行波管阴极组件热分析及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
行波管(TWT)宽频带、高增益、长寿命和高可靠性的特点,使其成为通讯系统、雷达、电子对抗、地面站、微波加热等系统的核心器件,在现代化高科技战争中担负着极其重要的作用。在TWT的各种特性中,热特性是一项非常重要的指标,是决定TWT平均输出功率的主要因素,同时还直接影响着TWT工作的稳定性和可靠性。随着TWT研制技术的发展,其热可靠性问题已经越来越引起人们的关注。
     在影响TWT可靠性和热特性的各类因素中,电子枪阴极组件最易引起整管失效,成为制约其可靠性保证的主要来源。阴极内部的热量分布、热损耗等问题已受到制管厂家的极大重视。本文依据国内制管单位的需求,重点进行TWT阴极组件热状态分析以及优化设计的研究,分析电子枪内部热量传递过程,为实现国产TWT整管可靠性设计奠定基础。
     论文基于ANSYS有限元法(FEM)软件进行了电子枪阴极组件瞬态热模拟分析,并将数值模拟、试验和理论分析结果进行比较。从接触热阻的角度分析了数值模拟和试验结果的差异,证明有限元热模拟方法可信且符合实际。在此基础上,确定了热优化设计的控制要点,提出了三种优化方法,开展了模拟计算。选取制管单位最容易改进的一种优化方法进行了制样和实验。结果证明经过优化设计后的电子枪阴极,能够有效地缩短阴极启动时间。同时,在WINDOWS平台上开发出基于ANSYS的TWT电子枪热分析应用程序,便于TWT设计人员进行电子枪阴极的分析和设计。
     本论文系统建立了电子枪阴极组件热模拟FEM分析模型和热优化设计平台,获得典型电子枪热阴极的温度分布、热流分布及预热时间等参数,在给定加热功率下优化阴极工作温度,缩短阴极预热时间,提高了行波管快速反应能力。为快热型TWT阴极组件的优化设计研究奠定了基础,也为整管热可靠性的评价提供理论和数值仿真依据。
With the characteristics of wide band, wide pulse, long life and high reliability, TWT is the key device in electronic communication systems, radar, electron counter measurement, ground workstation and microwave heating. It takes the important function in modern high-tech battle. Thermal character is one of TWT’s very important guide-line in all kinds of its characters, which is not only the main factor to decide the average power output, but also directly affects TWT’s work stability and reliability. With the development of manufacture technology, its thermal reliability problem has attracted more and more people’s attention.
     Among the factors affecting TWT’s reliability and thermal performance, cathode module is the easiest part to fail, and then becomes the main source providing TWT’s reliability guarantee. The thermal distributing,thermal dissipation inside electron gun has attracted the attention of production units, for example the thermal dissipation greatly delay the warm-up time of cathode. According to the requirements from TWT industry in China, this paper focus on analyzing the thermal status and optimal design of cathode module in order to built up the background for reliability design of TWT in China.
     Thermal dissipation of cathode module is simulated and analyzed with the FEM application-ANSYS in this paper, especially cathode module that is the uppermost part for thermal dissipation in electron gun. Comparing simulation results with test results and mathematic calculation, and explaining the differences by thermal contact resistance, the FEM thermal simulation technology can be proved to be correct and credible. Controlling points and methods to optimize cathode module are confirmed based on above results, and then three of optimized methods are provided for the selection. The easiest method is chosen to prepare sample for experiment about an M-type cathode. Simulating results prove that the optimized thermal cathode module can effectively shorten the warm-up time of cathode. An appropriative analysis system with VB7.0 edits environment on the WINDOWS platform has been developed, which is convenient for the TWT’s designer to analyze and fabricate the TWT cathode module.
     Thermal FEM simulation and optimal designing platform for cathode module in electron gun of TWT has been set up. The thermal distribution chart, heat flux chart and warm-up time have been obtained so that optimize the key structure, material and technology in order to improve cathode work temperature, shorten the warm-up time of cathode under the given heat power. These results will supply the theory basis for fast warm-up cathodes, and provide theory and emulation technology basis for studying the thermal character of full TWT electron gun.
引文
【1】廖复疆,吴固基.真空电子技术-信息装备的心脏[M].北京:国防工业出版发行部出版,1999
    【2】M.J.Cattelino,G.V.Miram,and Bernard Smith.Fast- and super-fasr-warm-up cathode using novel APG/APBN heaters[J].Transaction on electron devices.Vol.38, No.10,1991.2239-2243.
    【3】Glaelio Avionia. ET5515/A TWT Technical Specification.
    【4】龚曙光.ANSYS 工程应用实例解析[M].北京:机械工业出版社,2003.278-281
    【5】刘涛,杨风鹏,等. 精通 ANSYS[M].北京:清华大学出版社,2002.345-379
    【6】唐兴伦,范群波,等.ANSYS 工程应用实例解析-热与电磁学篇[M].北京:中国铁道出版社,2003.58-61
    【7】ANSYS, Inc. Theory Reference.
    【8】ANSYS, Inc. Thermal Analysis Guide
    【9】王瑁成,邵敏,等.有限元单元法基本原理和数值方法[M].北京:清华大学出版社,1995.421-438
    【10】微波管电子光学系统设计手册[M].电子管设计手册编辑委会.北京:国防工业出版社,1979
    【11】中小功率行波管设计手册[M].电子管设计手册编辑委员会.1997.204-208,287
    【12】J L Cronin,Ph D.Modern dispenser cathode [J]. IEE PROC.Vol.128,pt.1,No.1, 1981.19-32
    【13】Joseph.F.White. Microwave semiconductor engineering [M]. 1488-91
    【14】谭建国,等.使用 ANSYS6.0 进行有限元分析[M].北京:北京大学出版社,2002.1-8
    【15】刘国庆,杨庆东,等.ANSYS 工程应用教程-机械篇[M].北京:中国铁道出版社,2003.278-281
    【16】谢锴,赵兴群,张国兴等.利用 ANSYS 模拟和分析电子枪的工作状态[C].中国电子学会真空电子分会第十四界学术年会军用微波管研讨会.2003
    【17】电子工业生产技术手册编委会.电子工业生产技术手册 4-电真空器件卷[M].北京:国防工业出版发行部出版,1990.983,984
    【18】于志强,刘征,李季.氮化铝热子组件应用研究[C].阴极电子源技术研讨会.2002
    【19】Thomas B Trocynshi, Patrick S Nicholson. Effect of additives on the pressure less sintering Aluminum Nitride between 1500℃ and 1800℃[J].J Am Ceram Soc, 1989, 72[8]:1488-91
    【20】赵镇南.传热学[M].北京:高等教育出版社,2002.73-74
    【21】单片机开发[EB/OL]. http://www.fjbmcu.com/pcb/dianlusheji.htm,2004
    【22】庄奕琪.微电子器件应用可靠性技术.北京:电子工业出版社,1996.33-35
    【23】第一次全国电真空器件专业学术论文选编(电子版)[DB/OL].北京市电子学会,1964.256-266
    【24】电子管设计手册编委会,《微波管电子光学系统设计手册》[M].北京:国防工业出版社,1981 58-61.
    【25】总装备部军标出版发行部.GJB 3311-98 微波电子管测试—方法 107 阴极预热时间的测试方法[S].北京:总装备部军标出版发行部出版,1998
    【26】中国标准出版社总编室.GB/T 3306.21-2001 小功率电子管电性能测试方法—阴极加热时间的测试方法[S].北京:中国标准出版社,2001
    【27】GJB360A-96,电子及电气元件试验方法,方法 214[S].北京:国防科工委出版发行部出版,1996
    【28】何小琦,宋芳芳,刘守圭,等.功率行波管栅控电子枪的振动模态特性与结构可靠性[J].电子产品可靠性与环境试验,2004,(1):1-5
    【29】Moaveni,S. Finite Element Analysis:Theory and Application with ANSYS[M].PublishingHouse of Electronics Industry.ISBN7-505308679-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700