驱动螺杆泵的封闭式功率分流行星减速器设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺杆泵采油技术具有投资少、效率高、适应性广和故障率低等特点已经广泛地应用于油田采油生产中。目前螺杆泵采油系统采用地面电机和减速装置通过细长抽油杆驱动井下螺杆泵,这种驱动方式由于抽油杆旋转时处于长期循环扭曲状态,系统很容易出现故障。因此,为保证安全和高效率采油生产,需要将螺杆泵由地面驱动改为井下驱动。本文针对螺杆泵采油生产中井下驱动螺杆泵采油系统需要的一种体积小、传递功率大的减速器为研究目标,对井下驱动减速器的类型选择、结构设计、仿真、制造和实验等进行设计研究。首先根据收集到的相关资料综合介绍国内外机械采油技术的发展历史、现状和发展趋势。对目前使用的各种减速器进行结构分析和论证,结合国内外的研究和设计情况,并根据井下螺杆泵的工作条件,提出封闭式功率分流行星减速器作为联接潜油电机驱动螺杆泵工作的减速器的方案。完成了减速器的结构设计方案的可行性分析,并在理论上推导出了减速器的传动比计算公式,各个行星轮受力力矩计算公式和减速器的效率计算公式。根据井下工作的实际条件和要求的减速器传动性能,建立了以减速器体积最小为优化目标的减速器优化设计数学模型,确定了优化设计的设计变量和约束条件,通过编写程序运行,完成了对优化模型的求解,得到了减速器的最佳传动参数。应用优化设计结果,用实例进一步论证减速器的优化参数满足井下驱动螺杆泵减速器的传动比、效率、功率分流分配以及外形尺寸等要求。提出利用联接花键间隙实现行星轮均载的原理和结构,实现了行星轮的均载。最后完成了提出的减速器的结构设计,并利用三维建模软件Solidworks对整个减速器进行CAD三维参数化实体造型建模、虚拟零件、部件设计及虚拟装配,直观再现整个减速器工作状态的真实情况,完成减速器装配体的干涉检查和转动仿真检查。完成减速器主要零部件有限元应力分析和变形分析,得出零件在受载情况下的应力应变图和相应零件受载应力分布周期变化图。根据机械设计手册确定减速器零件的制造工艺、合理结构、使用材料和热处理方法等,完成减速器样机制造和装配。安装调试减速器,进行减速器的性能测试试验,分析所得实验数据,评估减速器的应用性能。
The oil production technology utilizing the progressing cavity pump system has the properties of high adaptive, high efficiency, low running fault and running cost, and now has been used more and more widely. But, at the present situation, the down hole progressing cavity pump is driven by the motor and reducer placed on the ground via a thin and long rod, and this cause troubles easily because of the rod works in cycling bending and distortion. So, in order to assure the safety and high efficiency for oil production, it is necessary to place the motor and reducer in down hole to drive the pump directly. This paper focus on the development of a kind of a reducer directly connected to the down hole progressing cavity pump. This development includes the selection of reasonable structure, designing, simulation, manufacturing and testing of the reducer which has the properties of high horsepower to weight ratio and compactness. At first, base on the researching achievements both in home and abroad, the current situation and future development trend of the mechanical oil production technology are presented. By analyzing the different kinds of in use reducer and integrating the current research and considering the down hole operating condition, a kind of closed loop power distributional planetary gear reducer is put forward as a proper reducer to directly connecting the motor and the progressing cavity pump. The feasibility analysis for the proposed reducer is completed, the equations of speed reduce ratio, the bearing torque of each planetary gear, and efficiency of the reducer are developed. Based on the down-hole working condition and the required capability of the reducer, the mathematic module for the reducer optimal design as the function of minimum volume is proposed, the design variable and restrain conditions are determined, and by solving the optimal module, the optimal parameters of the reducer are obtained. By utilizing the optimal parameters, a design case is completed to further verify the speed ratio, efficiency, the power distribution ratio, and the
    
    dimension of the reducer. The load distribution method by using the gap of spline which connecting the gear and the shaft in the reducer is put forward. The structure design, 3D modeling, virtual design of the parts, virtual assemble and interference, and the rotating simulation of the reducer are completed by using Solidworks. The finite element analysis for the main parts of reducer is fulfilled and the stress and deformation curves of the main parts in a running cycle are also obtained. Finally, base on the mechanical design manual, the manufacturing techniques, the material, the structure, the heat treatment methods, et al. are determined, and the prototype reducer for down hole use is manufactured, assembled and tested.
引文
[1] 陈宗毅,孙守港,张继宏.一种构思新颖的抽油机设计方案.石油机械 2002,30(9)
    [2] 张杨. 发展潜油电机驱动螺杆泵之管见. 石油矿场机械. 1996,25(4):20-22
    [3] 张扬等. 大庆机械采油的发展趋势--潜油电机驱动螺杆泵采油. 石油钻采工艺. 1996, 18(3):99-100
    [4] 张建伟. 井下采油单螺杆泵的现状及发展. 石油机械. 2000, 28(8)
    [5] 付亚荣等. 地面驱动采油螺杆泵工作制度的确定. 新疆石油学院学报. 2000, 12(2):38-42
    [6] 易先忠等. 地面驱动螺杆泵的性能特征与发展前景. 钻采工艺. 1995, 18(3):42-46
    [7] 杨兆春,周海,姚斌等.单螺杆泵定子磨损分析.流体机械 .
    [8] 陈家庆,周海,张学忠.井下采油齿轮减速装置的计算机辅助方案选择.石油机械.2002,30(增刊):15-19
    [9] 冉箭声,王海绘,潘为国等.抽油杆常见事故原因分析及防治对策. 断块油气田.2002,9(1)
    [10] 鲍峰,赵政超,王智博等. 电潜螺杆泵采油系统的开发与应用研究.石油钻采工艺.2002(1):67-72
    [11] 陈家庆等. 浅谈电动潜油单螺杆采油系统的研究开发. 石油矿场机械. 2002,31(2):1-4
    [12] 液压系统螺杆泵故障树分析 陈国琳,黄亚农,黄 群《机床与液压》2001(5)
    [13] http://www.centrilift.com/PCPS/default.htm
    [14] http://www.slb.com/oilfield/
    [15] 毕风琴等. 井下螺杆泵用减速器的类型选择与基于CADDS系统的虚拟设计.大庆石油学院学报. 1999,23(4):53-55
    [16] 李福军. 井下螺杆泵采油系统少齿差减速器的设计研究,哈尔滨:哈尔滨工业大学工学硕士论文. 1998年6月
    [17] 渐开线齿轮行星传动的设计与制造编委会. 渐开线齿轮行星传动的设计与制造. 北京:机械工业出版社,2002.4:1-334
    [18] J. M. del Castillo, The analytical expression of the efficiency of planetary gear trains, Mechanism and Machine Theory,Volume: 37, Number: 2 Page: 197 -- 214
    [19] Yan H.-S.; T. Lai,Geometry design of an elementary planetary gear train with cylindrical tooth-profiles,Mechanism and Machine Theory, Volume: 37 Number: 8 Page: 757 - 767
    [20] E. Pennestrí; P.P. Valentini, Dynamic Analysis of Epicyclic Gear Trains by Means of Computer Algebra, Multibody System Dynamics, Volume: 7 Number: 3 Page: 249 -- 264
    [21]王述彦,马鹏飞.2K-H型行星齿轮系传动的优化设计.建筑机械化.2002(5):36-39
    [22]张秀英等. 二级串联行星减速器的优化设计. 煤矿机械. 1995,(5):12-17
    
    
    [23]王世杰 刘玉春 张 剑. NGW型潜油行星减速器可靠性优化设计.机械传动. 2003,27(1):26-29
    [24]陈满意,陈定方.基于MatLab的齿轮减速器的可靠性优化设计.机械传动.2002(26)3:34-36
    [25]张学义,王爱传.行星齿轮减速器优化设计. 机械.2000,27(增刊):68-69
    [26]26.李伟,田竹友,王泽林. 2K-H型行星齿轮减速器优化设计及其CAD系统 中国农业大学学报2000,5(2):92~95
    [27]龚小平,仝崇楼,刘万俊等 行星齿轮减速器可靠性优化设计 机械设计与制造2001(5):1-2
    [28]易军,邹安阳,陈慧敏. 二齿差摆线针轮行星减速器的优化设计. 机械设计与研究1998(4):47-48
    [29]桂乃磐,罗佑新.装载机轮边行星减速器的模糊可靠性优化设计. 机械科学与技术2001,20(5):682-686
    [30] C. Li ; H. Chiou ; C. Hung; Y. Chang ; C. Yen,Integration of finite element analysis and optimum design on gear systems,Finite Elements in Analysis and Design Volume: 38 Number: 3 Page: 179 - 192
    [31]马素平,梁贵义. 21世纪的设计方法--虚拟设计. 山西机械. 1999(2) :39-40
    [32]李伯虎,柴旭东.复杂产品虚拟样机工程. 计算机集成制造系统-CIMS.2002,8(9):678-683
    [33]朱林,陈发.机械虚拟设计中基于特征的零件实体建模技术. 新疆农机化.2002(6):45-47
    [34]刘金鹏.虚拟设计技术在机械行业的应用前景.计算机辅助设计与制造.2000(3):64
    [35]王玉新,邰晓梅,姜杉. 3维虚拟设计环境下的机械产品概念设计. 中国机械工程2001,12(3):256-259
    [36]刘晓敏,许冯平,姚立纲等.面向对象的射流泵虚拟设计和集成制造建模仿真大庆石油学院学报2000,24(1):63-65
    [37]宋建军,杜诗文,闫献国.汽车虚拟设计中UG的应用.太原重型机械学院学报.2002,23(2):156-158
    [38]宋建军,杜诗文,闫献国.基于UG的汽车模型虚拟设计.山西机械2002(3):30-31
    [39]汪新月.新龙织机送经减速器的虚拟设计.纺织机械.2002,(5):35-37
    [40]吴祚宝,肖田元.虚拟制造环境下有限元分析的应用. 清华大学学报(自然科学版).2000,40(7):18-21
    [41]杨平,袁盛治,肖铁英.行星齿轮传动行星架的有限元分析.机械与电子.1994(6):18-19
    [42]王玉新,柳杨,王仪明等. 渐开线直齿圆柱齿轮齿根应力的有限元分析.机械设计2001(8):21-24
    [43]杨成云,林腾蛟,李润方等. 中心传动齿轮箱体有限元分析及结构优化设计. 重型机械.2001(2):42-45
    
    
    [44]徐步青,王立彬,李皓玉.齿轮模型应力的确定及有限元分析. 石家庄铁道学院学报.2002,15(4):56-58
    [45] N Zhang; A Crowther; D K Liu; J Jeyakumaran,A finite element method for the dynamic analysis of automatic transmission gear shifting with a four-degree-of-freedom planetary gear set element,Proceedings of the I MECH E Part D Journal of Automobile Engineering Volume: 217 Page: 461 -- 473
    [46]马从谦,陈自修,张文照等.渐开线行星齿轮传动设计. 北京:机械工业出版社,1987.10:311-35342. 莫爱贵.行星减速器齿轮系均载及工艺分析.机床与液压.2002(2):176-177
    [47]朱龙英,朱如鹏,刘正埙等.星形齿轮传动的均载研究.机械工程师. 2003(7):43-45
    [48]申屠留芳,郭润兰.行星齿轮传动装置机械式均载机构的均载原理.淮海工学院学报.2000,9(2):10-12
    [49]姜世平.行星齿轮厚油膜均载系统参数分析计算方法.机械设计.2002(9):19-22
    [50]于影,郝兵,王耀辉.摆线针轮行星传动的均载技术.佳木斯大学学报(自然科学版).2000,18(3):279-282
    [51] Litvin FL. Vecchiato D. Demenego A. Karedes E. Hansen B. Handschuh R.,Design of one stage planetary gear train with improved conditions of load distribution and reduced transmission errors, Transactions of the ASME Journal of Mechanical Design, vol.124, no.4, Dec. 2002, pp.745-52.
    [52]刘猛、万邦烈.单螺杆式变速器的工作原理.石油矿场机械,1995,24(5):9-11
    [53] 渐开线齿轮行星传动的设计与制造编委会. 渐开线齿轮行星传动的设计与制造. 北京:机械工业出版社,2002.4:1-334
    [54]饶振纲. 行星传动机构设计(第二版). 北京:国防工业出版社,1994:1-134
    [55]现代机械传动手册编辑委员会. 现代机械传动手册.北京:机械工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700