Simulation of surface roughness and profile in high-speed end mill[J].Mater ProcessThechnol.2001,(113):410~415.
    [66] Chen J C, Huang B. An In-Process Neural Network-Based Surface Roughness Prediction(INN-SRP) System Using a Dynamometer in End Milling Operations[J]. The InternationalJournal of Advanced Manufacturing Technology,2003,21(5):339-347.
    [67] Mizugaki Y, Hao M, Kikkawa K. Geomitric generating mechanism of machined surface byball-nosed end milling[J]. Ann.CIRP.2001,50(1):69~72.
    [68] Kim B H, Chu C N. Texture prediction of milled surface using texture superpositionmethod[J].Computer-Aidded Desgn.1999,(31):485~494.
    [69] Bouzakis K H, Aichouh P, Efstathiou K. Detennination of the chip geometry, cutting force androughness in free form surfaces finishing milling, with ball end tools[J]. International Journal ofMachine tools and Manufacture,2003,43(5):499-514.
    [70]杨国艳,赵晓明等.高速铣削加工中进给量和进给间隔对表面粗糙度的影响[J].上海交通大学学报,2005,39(1):108-112.
    [71]王素玉,赵军,艾兴.高速切削表面粗糙度理论研究综述[J].机械工程师.2004(10):3~5.
    [72]阎兵,张大卫,徐安平等.球头铣刀铣削表面形貌建模与仿真[J].计算机辅助设计与图形学学报,2001,13(2):135-140.
    [73]吕彦明,陈五一,陈鼎昌.球头刀铣削残留高度精确计算[J].中国机械工程,2003,14(18):1550-1551.
    [74] Duret F, Blouin J L, Duret B. CAD/CAM in dentistry[J]. J Am Dent Assoc,1988,117(11):715-720.
    [75] Cerec3D Operator’s Manual. http://www. sirona.com/ecomaXL/index.php?site=SIRONA_COM_cerec.
    [76] http://www.kavo-everest.com/En/zahntechniker/ids2005/scanpro.asp?navid=550861&lan=En.
    [77] The Procera AllCeram System Introduce. http://www.ddsltdlab.com/procera.htm.
    [78] http://www.cynovad.com/html/produits/Pro50/pro50.htm.
    [79] Otto T, Schneider D. Long-term clinical results of chairside Cerec CAD/CAM inlays and onlays:a case series [J]. Int J Prosthodongt,2008,21(1):53-59.
    [80] Dennis J F. Clinical performance of chairside CAD/CAM restorations[J]. J Am Dent Assoc,2006,137(1):22-31.
    [81] Mormann W H, Schug J.. Grinding precision and accuracy of fit of CEREC2CAD-CAMinlays[J]. The Journal of the American Dental Association,1997,128(1):47-53.
    [82] Otto T, De N S. Computer-aided direct ceramic restorations: a10-year prospective clinicalstudy of Cerec CAD/CAM inlays and onlays[J], International Journal of Prosthodontics,2002,15(2):122-128.
    [83] Bindl A, M rmann W H. Clinical and SEM evaluation of all-ceramic chair-side CAD/CAMgenerated partial crowns[J]. Eur J Oral Sci,2003,111(2):163-169.
    [84] Wittneben J G, Wright R F, Weber H P, et al. systematic review of the clinical performance ofCAD/CAM single-tooth restorations[J]. Int J Prosthodont,2009,22(5):466-471.
    [85] Luthardt R G, Holzhüter M S, Rudolph H, et al. CAD/CAM machining effects on Y-TZPzirconia [J]. Dent Mater,2004,20(7):655-662.
    [86] Rudolph H, Luthardt R G, Walter M H. Computer-aided analysis of the influence of digitizingand surfacing on the accuracy in dental CAD/CAM technology[J]. Comput Biol Med,2007,37(5):579-587.
    [87]吕培军,李国珍,王毓英.计算机辅助可摘式局部义齿设计的专家系统[J].中华口腔医学杂志,1993,28(1):9-11.
    [88]周文灵,张远鹏,陈敏等.口腔义齿的三维造型方法探讨[J].北京生物医学工程,1995,14(2):82-85.
    [89]高勃,王建,王忠义.牙冠表面三维光测量和重建方法[J].光子学报,2000,29(6):554~558.
    [90]吕培军,李彦生,王勇.国产口腔修复CAD-CAM系统的研究与开发[J].中华口腔医学杂志,2002,37(5):367-370.
    [91]韩景芸,费仁元,李彦生等.基于逆向工程技术的后牙嵌体的数字化个性设计[J].机械科学与技术,2005,24(3):315-318.
    [92]韩景芸,费仁元,李彦生等.金属全冠的CAM工艺技术研究[J].现代制造工程,2004,10:10-12.
    [93]王克强,杨钦,陈建治等.基于逆向工程的口腔修复体CAD研究[J].系统仿真学学报,2001,13增刊:580-581,585.
    [94]金树人,姚月玲,高勃等.应用快速成型法制作磨牙树脂全冠[J].第四军医大大学学报,2003,24(8):700-702.
    [95]吴世旭.五轴义齿雕刻机数控系统的应用开发[D].[硕士学位论文].北京北方工业大学,2008.
    [96] http://www.cereconline.com/cerec/milling.html.
    [97] Wemer H M, Andreas B. The Cerec3-A quantum leap for computer-aided restorationrestorations: initial clinical results[J]. Quintessenc International,2000,31(10):699-712.
    [98] Jian H, Hao Y, Jun S, et al. An evaluation of the Dental3D Multimedia System ondentist–patient interactions: A report from China[J]. International Journal of MedicalInformatics,2008,77(10):670-678.
    [99] Allen K L, Schenkel A B, Estafan D. An overview of the CEREC3D CAD/CAM system[J].General Dentistry,2004,52(3):234-235.
    [100] Wiedhahn K. Cerec3as the first step in digitizing the dental office[J]. International Journal ofComputerized Dentistry,2000,3(1):67-71.
    [101] Von S P, Jurensen B, ZOllner M. Cercon move: a navigation aid for dental CAD applications[J].International Journal of Computerized Dentistry,2004,7(4):371-377.
    [102] Vollman M, The innovative DeguDent all-ceramic system: benchmark for Zirconia Processing[J]. International Journal of Computerized Dentistry,2004,7(3):279-291.
    [103] http://www.e4dsky.com/.
    [104] http://www.shenyidentallab.com/.
    [105] Kucey B K S, Fraser D C. The Procera abautment-the fifth generation abutment for dentalimplants[J]. Journal of Canadian Dental Association,2000,66(8):445-449.
    [106]宋雅丽.义齿CAD关键技术研究与开发[D].[博士学位论文].天津:天津大学,2006.
    [107] Hikita K, Uchiyama Y, Otsuki M, et al. Function and Clinical Application of DentalCAD/CAM “CN-1”[J]. International Journal of Computerized Dentistry,2002,5(1):11-23.
    [108] Song Y l, Li J, Yin L, et al.. The feature-based posterior crown design in a dental CAD/CAMsystem[J]. Int J Adv ManufTechnol.2007,31(11-12):1058-1065.
    [109] Kenneth B M, Melinda M R, Michael E R, et al. Precision of fit: The Procera AllCeram crown[J]. The Journal of Prosthetic Dentistry,1998,80(4):394-403.
    [110] Lixun Q. Machining of dental ceramics with applications on CAD-CAM dental restorations [D]Maryland, University of Maryland,2000.
    [111]唐修检,田欣利,吴志远等,工程陶瓷边缘碎裂行为与机理研究进展[J].中国机械工程,2010,21(1):114-119.
    [112] Jeffrey Y T, Brian R S, Jeffrey R P. Ceramics for restorative dentistry: Critical aspects forfracture and fatigue resistance[J]. Materials Science and Engineering C,2007,27(3):565-569.
    [113]袁奎. ZrO2全瓷牙冠材料的半烧结成型工艺与技术的研究[D].[硕士学位论文].西安:西安理工大学,2009.
    [114] http://www.zro2blocks.com/.
    [115] Filser F, Kocher P, Gauckler L J. Net-shaping of ceramic components by direct ceramicmachining[J]. Assembly Automation,2003,23(4):382-390.
    [116] Santanu D, Bo S. Green Machining to Net Shape Alumina Ceramics Prepared Using DifferentProcessing Routes[J]. International Journal of Applied Ceramic Technology,2005,2(3):262-270.
    [117]刘小舟,王勇,吕培军.牙科可切削陶瓷材料国内临床应用及研究进展[J].硅酸盐通报,2009,28卷增刊:211-214.
    [118] Chai H, Lawn B R. A Universal Relation for Edge Chipping from Sharp Contacts in BrittleMaterials: a Simple Means of Toughness Evaluation[J]. Acta Materialia,2007,55(7):2555-2561.
    [119] Qi L X. Machining of Dental Ceramics with Applications on CAD/CAM DentalRestorations[D].[Dissertation of doctor]. Maryland: University of Maryland,2000.
    [120] Rahman M, Kumar A S, Prakash J R S. Micro milling of pure copper[J]. Journal of MaterialsProcessing Technology,2001,116(1):39~43.
    [121]赵岩,梁迎春,白清顺等.微细加工中的微型铣床、微刀具磨损及切削力的实验研究[J].光学精密工程,2007,15(6):894-902.
    [122]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    [123] Krain H R, Sharman A R C, Ridgway K. Optimization of tool life and productivity when endmilling Inconel718TM[J]. J. Mater. Process. Technol.,2007,189(1-3):153-161.
    [124] Amaitik S M, Tasgin T T, Kilic S E. Tool-life modeling of carbide and ceramic cutting toosusing multi-linear regression analysis[J]. J. Engineering manufacture,2006,220(B):129-136.
    [125] Alauddin M, ElBaradie M A, Hashmi M S J. Prediction of tool life in end milling by responsesurface methodology[J]. Journal of Materials Processing Technology,1997,71(3):456-465.
    [126]罗佑新,张龙庭,李敏.灰色系统理论及其在机械工程中的应用[M].长沙:国防科技大学出版社,2001.
    [127] Benardos P G, Vosniakos G C. Predicting surface roughness in machining: A review[J].International Journal of Machine Tools and Manufacture.2003,43(8):833-844.
    [128] Baek D K, Ko T J, Kim H S. Optimization of feedrate in a face milling operation using asurface roughness model[J]. International Journal of Machine Tools and Manufacture.2001,41(3):451-462.
    [129] Baptista R, J Antune S F. Three and five axes milling of sculptured surfaces[J]. Journal ofMaterials Processing Technology,2000,103(3):398-403.
    [130] Ki Y L, Myeong C K, Yung H J, et al. Simulation of surface roughness and profile inhigh-speed end milling[J]. Journal of Materials Processing Technology,2006,113:410-415.
    [131] Fuh K H, Wu C F. Proposed statistical model for surface quality prediction in end-milling of Alalloy[J]. International Journal of Machine Tools&Manufacture,1995,35(8):1187-1200.
    [132] Kopac J, Bahor M, Sokovic M. Optimal machining parameters for achieving the desired surfaceroughness in fine turning of cold pre-formed steel workpieces[J]. International Journal ofMachine Tools and Manufacture,2002,42(6):707-716.
    [133] Yucesan G B, Altintas Y. Prediction of ball-end milling forces[J]. Trans ASME J Eng Ind,1996,118(1):95-103.
    [134] Shaw M C. Metal cutting principles[M]. Oxford, Oxford University Press,1984.
    [135] Budak E, Altintas Y, Armarego E J A. Prediction of milling force coefficients from orthogonalcutting data[J]. Trans ASME J Manuf Sci Eng,1996,118(2):216-224.
    [136] Yucesan G B, Altintas Y. Improved odeling of cutting force coefficients in peripheralmilling[J]. Int J Mach Tools Manuf,1994,34(4):473-487.
    [137] Liu X W, Cheng K, Longstaff A P. Improved dynamic cutting force model in ball-end milling.Part I: theoretical odeling and experimental calibration[J]. Int J Adv Manuf Technol,2005,26(5-6):457-465.
    [138]张臣,周来水,安鲁陵等.刀具变形引起的球头铣刀加工误差建模[J].南京航空航天大学学报,2008,40(1):94-99.
    [139]曹自洋.微细铣削机床、刀具与加工机理的基础研究[D].[博士学位论文].南京:南京航空航天大学,2008.
    [140] Li P, Oosterling J A J, Hoogstrate A M. Performance evaluation of micromilling of hardenedtool steel[C]. Proceedings of the2nd International Conference on Micromanufacturing,Greenville, USA,2007,219-224.
    [141]王素玉.高速铣削加工表面质量的研究[D].[博士学位论文].济南:山东大学,2006.
    [142]师汉民,谌刚,吴雅.机械振动系统-分析测试建模对策(上册)[M].武汉:华中科技大学出版社,2001.
    [143]赵岩.微细铣削工艺基础与实验研究[D].[博士学位论文].哈尔滨:哈尔滨工业大学,2008.
    [144] Chen J S, Huang Y K, Chen M S. A study of the surface scallop generating mechanism in theball-end milling process[J]. Machine Tools&Manufacture,2005,45(9):1077–1084.
    [145] Koc B, Lee Y S. Adaptive ruled layers approximation of STL models and multiaxis machiningapplications for rapid prototyping[J]. Journal of Manufacturing Systems,2002,21(3):153-166.
    [146] Kenneth B M, Melinda M R, Michael E R, et al. Precision of fit: The Procera AllCeram crown[J]. The Journal of Prosthetic Dentistry,1998,80(4):394-403.
    [147] Peterson, Pajares, Tompson, et al. Mechanical Characterization of Dental Ceramic usingHertzian Contact[J]. Dental research,1998,77(4):589-602.
    [148]戴宁,周永耀,廖文和等.磨牙全颈环CAD/CAM内冠的制作[J].生物医学工程学杂志,2007,21(1):129-132.
    [149]姜华.高速精密卧式加工中心开发的关键技术研究[D].[博士学位论文].成都:四川大学,2007.
    [150] Richard D S, DDS, MS. The history and clinical application of a chairside CAD/CAM dentalrestoration system[J]. Shanghai Journal of Stomatology,2006,15(5):449-455.
    [151]辛志杰.面向产品族的机床结构可适应动态设计理论、方法与应用[D].[博士学位论文].天津:天津大学,2008.
    [152] Okafor A C, Ertekin Y M. Derivation of machine tool error models and error compensationprocedure for three axes vertical machining center using rigid body kinematics[J]. InternationalJournal of Machine Tools and Manufacture,2000,40(8):1199-1213.
    [153] Srivastava A K, Veldhuis S C, Elbestawit M A. Modeling geometric and thermal errors in afive-axis CNC machine tool[J]. International Journal of Machine Tools and Manufacture,1995,35(9):1321-1337.
    [154] Su S P, Y Yong, Li S Y. Machining Accuracy Prediction Systems for CNC Machine Tools Onthe basis ofMulti-body System Theory[J]. Journal of changsha university of electric power(natural science),2003,18(5):36-41.
    [155]张霖,赵东标.基于损失模型的三轴小型超精密铣床结构设计参数优化分析[J].机械科学与技术,2007,26(5):548-551.
    [156] Huan-Ling L, Qun-Hua M, Yu Z, et al. Modeling of Positioning Error for Five-Axis NCMachining Center Based on Multi-body System Theory[J]. Manufacturing Information.2007,36(19):16-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700