热压回流焊焊头有限元分析及结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热压回流焊是基于回流焊和压焊的一种焊接手段,通过焊头向工件施加一定压力,使工件紧贴焊头,由流过焊头的电流产生的电阻热熔化工件焊点预置的钎料,实现排线或引线与金属薄层表面的回流焊。
     热压回流焊过程中,焊头焊接面温度分布是影响焊接质量的关键因素,与焊头的材料、几何结构,以及通电时间、散热等有关,随着绿色钎料发展,热压回流焊工艺窗口变窄,对焊头温度分布的均匀性提出了更高的要求。论文针对热压回流焊焊头的温度分布进行研究,通过ANSYS有限元分析软件建立焊头温度分布的电热模型,用ANSYS的参数化设计语言(APDL)对模拟求解过程进行控制,实现热压回流焊过程中的各阶段自动求解转换。将模拟结果与所设计的红外测温实验采集的热图像进行比对,表明模拟结果是准确的。
     建立焊头工作面温度场的几个重要性能指标作为判定条件,基于所建电热模型,利用单因素分析方法对焊头结构进行优化设计;研究升温速度和回流温度对焊头温度场分布的影响。得到了焊头关键结构尺寸、加热速度和回流温度对焊头温度场的影响规律,设计所得到焊头的温度分布与初始焊头相比较,温度分布得到了较大的改善。
     研究实现了焊头设计过程中温度场的可视化,所建立的焊头有限元模型能够有效的辅助焊头设计,缩短设计周期。
Hot-pressing reflow soldering is a welding method based on reflow soldering and bonding. The workpiece is abutted to the electrode by the clamping force transferred by the electrode. The joule heat produced by the heated electrode passes through the abutted surface into the joint and causes the melt of preset solder. The process of reflow soldering achieves between the slender wears and the metallic coat.
     The temperature distribution of the working face which is a crucial influencing factor to the weld quality of hot-pressing reflow sodering is related to these influencing factors including workpiece diversity, different electrode structures and materials, current form and radiation. With the development of lead-free solder alloy, more strict technological parameter is demanded, which requires more better uniformity to the acting face. This paper designs infrared detecting experiment to get the thermograph during the heating process of electrode. The electrode temperature distribution simulation is achieved based on ANSYS. The continuous between each step of the solution process is achieved under the controlling of APDL program.The comparison between simulation result and the thermograph proves that simulation of the electrode is feasible.
     Based on the FEA model, several crucial property criterion of the acting face temperature distribution is established and a simple factor comparison system is designed to determine the optimization electrode. The effect of reflow soldering heating rate and reflow temperature on electrode temperature distribution is analysised under the optimization electrode model. The influence law of crucial structure size, reflow soldering heating rate and reflow temperature is obtained. The comprasion between optimization electode and initial electrode shows that the temperature distribution has been apparently improved.
     The FEA model of hot-press reflow soldering electrode based on ANSYS can simulate the temperature distribution in electrode effectively. The research achieves the electrode temperature distribution visualization during design procedure and shortens the electrode design process too.
引文
[1]余惠芳译.石英晶体片的热压焊[R].Proceeding of the 26th annual Sysposium on Frequency control,1972,71~77
    [2]吴懿平,丁汉.电子制造技术基础[M].武汉:机械工业出版社,2005
    [3] Schmitt. Machine and Process Capability Analysis in SMT Manufacturing.Electronics Systemintegration Technology Conference[J].2006:126~129
    [4] Maceie A C.Reflow atmospheres in the lead~free era [J].CircuitsAssembly, 2003, 14(3): 26~35
    [5]曹彪,范丰欣等.波控逆变式精密回流焊接电源的研制[J].焊接学报,2009,30(6):67~70
    [6]冯志刚,郁鼎文,朱云鹤.回流焊工艺参数对温曲线的影响[J].电子工艺技术,2004,25(6): 243~246
    [7]曹彪,李建国,曾敏.基于PIC18F6585精密热压焊控制研究[J].机电工程技术,2008,37(03): 24~26
    [8]徐智.高精度加热平台的研制[D].武汉:华中科技大学,2009.
    [9] Y.QI, A.R.ZBRZEZNY, etc.Accelerated Thermal Fatigue of Lead-Free Solder Joints as a Function of Re?ow Cooling Rate[J].Journal of ELECTRONIC MATERIALS, 2004, 33(12): 1497-1506
    [10] SANG-SU HA, JONG-WOONG KIM, etc.Electromigration Behavior in Sn-37Pb and Sn-3.0Ag-0.5Cu Flip-Chip Solder Joints under High Current Density.Journal of ELECTRONIC MATERIALS, 2009, 38(1): 70-77
    [11] Abdullah Al-Yafawi, Saket Patil, etc.Random Vibration Test for Electronic Assemblies Fatigue Life Estimation[J].Department of Mechanical Engineering State University of New York,2010
    [12] Takashi Haramaki, Takao Funamoto, Tomohiko Shida.Characteristics of Press Soldered Joints by using Resistance Heating[J].IEEE/CHMT 89 Japan IEMT Symposium, 1989(7),180~184
    [13] Haramaki, Takashi1, Nakamura.MitsuoJoint mechanism of press-soldered joints in copper to copper[J].Quarterly Journal of the Japan Welding Society, 1992, 10(3), 21~26
    [14]包晔峰,薛猛,蒋永锋,胡金历,郁中太.脉冲热压焊焊咀温度分布计算[J].热加工工艺,2007,36(23),21~24
    [15] Sugiyama Y.Brazing of aluminum alloys[J].Welding International, 1989, 3(10): 700~710
    [16]菅沼克昭[日].无铅焊接技术[M].北京:科学出版社,2004
    [17]胡国林等.热电偶温度响应的实验研究及计算机仿真[J].陶瓷学报.2006,27(4):348~351
    [18] K Mohan Kumar, V Kripesh B, Andrew A O Tay . Single-wallcarbon nanotube(SWCNT)functionalized Sn-Ag-Cu lead-freecomposite solders[J].Journal of Alloys and Compounds, 2006, 10(25): 2~9
    [19] Po-Cheng Shih, K Wang-Lung Lin.Spallation of interfacial Ag-Au-Cu-Zn compounds in Sn-Ag-Cu/Sn-Zn-Bi joints during 210℃reflow[J].Journal of Alloys and Compounds, 2007, (5): 137~142
    [20]熊百灵.热压焊制程研究[D].苏州大学.2010
    [21]吴懿平.加热因子-回流焊曲线的量化参数[J].现代表面贴装资讯,2002,1(1): 63
    [22] Tu-P.L.Study of micro-BGA solder joint reliability[J].Microelectronics and Reliability, 2001, 41(2): 287-293
    [23] Tu-P.L.Effect of intermetallic compounds on vibration fatigue of BGA solder joint[J].IEEE Transactionson Advanced Packaging, 2001, 24(2):197-205
    [24] Tu-P.L.Comparative study of micro-BGA reliability under bending stress[J].IEEE Transactions on Advanced Pac-kaging, 2000, 23(4): 750-756.
    [25] Eisazadeh H, Hamedi M, Halvaee A. New parametric study of nugget size in resistance spot welding process using finite element method[J]. Materials and Design, 2010, 31 :149~157
    [26]曹彪,姜以宏,王建一.点焊熔核形成过程的有限元模型.机械工程学报, 1995, 31(2):99~104
    [27]杨立.红外热像仪测温计算与误差分析.红外技术.1999,21(4):21~24.
    [28]王晓东.逆变电阻点焊多参数测试与控制的研究[D].广东:华南理工大学,2009
    [29]赵婧.基于红外热像技术的高速铣削温度检测[D].广东:华南理工大学,2008
    [30]盛和太,喻海良,范训益编著. ANSYS有限元原理与工程应用实例大全[M].北京市:清华大学出版社,2006
    [31]张国智.热力学有限元分析实例指导教程[M].北京:机械工业出版社,2007
    [32]熊智军.铝合金激光深熔焊热过程数值模拟研究[D].吉林:吉林大学,2006
    [33] Angrist S.W..Direct Energy Conversion.3rd Edition, 1976
    [34] Marco A. Soto, Rama Venkatasubramania.ANSYS-Based Detailed Thermo-Mechanical Modeling of Complex Thermoelectric Power Designs.2005 International Conference on Thermoelectrics.IEEE.2005:204~206
    [35] Elena E. Antonova, David C. Looman.Finite Elements for Thermoelectric Device Analysis in ANSYS.2005 International Conference on Thermoelectrics.IEEE.2005: 201~203
    [36]博弈创作室编著.ANSYS7.0 APDL技术与实例详解[M].北京:中国水利水电出版社,2004
    [37]袁旦.汽车转向节优化设计[D].浙江:浙江大学,2010
    [38]成大先.机械设计手册-常用工程材料.北京:化学工业出版社,1993:11~67
    [39]Н.Н.莫尔古诺娃[苏]等著.徐克玷,王勤译.钼合金.北京市:冶金工业出版社,,1984
    [40]崔大光,王富强.铝电解槽侧部槽壳散热三维仿真模型研究[J].轻金属.2008,7:31~34
    [41]王林.考虑辐射换热计算的汽缸温度场分析[J].汽轮机技术.2010,8:256~283
    [42] http://www.dkoe.com/admin/NewsFile/20072593148846.pdf
    [43]杜广仁等.热电偶时间常数与热响应时间.计量信息.2005,8:37
    [44]胡国林等.热电偶温度响应的实验研究及计算机仿真.陶瓷学报.2006,27(4):348~351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700