机械系统刚—柔—液耦合多体动力学递推建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技的不断发展,在航空航天、车辆、机器人等领域均出现了大量刚-柔-液耦合的多体系统。针对柔性多体系统和充液多体系统这两类多体动力学问题,本文在空间算子代数递推理论的基础上,推导出了刚柔耦合多体系统空间算子代数理论以及计及液体小幅晃动的空间算子代数理论的基本方程,并提出了基于区间算法的多体系统动力学求解方法,编制了相应的计算程序,主要包括以下五个方面内容:
     (1)、针对目前对多体系统动力学发展中提出的“提高计算速度和精度”的要求,总结了当前国际上三种重要的具有O(n)次计算效率的动力学方法:空间算子代数方法,李群李代数方法和哈密顿递推形式的动力学建模方法。在此基础上采用基于完全笛卡尔坐标的多刚体系统动力学方法,推导出了杆件机构O(n)次的正向动力学模型。
     (2)、探讨了柔性多体系统的空间算子代数建模问题。首先对柔性多体系统进行了刚体近似处理,采用有限段方法对该柔体进行了近似刚体的等效力学模型建模,并通过空间算子代数对该系统进行了动力学分析。其次,对刚柔耦合树形拓扑结构的多体系统进行了建模研究,并通过编制了该多体系统动力学计算程序。最后,通过具体算例与传统拉格朗日建模方法进行了分析比较,验证了空间算子代数方法是一种高精度的建模方法。
     (3)、采用空间算子代数理论对小幅液体晃动的动力学递推算法进行了研究。利用有限元模态分析技术得到了液体晃动的模态特征,通过动量定理和动量矩定理得到液体贮箱间晃动作用力的表达,在此基础上采用空间算子代数推导出了该小幅晃动充液多体系统的递推动力学模型,并编制了小幅晃动充液多体系统的动力学计算程序。
     (4)、采用区间算法对多体系统动力学模型进行了求解研究。探讨了基于Newmark法和区间算法联合求解多体系统动力学微分方程问题,并对含有欠驱动关节系统的空间算子代数动力学模型进行求解分析。通过具体算例验证了该算法的有效性和正确性。
     (5)、利用解耦的自然正交补矩阵得到递推形式的闭环多体系统的李群李代数表达。采用分度、分段圆法设计了共轭凸轮轮廓,并以凸轮-滚子(自由滚动)凸轮减速机为对象,采用基于递推形式的虚拟样机技术对其动力学特性进行了研究。
With the development of technology, there are large numbers of rigid-flexible-liqued couplingmultibody system in the field of aerospace, vehicles and robot. To solve these kinds of problems, thespatial operator algebra theory of rigid-flexible coulping and considering small amplitude liquidsloshing multibody system are deduced as well as the solving method of multibody system dynamicsbased on Interval Arithmetic is obtained. The main content of this thesis include five aspects:
     (1)To meet the demand of improving calculate velocity and precision during the developmentprocess of multibody system dynamics, the spatial operator algebra theory, Lie Groups and Liealgebraic method and the recursive Hamilton dynamics equations which are most important of O(n)times dynamics computational efficiency are summarized. Meanwhile, the dynamics of rod linkagesis deduced by multibody system dynamics method described by fully cartesian coordinate.
     (2)The dynamics of flexible multibody system is studied. Firstly, the flexible object is treated asapproximate rigid object, the Mathematical modeling for this approximate rigid object is founded bythe finite segment method and the flexible multibody system is dynamical analyzed by spatialoperator algebra theory. Next, the rigid-flexible coupling multibody system dynamics is modeled,meanwhile, the numerical code for this system which is based on Mathematical software is obtained.Finally, the calculational procedure is compared between the spatial operator algebra dynamicsmodeling and tradition Lagrange modeling method by a calculating case.
     (3)The dynamic characteristic of liquid-filled tank is researched by spatial operator algebratheory. The force expression for the tank and liquid is obtained by the momentum theorem and themomentum moment theorem. The mode of liquid sloshing is achieved by Finite element modalanalysis and the mode results are utilized for the recursive dynamics modeling of small amplitudeliquid sloshing multibody system which is accomplished by spatial operator algebra theory. Thedynamic calculational procedure for small amplitude liquid sloshing multibody system is achieved byMathematical software.
     (4)The study on the problem of multibody system dynamics is deduced by Interval Arithmetic.Based on the Newmark method and Interval Arithmetic to solve the multibody system dynamicsdifferential equations and the spatial operator algebra theory modeling with underactuated jointsystem. The corresponding numerical computation program is compiled. The specific example is usedto demonstrate the effectiveness and correctness for the new algorithm.
     (5) Based on natural orthogonal complement and decoupling of natural orthogonal complement,the recursive dynamics for the closed loop systems are discussed. A new plane cam reducer such assimple parallel cam reducer and planetary cam reducer are designed and the cam curve are designedby means of divided degree and divided segment method for the conjugate cams. The dynamiccharacteristic of these two reducers is studied by Virtual Prototyping Technology based on recuisivedynamics.
引文
[1]刘又午,休斯敦.多体系统动力学.天津:天津大学出版社,1990.
    [2] A.Ahmed, A. A. Shabana. Flexible multibody dynamics:review of past and recentdevelopments. Multibody System Dynamics.1997,1:189-222.
    [3]王照林,刘延柱.充液系统动力学.力学丛书.北京:科学出版社,2002.
    [4]陈建平.液载系统液体晃动及液体-结构耦合动力学研究[博士学位论文].南京,南京航空航天大学,2004.
    [5]贾书惠.刚体动力学.北京:高等教育出版社,1987.
    [6] R. L. Huston. Multibody dynamics–modeling and analysis methods.Applied MechanicsReview.1996,49:35-40.
    [7] W.Schiehen. Multibody system dynamics instructions for authors. Multibody SystemDynamics.2002,7:439-444.
    [8] W.Schiehen. Recent developments in multibody dynamics. Journal of Mechanical Scienceand Technology.2005,19(1):227-236.
    [9] S.Werner,G.Nils,S.Robert. Multibody dynamics in computational mechanics and engineeringapplications. Computer methods in applied mechanics and engineering.2006,195:5509-5522.
    [10]陈立平.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005.
    [11] M.J.Pratt. Virtual prototypes and product models in mechanical engineering. VirtualPrototyping-Virtual Environments and the Product Design Process, London, UK,1995.
    [12] A.DüRRBAUM, W.KLIER, H.HAHN. Comparison of automatic and symbolicdifferentiation in mathematical modeling and computer simulation of rigid-body systems.Multibody System Dynamics.2002,7:331-355.
    [13] W. W. Hooker,G. Wargulies.The dynamical attitude equations for an n–body satellite. Journalof the Astronautical Sciences.1965,12:123-128.
    [14] R. E. Roberson. A dynamical formulism for an arbitrary number of interconnected rigidbodies with reference to the problem of satelliteattitude control.3rd IFAC Congress.1966.
    [15] J. Wittenburg.多刚体系统动力学.北京:北京航空学院出版社,1986.
    [16] J. Witenburg. Dynamics of System o f Rigid Bodies.Teubner:1977.
    [17] T.R.Kane,D.A.Levinson.The use of Kane's dynamical equations in Robotics. InternationalJournal of Robotics Research.1983,2(3):3-21.
    [18] R. S. Ball. A Treatise on the Theory of Screws.Cambridge Cambridge University Press,1900.
    [19]黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社,2006.
    [20]洪嘉振,梁敏.多刚体内碰撞数学模型及计算程序.力学学报.1989,21(4):509-512.
    [21]“中国力学学会学术大会”2005(CCTAM'2005)总结.北京:2005.
    [22] L. Meirovitch. Dynamics and control of spacecraft with retargeting flexible antenna. Journalof Guidance.1990,13(2):241-248.
    [23] L. Meirovitch. Hybrid state equations of motion for flexible bodies in terms ofquasi-coordinates. Journal of Guidance,Control, and Dynamics.1990,14(5):1008-1013.
    [24] L. Meirovitch.Equations of motion for maneuvering flexible spacecraft. Journal of Guidance,Control, and Dynamics.1987,10(5):453-465.
    [25] J. Y. L. Ho.Direct path method for flexible muitibody spacecraft dynamics. AIAA Journal.1977,14(2):102-110.
    [26] T. R. Kane, D. A. Levinson.Formulation of equations of motion for complex spacecraft.Journal of Guidance,Control, and Dynamics.1980,3(2):99-112.
    [27] R. P. Singh. Dynamics of flexible bodies in tree topology a computer~0riented approach.Journal of Guidance, Control and Dynamics.1985,8(5):584-590.
    [28] J.Y.Liu, H.Lu. Rigid-flexible coupling dynamics of three-dimensional hub-beams system.Multibody System Dynamics.2007,18:487-510.
    [29] J.W.Yoon, T.W.Park, S.H.Lee, K.J.Jun, S.P. Jung. Synthetic analysis of flexible multibodysystem including a very flexible body. Journal of Mechanical Science and Technology.2009,23:942-945.
    [30]刘铸永,洪嘉振.柔性多体系统动力学研究现状与展望.计算力学学报.2008,25(4):411-416.
    [31] Y-L. Hwang. Recursive Newton–Euler formulation for flexible dynamic manufacturinganalysis of open-loop robotic systems. International Journal of Advanced Manuf acturingTechnology.2006,29:598-604.
    [32] R. C. Winfrey. Elastic Link Mechanism Dynamics. ASME Journal of Engineering forIndustry.1971,93:268-272.
    [33]杨国良.工业机器人动力学仿真及有限元分析.武汉:华中科技大学,2007.
    [34] J. R. Canavin, P. W. Likins. Floating reference frames for flexible spacecraft. Journal ofSpacecraft and Rockets.1977,14(12):724-732.
    [35] M. Pascal. Some open problems in dynamic analysis of flexible multibody systems.Multibody System Dynamics.2001,5:315-334.
    [36]吴胜宝,章定国.大范围运动刚体-柔性梁刚柔耦合动力学分析.振动工程学报.2011,24(1):1-7.
    [37]田富洋.在轨服务空间机器人机械多体系统动力学高效率建模研究[博士学位论文],南京航空航天大学,2009.
    [38]洪嘉振,蒋丽忠.动力刚化与多体系统刚-柔耦合动力学.计算力学学报.1999,16(3):295-301.
    [39] V.D.Stefan. Analysis of large flexible body deformation in multibody systems using absolutecoordinates. Multibody System Dynamics.2002,8:409-432.
    [40] A. A. Shabana, R. Y. Yakoub. Three dimensional absolute nodal coordinate formulation forbeam elements: Theory in Journal of Mechanical Design.2001,123:606-621.
    [41] M. Berzeri, A. A. Shabana. Development of simple models for the elastic forces in theabsolute nodal co-ordinate formulation. Journal of Sound and Vibration.2000,235(4):539-565.
    [42] M. A. Omar, A. A. Shabana.A two-dimensional shear deformation beam for large rotation anddeformation. Journal of Sound and Vibration.2001,243(3):565-576.
    [43] A. M. Mikkola, A. A. Shabana. A new plate element based on the absolute nodal coordinateformulation. ASME Design Engineering Technical Conference,2001. Pittsburgh,PA.
    [44]尤超蓝.大变形多体系统刚柔耦合动力学建模理论研究[硕士学位论文],上海交通大学,2006.
    [45]蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究.力学学报.2005,37(1):48-56.
    [46] W. Chen.Dynamic modeling of multi-link flexible robotic manipulators.Computers andStructures.2001,79:183-195.
    [47]丁希仑等.空间弹性变形构件的李群和李代数分析方法.机械工程学报.2005,41(1):16-23.
    [48]丁希仑,刘颖.用李群李代数分析具有空间柔性变形杆件的机器人动力学.机械工程学报.2007,43(12):184-189.
    [49] M. Iura, S. N. Atluri.Dynamic analysis of planar flexible beams with finite rotations by usinginitial and rotating frames. Comput Struct.1995,55(3):453-462.
    [50] J.Gerstmayr,J.Schoberl. A3D finite element method for flexible multibody systems.Multibody System Dynamics.2006,15:309-324.
    [51]方喜峰.基于空间算子代数理论计算多体系统动力学建模方法和研究[博士后出站报告],南京航空航天大学,2008.
    [52] Y. Wang, W. J. Zhang, H.M.E.Cheung. A finite element approach to dynamic modeling offlexible spatial compound bar gear systems Mechanism and Machine Theory.2001,36:469-487.
    [53] M. A. Omar, A. A. Shabana. A two-dimensional shear deformable beam for large rotation anddeformation problems. Journal of Sound and Vibration.2001,243:565-576.
    [54] G. A. Johannes.3D finite element approach to flexible multibody systems. Fifth WorldCongress on Computational Mechanics.2002,July7–12,Vienna, Austria.
    [55] E.Edelstein, A.Rosen. A nonlinear dynamics of a flexible multirod (multibeam) system.Journal of Dynamic Systems, Measurement, and Control.1998,120(2):224-231.
    [56]何斌,芮筱亭,于海龙,陆毓琪.几何非线性机械臂有限段传递矩阵法.火力与指挥控制.2007,32(4):14-17.
    [57]董龙雷,闫桂荣,余建军等.带中心刚体的旋转柔性件有限段建模.西安交通大学学报.2001,35(9):977-981.
    [58] Y.Cheng, S.L.Dai, G.X.Ren. A hybrid finite segment/finite element modelling and experimenton a flexible deployment system. Journal of Sound and Vibration.2002,258(5):931-949.
    [59] Y. Wang, R. L. Huston. A lumped parameter method in the nonlinear analysis of flexible multibody system. Computers and Structures.1994,50(3):421-432.
    [60]闫绍泽,刘冰清,刘又午等.柔性多体系统动力学—有限段方法.河北工业大学学报.1997,26(3):1-9.
    [61] E. Carrera, M. A. Serna. Inverse dynamics of flexible robots. Mathematics and Computers inSimulation.1996,41:485-508.
    [62]曲广吉.柔性航天器动力学分析.北京:航天科技报告,1995.
    [63]陆佑方.柔性多体系统动力学一理论和应用力学的一个活跃领域.力学与实践.1994,16(2):1-9.
    [64]吴洪涛,熊有伦.机械工程中的多体系统动力学问题.中国机械工程.2000,11(6):608-612.
    [65]刘又午,阎绍泽,张大钧.计及动力刚化的柔性体动力学.中国机械工程.1997,8(3):81-84.
    [66]邵成勋,黄文虎,张嘉钟,赵美德,刘玉岚.带弹性附件的卫星的姿态动力学方程.宇航学报.1989,2:79-85.
    [67] K.C.Biswal, S.K.Bhattacharyya,P.K.Sinha.Dynamic response analysis of a liquid-filledcylindrical tank with annular baffle.Journal of Sound and Vibration.2004,274:13-37.
    [68] J.Gerrits, A.E.P.Veldman.Dynamics of liquid-filled spacecraft.Journal of EngineeringMathematics.2003,45:21-38.
    [69]朱仁庆.液体晃荡及其结构的相互作用[硕士学位论文],中国船舶科学研究中心,2001.
    [70]黄华,周志成,杨雷等.充液航天器大幅晃动耦合动力学建模仿真研究.航天器工程.2009,18(5):37-41.
    [71] H.Akyildiz,N.E.U¨nal. Sloshing in a three-dimensional rectangular tank: numericalsimulation and experimental validation. Ocean Engineering.2006,33:2135-2149.
    [72] H.Braess,P.Wriggers. Arbitrary lagrangian eulerian finite element analysis of free surfaceflow. Comput Methods in Applied Mechanics and Engineering.2000,190:95-109.
    [73]王勇.考虑液体晃动的三大件转向架罐车耦合系统动力学性能研究[博士学位论文],西南交通大学,2004.
    [74] H. AKYILDIZ, E. N. üNAL. Sloshing in a three-dimensional rectangular tank: numericalsimulation and experimental validation. Ocean Engineering.2006,33(16):2135-2149.
    [75] A. ZHANG,K. SUZUKI.A comparative study of numerical simulations for fluid–structureinteraction of liquid-filled tank during ship collision. Ocean Engineering.2007,34(5):645-652.
    [76] E. P. VELDMANA, J. GERRITS.The numerical simulation of liquid sloshing on boardspacecraft. Journal of Computational Physics.2007,224(1):82-99.
    [77]包光伟,王政伟.液体三维晃动特征问题的有限元数值计算方法.力学季刊.2003,24(2):185-190.
    [78]丁遂亮,包光伟.任意三维贮箱内液体晃动的模态分析及其等效力学模型.力学季刊.2004,25(1):62-68.
    [79]付京逊,冈. RC,李. CSG.机器人学.中国科学技术出版社,1989.
    [80] K. S. Anderson,J. H. Critchley. Improved order-n performance algorithm for the simulation ofconstrained multi-rigid-body dynamic systems.Multibody System Dynamics.2003,9(2):185-212.
    [81] J.H.Critchley, K.S.Anderson. A parallel logarithmic order algorithm for general multibodysystem dynamics. Multibody System Dynamics.2004,12:75-93.
    [82] Fijany, A.Sharf, I.D.Eleuterio. Parallel O(logN) algorithms for the computation ofmanipulator forward dynamics.Robotics and Automation.1994,2:1547-1553.
    [83] S.K.Saha.Recursive dynamics algorithms for serial, parallel, and closed-chain multibodysystems. Indo-US Workshop on Protein Kinematics and Protein Conformations, IISc,Bangalore.2007, Dec.10-11:1-34.
    [84]熊有伦.机器人技术基础.武汉:华中科技大学出版社,2002.
    [85] D. E. Orin, R. B. McGhee, M. Vukobratovic,G. Hartoch. Kinematic and kinetic analysis ofopen-chain linkages utilizing Newton-Euler methods. Mathematical Biosciences.1979,43:107-130.
    [86] J. Y. S. Luh, M. W. Walker,R. P. C. Paul.On-Line computational scheme for mechanicalmanipulators. Transaction ASME on Journal of Dynamic Systems, Measurement&Control.1980,102(2):69-76.
    [87] J. M. Hollerbach. A recursive Lagrangian formulation of manipulator dynamics and acomparative study of dynamics formulation complexity. IEEE Transaction on Systems, Man,and Cybernetics.1980,10(11):730-736.
    [88] C. A. Balafoutis, R. V. Patel, P. Misra. Ecient modeling and computation of manipulatordynamics using orthogonal cartesian tensors. IEEE Journal of Robotics and Automation.1988,4:665-676.
    [89] A. A. G. X. He.An algorithm for effcient computation of dynamics of robotic manipulators. InProcess of Fourth International Conference on Advanced Robotics.1989,Columbus:175~188.
    [90] M. W. Walker,D. E. Orin. Efficient dynamic computer simulation of robotic mechanisms.Transaction ASME on Journal of Dynamic Systems, Measurement&Control.1982,104:205-211.
    [91] A. F. Vereshchagin. Computer simulation of the dynamics of complicated mechanisms ofrobot manipulators.Engineering Cybernetics.1974,6:65-70.
    [92] R. Featherstone. Robot dynamics: equations and algorithms. IEEE International Conferenceon Robotics and Automation.2000,826-834.
    [93] R. Featherstone. An empirical study of the joint space inertia matrix. International Journal ofRobotics Research.2004,23(9):859-871.
    [94] R. Featherstone. Efficient factorization of the joint space inertia matrix for branchedkinematic trees. International Journal of Robotics Research.2005,24(6):487-500.
    [95] H. Brandl, R. Johanni, M. Otter. A very effcient algorithm for the simulation of robots andsimilar multibody systems without inversion of the mass matrix.In Process ofIFAC/IFIP/IMACS International Symposium on Theory of Robots. Vienna:1986.
    [96] F. R. A. A divide-and-conquer articulated-body algorithm for parallel O(log(n)) calculation ofrigid-body dynamics. Part1: basic algorithm. International Journal of Robotics Research.1999,18(9):867-875.
    [97] R. Featherstone. A divide-and-conquer articulated-body algorithm for Parallel O(log(n))calculation of rigid-body dynamics. Part2: trees, loops and accuracy. International Journal ofRobotics Research.1999,18(9):876-892.
    [98] K. W. Lilly, D. E. Orin. Alternate formulations for the manipulator inertia matrix.International Journal of Robotics Research.1991,10:64-74.
    [99] O. Khatib. A unified approach to motion and force control of robot manipulators: Theoperational space formulation. IEEE Journal Robotics&Automation.1987,3(1):43-53.
    [100] J. J. Garcíade,E. Boyo. Kinematic and dynamic simulation of multibody systems-thereal-time challenge. Springer-Verlag,1993.
    [101] J. J. Garcíade, A. A. UndaJ. Natural coordinates for the computer analysis of multibodysystems. Computer Method in Applied Mechanics and Engineering.1986,56:309-327.
    [102] E. Bayo, J. J. Garcíade, A. Avello, J. Cuadrado. An efficient computational method forrealtime multibody dynamic simulation in fully Cartesian coordinates. Computer Methods inApplied Mechanics and Engineering.1991,92:377-395.
    [103]刘延柱.完全笛卡尔坐标描述的多体系统动力学.力学学报.1997,29(1):84-94.
    [104] Y. Stepanenko, M. Vukobratovic. Dynamics of articulated open-chain active mechanisms.Mathematical Biosciences.1976,28(1-2):137-170.
    [105] Y. S. LuhJ, M. W. Walker, R. P. C. Paul. On-Line computational scheme for mechanicalmanipulators. ASME Journal of Dynamic Systems, Measurement andControl.1980,102(2):69-76.
    [106] J.Znamenacek, M.Valasek. An efficient implementation of the recursive approach to flexiblemultibody dynamics. Multibody System Dynamics.1998,2:227-252.
    [107] L. H. Yunn. Recursive Newton–Euler formulation for flexible dynamic manufacturinganalysis of open-loop robotic systems. International Journal of Advance ManufacturingTechnology.2006,29:598-604.
    [108]理查德.摩雷,李泽湘,夏恩卡.萨斯特.机器人操作的数学导论.北京:机械工业出版社,1998.
    [109] G. A. Sohl, J. E. Bobrow.A recursive multibody dynamics and sensitivity algorithm forbranched kinematic chains. Journal of Dynamic Systems, Measurement, andControl.2001,123(3):391-399.
    [110] F. C. Park, J. E. Bobrow,S. R. Ploen. A lie group formulation of robot dynamics.InternationalJournal of Robotics Research.1995,14(6):609-618.
    [111]黄晓华,王兴成.机器人动力学的李群表示及其应用.中国机械工程.2007,18(2):201-205.
    [112] S. K. Saha. Dynamics of serial multibody systems using the decoupled natural orthogonalcomplement matrices.ASME Journal of Applied Mechanics.1999,66(4):986-996.
    [113] S. K. Saha, W. O. Schiehlen. Recursive kinematics and dynamics for closed loop multibodysystems. The International Journal of Mechanics of Structures andMachines.2001,29(2):143-175.
    [114] K. S. Anderson, J. H. Critchley. Improved order-n performance algorithm for the simulationof constrained multi-rigid-body dynamic systems. Multibody System Dynamics.2003,9(2):185-212.
    [115] G. Rodriguez,K. Kreutz.Recursive mass matrix factorization and inversion.JPLPublication,1988.
    [116] G. Rodriguez, A. Jain,K. Kreutz-Delgado. A spatial operator algebra for manipulatormodeling and control. The International Journal of Robotics Research.1991,10:371-381.
    [117] G. Rodriguez,K. Kreutz-Delgado.Spatial operator factorization and inversion of themanipulator mass matrix. IEEE Transactions on Robotics and Automation.1992,8:65-76.
    [118] G. Rodriguez, A. Jain. An analysis of the kinematics and dynamics of underactuatedmanipulators. IEEE Transactions on Robotics and Automation.1993,9:411-421.
    [119] A. Jain.Unified formulation of dynamics for serial rigid multibody systems. Journal ofGuidance, Control, and Dynamics.1991,14(3):531-542.
    [120]方喜峰,吴洪涛,刘云平,陆宇平.基于空间算子代数理论计算多体系统动力学建模.机械工程学报.2008,1(45):228-234.
    [121]刘芳华.基于旋量和模态综合的高效递推多柔体系统的建模和仿真研究[博士学位论文].南京,南京航空航天大学,2009.
    [122]田富洋,吴洪涛,邵兵,赵大旭,王超群,朱剑英.柔性多体系统混合递推动力学建模及实时仿真研究,中国机械工程.2010,21(1):6-11.
    [123]孟占峰,韩潮.基于空间算子代数的航天器多体动力学递推实时仿真算法.航空学报.2007,28: S49-S56.
    [124]刘延柱,洪嘉振,扬海兴.多刚体动力学.北京:高等教育出版社,1989.
    [125] R. L. Huston,刘又午.多体系统动力学(下).天津:天津大学出版社,1991.
    [126] L. Sheng, L. Jinzhi,G. Keying. A new method of identifying one-dimentional Lie Groupsadmitted by ordinary differential equation systems. Pure and Applied Mathematics.1998,14(4):1-6.
    [127] H. Yanxia, G. Keying.Techniques for searchiing first integrals by Lie Group and applicationto gyroscope system.Science in China,Ser.A Mathematics.2005,48(6):1-9.
    [128] U. M. Ascher, D. K. Pai,B. P. Cloutier. Forward dynamics, elimination methods andformulation stiffness in robot simulation. The International Journal of RoboticsResearch.1997,16(6):749-758.
    [129] S. K. Saha,W. O. Schiehlen. Recursive kinematics and dynamics for closed loop multibodysystems. Mechanics of Structures and Machines.2001,29(2):143-175.
    [130] N. Joris. Forward dynamics of multibody system: A recursive Hamiltionian approach[VanDoctor in de Toegepaste Wetenschappen].Brussel,VRIJE UNIVERSITETIT BRUSSEL,2005.
    [131] J. Garcia, E.Bayo. Kinematic and dynamics simulation of multibody systems the real-timechallenge. New York:Springer-verJag,1993.
    [132]刘延柱.完全笛卡尔坐标描述的多体系统动力学.力学学报.1997,29:84-94.
    [133]洪嘉振,于清.柔性多体系统动力学的递推建模与算法.中国机械工程.2000,11(6):611-616.
    [134]邵兵.基于李群李代数的统一开闭环机械多体系统递推动力学研究[博士学位论文],南京航空航天大学,2010.
    [135]陆佑方.柔性多体系统动力学.北京:高等教育出版社,1996.
    [136] G. Rodriguez. Kalman filtering, smoothing, and recursive robot arm forward and inversedynamics. IEEE Journal on Robotics and Automation.1987,3:624-639.
    [137] A. Jain,G. Rodriguez. Recursive flexible multibody system dynamics using spatial operators.Journal of Guidance,Control, and Dynamics.1992,15:1453-1466.
    [138]梁震涛.不确定性结构的分析方法研究[硕士学位论文],西安电子科技大学,2007.
    [139] R. Lohner. Einschlie ung der L¨osung gew¨ohnlicher Anfangs-und Randw-ertaufgaben undAnwendungen[PhD thesis].Universit¨at Karlsruhe,1988.
    [140] R. Lohner. Computation of guaranteed enclosures for the solutions of ordinary initial andboundary value problems. Proceedings of a Conference on Computational OrdinaryDifferential Equations.1992,425-435.
    [141] P. W. Kahan.Names for standardized floating-point formats.Work in Progress.2002.
    [142] E. D. Popova. Algebraic solutions to a class of interval equations. Journal of UniversalComputer Science.1998,4(1):48-67.
    [143]沈辉,吴学忠.基于区间对分搜索法的并联机构位置正解问题求解.机械科学与技术.2004,23(2):185-188.
    [144]梁震涛,陈建军,王小兵.不确定性结构区间分析的改进Monte Carlo方法.系统仿真学报.2007,19(6):1220-1223.
    [145]宋振华.区间方法研究及其在天线结构分析中的应用[硕士学位论文],西安电子科技大学,2008.
    [146] E. Auer, A. e. Kecskem′ethy, M. T¨, H. Traczinski. Interval algorithms in modeling ofmultibody systems. Numerical Software with Result Verification.2004,2991:132-159.
    [147]唐善华.应用复极矢量函数设计摆动从动件共轭凸轮机构.机械传动.2007,31(4):38-40.
    [148] C. Chen, X. Zhang, J. Angeles. Kinematic and geometric analysis of a pure-rolling epicyclictrain. ASME.2007,129:852-857.
    [149]张旭,毛恩荣.机械系统虚拟样机技术的研究与开发.中国农业大学学报.1994,4(2):94-98.
    [150] D.S.Bae,J.M.Han.An Implementation method for constrained flexible multibody dynamicsusing a virtual body and joint. Multibody System Dynamics.2000,4:297-315.
    [151] K. W. Lilly and D. E. Orin. Alternate formulation for the manipulator inertia matrix. Int. J.Robot. Res.,1991,10(1):64~74.
    [152] S. K. Saha, W O Schiehlen. Recursive Kinematics and Dynamics for Closed Loop MultibodySystems. Mechanics of Structures and Machines,2001,29(2):143~175.
    [153] J.Angeles. Fundamentals of Robotic Mechanical Systems. Second Edition, Springer Verlag,New York,1997.
    [154]焦晓娟等, RecurDyn多体系统优化仿真技术.北京:清华大学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700