磁流变冲击缓冲装置的特性与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工程装备向着高速重载方向发展,所遇到的冲击和振动问题也越来越突出,解决好冲击缓冲问题对于提高工程质量至关重要。火炮系统中的反后坐装置是典型的冲击缓冲器件,其作用是在限定的后坐行程范围内尽可能地减小传递到炮架上的力,从而减小火炮振动。为实现冲击缓冲目标,传统的反后坐装置利用被动阻尼装置进行结构上的优化设计,把流液孔的面积作为优化变量,由此设计的阻尼装置具有沿轴向变化的流液孔面积。这种变截面的结构一旦加工制作完成,不方便修改,无法根据冲击载荷的变化自动调节结构参数。
     随着材料科学的发展,以磁流变液为工作介质的磁流变阻尼器具有输出阻力连续可调、响应速度快、功耗低、动态范围宽等优良特性,给冲击缓冲问题的解决带来了新的机遇和挑战。
     本文针对火炮系统中的冲击缓冲问题,从控制目标出发,根据最优控制思想,采用理论分析、数值仿真和实验验证的方法,从系统的角度深入开展基于磁流变技术的冲击缓冲装置特性和控制方法研究,主要内容及创新之处如下:
     (1)研究了磁流变冲击缓冲装置的最优控制方法。提出了基于无量纲分析的最优控制方法,根据冲击缓冲目标,推导了最优位移和最优速度,从而得到了冲击缓冲问题的最优控制解,无量纲的分析方法使得最优解具有一般性。
     (2)推导了冲击缓冲用磁流变阻尼器的力学公式。利用Navier-Strokes方程,建立了基于阀式流动模式的磁流变阻尼器的轴对称的力学公式,并考虑了高速条件下节流阻力的影响。
     (3)研究了冲击缓冲用磁流变阻尼器的响应特性。分别建立了磁感应强度和剪切屈服应力的动态响应模型,实验结果表明,该响应模型能准确地拟合实验曲线;获得的时间常数结果表明,磁流变阻尼器在动态响应能力上对后坐缓冲控制完全具有可行性。
     (4)研究了冲击缓冲用磁流变阻尼器的动力学模型。提出一种带修正项的改进多项式模型,并对冲击缓冲过程的高加速度段和低加速度段分别进行非线性最小二乘拟合,结果表明,该模型相比普通的多项式模型具有更高的精度。
     (5)研究了磁流变冲击缓冲装置的控制策略。根据最优控制方法,形成了开环的最优控制策略,特别是在此基础上提出了模糊补偿的最优控制策略。并提出了两种量化的性能指标,用来综合评价后坐缓冲的效果。全尺度的火炮后坐实验结果表明,最优控制策略获得了比被动控制和模糊控制更优的各项性能指标,且系统不需要反馈任何测量值,有利于增强系统的可靠性和稳定性。而模糊补偿的最优控制策略兼具了最优控制和模糊控制的优点,既不完全依赖于实时反馈测量值,也不十分依赖系统的模型的准确性,二者结合使得系统的可靠性和灵活性得以兼顾。实验结果表明,相比于其他控制策略,模糊补偿的最优控制获得了整体最优的缓冲效果。
As the modern engineering equipments are getting high-speed and heavy-load, the troubles of shock and vibration become obvious. It's very critical to mitigate shock and vibration for improving the engineering quality. The gun recoil device is a typical shock isolator which can reduce the peak force transferred to the gun carriage within the limitation of the stroke. The purpose to use recoil mechanism is to reduce the vibration of the gun. The optimal design of the conventional hydraulic device for gun recoil system is to take the area of the orifices of the hydraulic damper as an optimization variable. The area of flow orifices inside the damper is designed in a way that changes along the axial direction of the piston. The functions of the hydraulic absorber for a certain recoil system and operation conditions can't be changed as long as the absorber is manufactured which results in a shortcoming: when the firing impact loading changes, the recoil force can't be adjusted correspondingly.
     Magnetorheological (MR) fluid, the product of the development of materials science, is a kind of smart material. MR fluid dampers are the most popular devices which have continuously adjustable damping force, mechanical simplicity, low power consumption, high dynamic force range, and rapid response time.
     Aiming at the problem of shock isolation of the gun recoil system, this paper focuses on the properties and control method of the MR shock isolation device from system point of view. The research work starts from the control objective of the system and the optimal control theory. The theoretical analysis, numerical simulation and experimental validation are employed to study in this research work. The main contributions of this dissertation include the followings:
     (1) An optimal control method for the MR shock isolation device is proposed. The optimal normalized displacement, velocity and optimal control rules for the gun recoil system are derived. The solution of optimal control is useful for general situation because the dimensionless analysis method is employed.
     (2) A theoretical model for optimal design and control of the MR fluid damper for the shock isolation device is derived. By using Navier-Strokes equation, an axisymmetric model working in pressure-drive flow mode is developed. The viscous damping force caused by minor loss through orifice is included in the theoretical model.
     (3) The response properties of the MR fluid damper for gun recoil device are studied. The response models of magnetic flux density and shear yield are established respectively. The experimental results show the models work well. The response time shows the MR fluid damper has excellent response properties and is competent to work under impact loadings.
     (4) The dynamic model of the MR fluid damper for gun recoil device is studied. An improved polynomial model is proposed. This novel dynamic model has a correction term which can improve the accuracy of the model. The theoretical results can fit the experimental results well both at the high-acceleration and the low-acceleration part.
     (5) Control strategies for MR shock isolation are studied. The optimal control strategy is obtained based on the derived optimal control method. Furthermore, a fuzzy compensation-optimal control (FC-OC) strategy is proposed. Then, two kinds of performance indexes are introduced to comment the performance of the MR shock isolation system. The experimental results obtained from the full-scale gun recoil test rig show that the optimal control strategy is better than the passive control strategy and the fuzzy logic strategies. The optimal strategy presented in this paper is open-loop without any feedback system needed. That means the control process is sensor-free. It will be of great benefit for reliability and stability of the shock isolation system. The FC-OC strategy has the advantages of both fuzzy logic control and optimal control. It is partly independent on both the feedback system and theoretical model so that both the reliability and the flexibility are compromised. The experimental results show the most desired performance of the shock isolation system is obtained under the FC-OC strategy.
引文
[1]廖伯瑜.现代机械动力学及其工程应用[M].北京:机械工业出版社,2004.
    [2]高树滋,陈运生,张月林等.火炮反后坐装置设计[M].北京:兵器工业出版社,1995.
    [3]Ginder J M,Davis L C. Shear stresses in magnetorheological fluids:Role of magnetic saturation[J]. Appl. Phys. Lett,1994,65:3410-3412.
    [4]Carlson J D. What makes a good MR fluid? [J]. Journal of intelligent material system and structure,2003,13(7-8):431-435.
    [5]Carlson J D, Jolly M R. Fluid, foam and elstomer devices[J]. Mechatronics,2000,10: 555-569.
    [6]Kern L T G, Paul J. Future combat systems [C]. The Defense Advanced Research Projects Agency (DARPA) 21ST Systems and Technology Symposium. Dallas, TX, September 2000:6-8.
    [7]Colonel B R Z. The future combat system:Minimizing risk while maximizing capability [R]. USAWC Strategy Research Project, May 2000.
    [8]谈乐斌.降低火炮后坐力技术概述[J].火炮发射与控制学报,2006,(4):69-71.
    [9]Foss C F. Jane's armour and artillery 2000-2001[M].21st. ed. London:Janes Information Group,2000.
    [10]Balandin D V, Bolotik N N, Piley W D. Optimal protection from impact, shock, and vibration[M]. New York: Gordon and breach science publishers,2001.
    [11]Rabinow J. The magnetic fluid clutch. Transactions of AIEE,1948,67:1308-1315.
    [12]关新春.磁流变液组分选择原则及其机理探讨[J].化学物理学报,2001,14(5):592-596.
    [13]张正勇,张耀华,虞承端等.磁流变液的特性研究[J].功能材料与器件学报,2001,4:340-344.
    [14]Carlson J D, Weiss K D. A growing attraction to magnetic fluids [J]. Machine design, 1996,66(08):61-64.
    [15]Carlson J D. In:Janocha H ed. A daptronics and smart structures [M]. Berlin: Springer-Verlag,1999.
    [16]浦鸿汀,蒋峰景.磁流变液材料的研究进展和应用前景[J].化工进展.2005,24(2):132-136.
    [17]欧进萍.结构振动控制——主动、半主动和智能控制[M].科学出版社,2003.
    [18]隋莉莉,郑文辉.磁流变液及其减振驱动装置的原理和工程应用[J].吉林建筑工程学院学报,2001,(02):5-9.
    [19]Dyke S J, Spencer Jr B F, Sain, M K et al. Seismic response reduction using magnetorheological dampers[C]. Proc. IF AC World Cong., San Francisco, California, 1996, L:145-150.
    [20]Dyke S J, Spencer Jr B F, Sain M K.et al. Modeling and control of magnetorheological dampers for seismic response reduction[J]. Smart Mat. and Struct,1996,5:565-575.
    [21]Spencer Jr B F, Yang G Q, Carlson JD. Smart dampers for seismic protection of structures:a full-scale study[C]. Proc. World Conference on Structural Control, Kyoto, Japan,1998:1-10.
    [22]Carlson J D,Spencer B F. Magnetorheological fluid dampers:scalability and design issues for application to dynamic hazard mitigation. Proc. Of 2th Intel workshop on structure control [C]. Hong Kong: Hongkong University of Science and Technology, 1996:99-109.
    [23]隋莉莉,欧进萍.半主动磁流变减振驱动器的工作原理及应用[J].哈尔滨建筑大学学报,2002,35(03):9-13.
    [24]关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定[J].振动与缓冲,2001,20(01):5-8.
    [25]王代华,黄尚廉.采用磁流变(MR)阻尼器控制斜拉索振动[J].机械科学与技术,1998,17(11):16-18.
    [26]王修勇,陈政清,何旭辉等.斜拉桥拉索风雨振控制的智能阻尼技术[J].振动与冲击,2002,21(03):26-30.
    [27]瞿伟廉,秦顺全,涂建维等.武汉天兴洲公铁两用斜拉桥主梁和桥塔纵向列车制动响应智能控制的理论与关键技术[J].土木工程学报,2010,43(8):63-72.
    [28]张绪祥.电/磁流变技术在机械工程中的应用(上)[J].新技术新工艺.2005,11:23-26.
    [29]Gordaninejad F, Kelso S P. Fail-safe magneto-rheological fluid dampers for off-highway, high-payload vehicles [J]. Journal of Intelligent Material System and Structures,2000,11(5):395-406.
    [30]Mcmanus S J, Clair K A St, Boileau P E. Evaluation of vibration and shock attenuation performance of a suspension seat with a semi-active magneto-rheological fluid damper[J]. Journal of Sound and Vibration.2002,253:313-327.
    [31]廖昌荣,余淼,陈伟民等.磁流变材料与磁流变阻尼器的潜在工程应用[J].机械工程材料,2001,(25):31-34.
    [32]廖昌荣,陈伟民,余淼等.汽车磁流变减振器设计准则探讨[J].中国机械工程,2002,13(9):723-726.
    [33]余淼,廖昌荣,李立新等.磁流变减振器控制研究[J].化学物理学报,2001,14(01):606-612.
    [34]余淼.汽车磁流变半主动悬架控制系统研究[D].重庆:重庆大学博士论文.2003.
    [35]陈吉安,赵晓昱.应用于汽车减振的磁流变液阻尼器的设计原理[J].汽车技术,2002,08:09-13.
    [36]Wereley N M, Choi Y T, Singh H J. Adaptive magnetorheological seat suspension for the expeditionary fighting vehicle[J]. J. Phys.:Conf. Ser.2009,149(012054):1-4.
    [37]Ahmadian M, Poynor J C, Gooch, J M. Application of magneto rheological dampers for controlling shock loading [C]. Proceedings of ASME Dynamic Systems and Control, 1999,67:731-735.
    [38]Messina N. Multi-Role Armament & Ammunition System ATD-GDAS Program Scope and Approach[EB]. Proceedings of 36th Annual Gun & Ammunition Symposium & Exhibition,2004-4-9:www.dtic.mil/ndia.
    [39]Chen P C, Wereley N M. Magnetorheological damper and energy dissipation method[P]. U.S. Patent:6,694,856 B1,2004.
    [40]Facey W B, Rosenfeld N C, Choi Y T et al. Design and testing of a compact magnetorheological damper for high impulsive loads[C].Proceedings of the 9th International Conference on Electrorheological Fluids and Magnetorheological Suspensions, Beijing, China, August 29-September 3,2004.
    [41]Fernando D, Goncalves F D. Characterizing the behavior of magnetorheological fluids at high velocities and high shear rates[D]. Blacksburg:Virginia Polytechnic Institute and State University,2005.
    [42]Goncalves F D, Ahmadian M. Behavior of MR fluids at high velocities and high shear rates[A]. In:Lu K Q, Shen R and Liu J X Proc. of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions[C]. Singapore:World scientific,2005:412-418.
    [43]Ahmadian M, Appleton R J, Norris J A. Designing magneto-rheological dampers in a fire out-of-battery recoil system[C]. IEEE Transcations on Magnetics,2003,39(01): 21-25.
    [44]Ahmadian M, Appleton R J, Norris J A. An analytical study of fire out of battery using magneto-rheological dampers [J]. Shock and Vibration,2002,09(01):129-142.
    [45]Anusonti-Inthra P, Gandhi F. Helicopter vibration reduction through cyclic variations in blade root stiffness [J]. Journal of Intelligent Material Systems and Structures, Vol.11, No.2, February 2000,153-166.
    [46]Anusonti-Inthra P, Gandhi F. Optimal control of helicopter vibration through cyclic variations in blade root stiffness [J]. Smart Materials and Structures, Special Issue on Rotorcraft Application, Vol.10, No.1, February 2001,86-95.
    [47]Wang D H, Liao W H. Semiactive controllers for magnetorheological fluid dampers[J]. J. Intell. Mater. Syst. Struct,2005,16:983-993.
    [48]Wang D H, Liao W H. Magnetorheological fluid dampers:a review of parametric modeling[J]. Smart Mater. Struct.2011,20(2):023001(34pp).
    [49]Browne A L, Mccleary J D, Namuduri C S. Impact performance of magnetorheological fluids[J]. Intell. Mater. Syst. Struct,2009,20:723-728.
    [50]Wereley N M. Adaptive energy absorbers for drop-induced shock mitigation[J]. J. Intell. Mater. Syst. Struct,2011,22:515-519.
    [51]Ahmadian M, Norris J A. Experimental analysis of magnetorheological dampers when subjected to impact and shock loading[C]. Communication in Nonlinear Science and Numerical Simulation,2008,13:1978-1985.
    [52]Goncalves F D, Ahmadian M,Carlson J D. Investigating the magnetorheological effect at high flow velocities[J]. Smart Mater. Struct,2006,15:75-85.
    [53]Stanway R, Sproston J L, Stevens N G. Non-linear modeling of an electrorheological vibration on damper [J]. J Electrostatics,1987,20(2):167-184.
    [54]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(04):144-150.
    [55]Spencer B F Jr, Dyke. S J, Sain M K. Carlson J. D. Phenomenological model for magnetorheological dampers [C]. Eng Mech, ASCE,1997,123(3):230-238.
    [56]Wereley N M, Pang L, Kamath G M. Idealized hysteresismodeling of electrorheological and magnetorheological dampers [C]. Intell. Mater. Syst. Struct. 1998,9:642-9.
    [57]汪建晓,孟光.磁流变液阻尼器用于振动控制的理论及实验研究[J].振动与冲击,2001,20(2):39-44.
    [58]Wang X J, Gordaninejad F. Flow analysis and modeling of field-controllable, electro-and magneto-rheological fluid dampers[J]. Journal of Applied Mechanics.2007,74: 13-22.
    [59]Wen Y K. Method of random vibration of hysteretic systems[J]. Journal of Engineering Mechanics Division, ASCE,102(EM2),1976.
    [60]翁建生,胡海岩.磁流变阻尼器的实验建模[J].振动工程学报,2000,13(4):616-621.
    [61]李延成.冲击载荷下磁流变减振器半主动控制研究[D].南京:南京理工大学博士论文,2007.
    [62]张绪祥.ER/MR智能阻尼器结构的研究现状[J].武汉化工学院学报,2001,23(04):51-54.
    [63]瞿伟廉.ER减振结构体系的原理和工程应用[J].武汉工业大学学报,1998,20(特刊):104-107.
    [64]Sadok S, Khaled C. An innovative magnetorheological damper for automotive suspension:from design to experimental characterization[J]. Smart Marterials and Structures,2005,14:811-822.
    [65]Carlos M F, Peter J F. Genetic algorithms for multiobjective optimization:formulation discussion and generalization[C]. In:Proceedings of the 5th International Conference on Genetic Algorithms San Francisco, CA, USA,1993,416-423.
    [66]Ha S H. Choi S B, Rhee E J et al. Optimal design of a magnetorheological fluid suspension for tracked vehicle[J]. Journal of Physics:Conference series,2009,149(1): 012053.
    [67]Nguyen Q H, Choi S B. Optimal design of a vehicle magnetorheological damper considering the damping force and dynamic range[J]. Smart Mater. Struct,2009,18(1): 015013.
    [68]兰文奎.磁流变减振器设计及试验研究[D].重庆:重庆大学,2007.
    [69]Mao M, Choi Y T, Wereley N M. Effective design strategy for a magneto-rheological damper using a nonlinear flow model [C]. SPIE,2005,5760:446-455.
    [70]许永兴,曹民.磁流变减振器优化的设计计算[J].上海交通大学学报,2004,38(8):1423-1427.
    [71]瞿伟廉,樊友川.磁流变液阻尼器的磁路有限元分析与优化设计方法[J].华中科技大学学报(城市科学版),2006,23(3):1-4.
    [72]Zhao Q, Wang Y, Gao F. Multi-objective evolutionary optimization design of vehicle magnetorheological fluid damper [C]. International Conference on Smart Materials and Nanotechnology in Engineering. Proc. of SPIE,2007,6423-6432.
    [73]陈义保,宋中民,钟毅芳.基于灰色关联度的磁流变阻尼器结构参数的优化设计[J].烟台大学学报(自然科学与工程版),2004,17(1):46-49.
    [74]关新春,郭鹏飞,欧进萍.磁流变阻尼器的多目标优化设计与分析[J].工程力学,2009,26(9):30-35.
    [75]Karakas E S, Gordaninejad F, Evrensel C A et al. Control of a quarter HMMWV suspension system using a magneto-rheological fluid damper. In: Kon-Well Wang. Proc. of SPIE. Bellingham:SPIE,2004,204-213.
    [76]Umit D, Gordaninejad F, Evrensel C. A magneto-rheological fluid damper for high-mobility multi-purpose wheeled vehicle (HMMWV). In:Kon-Well Wang. Proc. of SPIE. Bellingham:SPIE,2004,195-203.
    [77]Umit D, Gordaninejad F, Evrensel C. A new magneto-rheological fluid damper for high-mobility multi-purpose wheeled vehicle (HMMWV). In:Gregory S. Agnes, Kon-Well Wang. Proc. of SPIE,2003:198-206.
    [78]Liu Y M, Gordaninejad F, Evrensel C et al. An Experimental Study on Fuzzy Logic Vibration Control of a Bridge Using Fail-Safe Magneto-Rheological Fluid Dampers, In: Chi Liu. Proceedings of SPIE Conference on Smart Materials and Structures. Bellingham:SPIE,2001,281-288.
    [79]Liu Y M, Gordaninejad F, Evrensel C et al. Experimental study on fuzzy skyhook control of a vehicle suspension system using a magneto-rheological fluid damper[C]. In: Kon-Well Wang. Proc. of SPIE. Bellingham:SPIE,2004,338-347.
    [80]Duan Y.F., Ni, Y.Q. Ko J M. Cable vibration control using magnetorheological (MR) dampers[A]. In:Lu Kunquan, Shen Rong and Liu Jixing[C]. Proc. of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions,Singapore,World scientific,2005,829-835.
    [81]Duan Y F, Ni Y Q, Ko J M. Theoretical and experimental studies on semi-active feedback control of cable vibration using MR dampers[C]. Smart Structures and Materials 2004:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. Proc. of SPIE, Bellingham, WA,2004,5391:543-554.
    [82]Ni Y Q, Duan Y F, Chen Z Q et al. Damping identification of MR-damped bridge cables from in-situ monitoring under wind-rain-excited conditions[C]. Smart Structures and Materials 2002:Smart Systems for Bridges, Structures, and Highways. Proceedings of SPIE,2002,4696:41-51.
    [83]Ying Z G, Ni Y Q, Ko J M. Non-clipping optimal control of randomly excited nonlinear systems using semi-active ER/MR dampers[C]. Smart Structures and Materials 2002:Smart Systems for Bridges, Structures, and Highways. Proceedings of SPIE,2002,4696:209-218.
    [84]Ko J M, Zheng G, Chen Z Q el al. Field vibration tests of bridge stay cables incorporated with magneto-rheological (MR) dampers[C]. Smart Structures and Materials 2002:Smart Systems for Bridges, Structures, and Highways. Proceedings of SPIE2002,4696:30-40.
    [85]Claudia M D, Wilson. M M. Structural vibration reduction using self-tuning fuzzy control of magnetorheological dampers[J]. Bull Earthquake Engineering,2010,08(04): 1037-1054.
    [86]Crosby M J, Harwood R A Karnopp D. Vibration control using semi-active force generators[M]. Lord Library of Technical Articles LL-7004,1973.
    [87]Ahmadian M, Simon D E. An analytical and experimental evaluation of magneto rheological suspensions for heavy trucks [J]. Veh. Syst. Dyn,2002,37:38-49.
    [88]Ahmadian, M., Vahdati, N.:Transient dynamics of semiactive suspensions with hybrid control.[J] J. Intell. Mater. Syst. Struct,2006,17(2):145-153.
    [89]Wang E R, Ma X Q, Rakheja S et al. Semi-active control of vehicle vibration with MR-dampers[C]. In:Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, HI, December,2003.
    [90]Dong X M, Yu M, Liao C R. Comparative research on semi-active control strategies for magneto-rheological suspension[J]. Journal of Nonlinear Dynamic,2010,59:433-453.
    [91]Guo D L, Hu H Y, Yi J Q. Neural network control for a semi-active vehicle suspension with a magnetorheological damper[J]. J. Vib. Control,200410(3):461-471.
    [92]Yagiz N, Sakman, L E. Robust sliding mode control of a full vehicle without suspension gap loss[J]. J. Vib. Control,2005,11(11):1357-1374.
    [93]Yu M, Liao C R, Chen W M. Study on MR semi-active suspension system and its road testing[J]. J. Intell. Mater. Syst. Struct,2006,17(8-9),801-806.
    [94]Eslaminasab N, Biglarbegian M, Melek W W. A neural network based fuzzy control approach to improve ride comfort and road handling of heavy vehicles using semi-active dampers [J]. Int. J. Heavy Veh. Syst,2007,14(2):135-157.
    [95]Choi S B, Lee S K, Park Y P. A hysteresis model for the field-dependent damping force of a magnetorheological damper[J]. J. Sound Vib,2001,245(2):375-383.
    [96]Choi S B, Lee H S, Park Y P. H-infinity control performance of a full-vehicle suspension featuring magnetorheological dampers[J]. Veh. Syst. Dyn,2002,38(5): 341-360.
    [97]Dong X M, Liao C R, Chen W M, Zhang H H. Adaptive fuzzy neural network control for transient dynamics of magneto-rheological suspension with time delay. In:Adv. Neural Netw. ISNN 2006, Pt.2, Proc. Lecture Notes in Computer Science,2006, 3972:1046-1051.
    [98]Yang J W, Li J, Du Y P. Adaptive fuzzy control of lateral semi-active suspension for high-speed railway vehicle. In:Comput. Intell., Pt.2, Proc. Lecture Notes in Computer Science,2006,4114:1104-1115.
    [99]Goncalves F D, Ahmadian M. Behavior of MR fluids at high velocities and high shear rates. In:Lu Kunquan, Shen Rong and Liu Jixing. Proc. of the Ninth International Conference-Electrorheological fluids and magnetorheological suspensions. Singapore: World scientific,2005,412-418.
    [100]Norris J A, Ahmadian M. Behavior of magneto-rheological fluids subject to impact and shock loading. IMECE2003-42891:1-5.
    [101]Ahmadian M, Appleton R J, Norris J. A Designing magneto-rheological dampers in a fire out-of-battery recoil system[C]. IEEE Transactions on magnetic,2003,39: 480-485.
    [102]Wang J, Li Y C. Dynamic simulation and test verification of MR shock absorber under impact load[J].Intell. Mater. Syst. Struct,2006,17(4):309-314.
    [103]Hu H S, Jiang X Z, Wang J et al. Design, modeling, and controlling of a large-scale magnetorheological shock absorber under high impact load[J]. Intell. Mater. Syst. Struct,2012,23(6):635-645.
    [104]Hajihosseinloo M A, Hooke C J, Walton D. Gun recoil system performance measurement and prediction Proceedings of the Institution Mechanical Engineers[J]. Part C, Mechanical Engineering Science,1989,203:85-92.
    [105]李良军.磁流变冲击阻尼器在火炮反后坐装置中的应用研究[D].南京理工大学硕士论文,南京,南京理工大学,2006.
    [106]Fox R W, McDonald A T.Introduction to Fluid Mechanics[M]. John Wiley & Sons, Inc.,6 Edition,2003.
    [107]Constantinescu, V.N. Laminar Viscous Flow[M]. Springer, New York,1995.
    [108]Gavin, H.P., Hanson, R.D. and Filisko, F.E. Electrorheological Dampers, Part I: Analysis and Design. J. Appl. Mech.,1996,63(9):669-675.
    [109]Gordaninejad F, Wang X J, Hitchcock G et al. Modular high-Force seismic magneto-rheological fluid damper[J]. Struct. Eng. F,2010,136:135-143.
    [110]Gerhart P M, Gross R J,Hochstein J I. Fundamentals of Fluid Mechanics[M]. Boston: Addison-Wesley,1992.
    [111]Koo J H, Concalves F D. Ahmadian M. A Comprehensive analysis of the response time of MR dampers[J].. Smart Mater Struct.2006,15:351-358.
    [112]Weiss K D, Cuclos T G, Carlson J D et al. High strength magneto- and electro-rheological fluids[C].. SAE technical paper series, International off-highway and powerplant congress, Milwaukee, WI,1993,1-6.
    [113]Zhu C The response time of a rotor system with a disk-type magnetorheological fluid damper[J].. Int J Mod Phys B,2005,19(7-9):1506-1512.
    [114]Laun H M,Gabriel C. Measurement modes of the response time of a magneto-rheological fluid (MRF) for changing magnetic flux density[J]. Rheol. Acta, 2007,46:665-676.
    [115]张莉洁.冲击载荷下磁流变阻尼器动态特性分析及其控制系统设计[D].南京:南京理工大学博士论文,2008.
    [116]Poynor J C. Innovative Designs for Magneto-Rheological Damper[D]. Master Dissertation of Virginia Tech.2001.
    [117]张莉洁,王炅,钱林方.冲击载荷下磁流变阻尼器动态特性分析及模型参数辨识[J].机械工程学报,2009,45(1),211-217.
    [118]Norris J A. Behavior of Magnetorheological Fluids Subject to Impact and Shock Loading[D]. Virginia, USA:Department of Mechanical Engineering, Virginia Polytechnic Institute and State University,2003.
    [119]党建武,赵庶旭,王阳萍.模糊控制技术[M].北京:中国铁道出版社,2007.
    [120]沈俊,宋健.基于ADMAMS(?)(?)Simulink联合仿真的ABS控制算法研究[J].系统仿真学报,2007,19(5):1141-1144.
    [121]耿华,杨耕.控制系统仿真的代数环问题及其消除方法[J].电机与控制学报,2006,10(6):32-635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700