多天线系统中的有限反馈与预编码技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,无线通信正以前所未有的速度向前发展,以满足用户对视频、音频和多媒体娱乐等先进无线业务的要求。为突破频谱和功率等资源的稀缺性对无线通信进一步发展的限制,多天线技术应运而生,通过大力挖掘其特有的空间自由度,有效的提高了频谱利用率、增强传输可靠性、或者它们的一个折中。基于多天线系统的有限反馈与预编码技术,使得空时传输信号自适应于信道状态,以进一步提高系统的性能。对于有限反馈与预编码技术的设计,其关键在于如何在有限的反馈带宽上传输尽可能多的可靠信道信息和如何用有限的信道信息设计简单有效的预编码策略。本学位论文对分布式和集中式多天线系统的反馈方法设计、预编码矩阵构建、反馈量减少和资源优化分配等进行了深入的研究,并提出了一些创新性的策略,主要包括如下几个方面:
     研究了分布式多天线系统中基于量化码书的有限反馈与预编码技术。首先研究了分布式多天线系统的信道分布的特点,分析了码书设计所需要考虑的因素,并给出了一种二步码书设计方法,其可以在系统性能和设计复杂度之间取得一个很好的折中。然后,通过最小化空时码字的平均成对错误概率的上限,得到了一种不需要额外反馈信息的发射功率分配方法,这样可以进一步提高反馈信息的利用效率。根据信道的时间相关性,将信道状态的变化建模为一个有限状态离散马尔科夫过程,在此基础上得到了一种性能无损的基于子码书的反馈减少算法。此外,还根据各信道状态出现概率的非同一性,设计了两种性能无损和性能有损的反馈减少改进算法。从而,为分布式多天线系统提供了一套集码书设计、码字选择、功率分配和反馈减少于一身的有限反馈与预编码策略。
     研究了分布式多天线系统中基于角度域参数的有限反馈与预编码技术。首先分析了分布式多天线系统中无线信号传播的特点,分别为瑞利衰落信道和莱斯衰落信道建立了一个基于平均到达角、角度扩展、归一化接收天线距离和K因子等角度域参数的非Kronecker信道模型。基于这一信道模型,并通过最小化空时码字的平均成对错误概率上限,揭示了信道角度域参数与最佳预编码矩阵之间的内在联系,得到了一种基于信道角度域参数的预编码矩阵设计方法,这种方法具有反馈量少、处理时延小和鲁棒性高的优点。为了进一步减少预编码矩阵的设计复杂度,对空时码字的平均成对错误概率上限进行了渐进分析,分别得到了瑞利和莱斯信道衰落情况下高和低信噪比时的简化预编码矩阵设计方法。最后,对信道角度域参数与分集阶数和编码增益这两种重要的性能指标之间的关系进行了分析,并且发现,在相同条件下,这种基于角度域参数的预编码矩阵设计方法在莱斯衰落信道下可以取得比瑞利衰落信道下更好的性能,随着K因子的增大,获得的性能增益也逐渐增加。
     研究了集中式多天线系统中具有服务质量保证的有限反馈与预编码技术,并分别针对单用户和多用户这两种情况给出了相应的解决方案。对于单用户系统,基于有效带宽理论,揭示了在给定最大时延限制条件下,发射功率和反馈带宽之间的内在联系,从而可以根据系统特点对这两种稀缺资源进行联合优化分配。进一步,还分析了信道估计误差对系统性能的影响,并给出了相应的联合资源分配策略。对于多用户系统,’将无速率编码同多用户传输相结合,给出了多波束机会式波束成型和正交空分多址这两种有限反馈预编码传输策略,并得到了这两种传输策略基于系统参数的切换门限。然后,分别对两种传输策略情况下用户数与时廷限制之间的关系进行了分析,得到了满足时延限制时所能容忍的最大用户数。以最大化系统的净容量(即系统吞吐量与反馈量之差)为目标,得到了两种传输策略下的最佳反馈门限,只有接收信号质量大于这一门限的用户才需要反馈自己的信息,从而在系统性能和反馈量之间取得了一个很好的折中。
Recently, wireless communication is developing with an unprecedented speed, with the goal of satisfying the demand of mobile users for various advanced wireless services, such as video, audio and multimedia entertainment. In order to break out the constraint of the scarcities of bandwidth and power on the further development of wireless communication, multiantenna technology is proposed to improve spectrum efficiency, enhance transmission reliability, or a tradeoff of both by exploiting its unique spatial degree of freedom. The limited feedback pre-coding technology based on multiantenna systems adapts the predetermined space-time signal to the channel state, so as to further improve the system performance. The crux of the design of the limited feedback precoding technology lies on how to convey the channel information as much as possible by using limited bandwidth and how to design the simple but powerful precoding method based on limited feedback information. This dissertation gives an intensive investiga-tion on the the design of feedback methods, the construction of precoding matrix, the reduction of feedback amount and joint optimization of various resources in distributed and co-located multiantenna systems, and proposes several novel strategies as listed as follows:
     For the design of quantization codebook based limited feedback precoding technology in distributed multiantenna systems, the characteristics of channel distribution of distributed multi-antenna system is first analyzed, and the challenges of codebook design is investigated in detail, so that a two-step codebook design method is proposed, which can achieve a tradeoff between system performance and implementation complexity. Then, by minimizing the upper bound of the average pairwise error probability of space-time signal, a power allocation strategy without requiring extra feedback information is derived, which can further improve the utility efficiency of feedback information. According to the temporal correlation, the variety of channel can be modeled as a finite-state discrete Markov process. Based on this model, a feedback reduction scheme by making use of sub-codebook without performance loss is derived. In addition, due to the nonidentical appearance probability of the channel states, other two modified feedback reduction schemes are obtained accordingly. Thereby, a full limited feedback precoding strat-egy including codebook design, codeword selection, power allocation and feedback reduction is tailored for the distributed multiantenna systems.
     For the design of channel angular domain parameters based limited feedback precoding technology in distributed multiantenna systems, first through analyzing the propagation charac-teristics of wireless signal from distributed antennas, the non-Kronecker channel models in terms of angular domain parameters, such as average angle of arrival, angular spread, normalized re-ceive antenna spacing and K-factor, are built for rayleigh and ricean fading channels, respec-tively. Based on the channel models and by minimizing the upper bound of average pairwise error probability of space-time signal, the relationship of channel angular domain parameters and the optimal precoding matrix is revealed, and an angular domain parameters based precod-ing matrix design method is proposed, which has the advantages of small feedback amount, low computation delay and high robustness. In order to further decrease the design complexity, by the asymptotical analysis of the upper bound of average pairwise error probability, two simple precoding matrix design methods at high and low SNR regions for rayleigh and ricean fading channels are derived. After investigating the effect of angular domain parameters on diversity order and coding gain, it is found that, under the same condition, the design method over ricean channel performs better than that over rayleigh channel, and the performance gain increases as the K-factor increases.
     For the design of QoS driven limited feedback precoding technology in co-located multi-antenna systems, both single user case and multiuser case are considered. In the former case, according to the theory of effective bandwidth, the intrinsic relationship between transmit power and feedback bandwidth when given the maximum delay constraint is released, so that the two scarce resources can be jointly optimized according to the system characteristics. Furthermore, the effect of channel estimation error on the performance is investigated in some detail and the responding joint optimization scheme is given. In the latter case, by combining rateless coding and multiuser transmission, two limited feedback precoding transmission schemes, including multibeam opportunistic beamforming and orthogonal space division multiplex access, are pre-sented and the switch threshold in terms of system parameters is gained. Then, via analyzing the relationship between the number of users and delay constraint, the maximum accessible num-ber of users when given delay requirement is derived. Finally, by maximizing the netput (the difference of system throughput and feedback amount), the optimal feedback thresholds for the two transmission schemes are derived. Only the user whose receive signal's quality is higher than the threshold are needed to convey its information, so that a proper balance between system performance and feedback amount can be achieved.
引文
[1]杨大成等编著CDMA2000 IX移动通信系统.机械工业出版社,北京,2003.
    [2]孙立新,尤肖虎,张萍等.第三代移动通信技术.人民邮电出版社出版社,北京,2000年12月.
    [3]E. Dahlman, S. Parkvall, J. Skold, and P. Beming.3G Evolution:HSPA and LTE for Mobile Broadband. Elsevier, Oxford,2007.
    [4]S. Sesia, I. Toufik, and M. Baker. LTE-The UMTS Long Term Evolution. Wiley, West Sussex,2009.
    [5]J. Chuang and N. Sollenberger. Beyong 3g:Wideband wireless data access based on ofdm and dynamic packet assignment. IEEE Communications Magazines,38(7):78-87, Jul.2000.
    [6]W. W. Wu.4g mobile research in asia. IEEE Communications Magazines,41(3):104-106, Mar.2003.
    [7]A. Iyer, C. Rosenberg, and A. Karnik. What is the right model for wireless channel interference. IEEE Trans. Wireless Commun.,8(5):2662-2671, Aug.2009.
    [8]S. Kandukuri and S. Boyd. Optimal power control in interference-limited fading wireless channels with outage-probability specifications. IEEE Trans. Wireless Commun., 1(1):46-55, Aug.2002.
    [9]G. Xue, J. Weng, L. Tho, and S. Tahar. Adaptive multistage parallel interference cancellation for cdma. IEEE JSAC,17(10):1815-1827, Oct.1999.
    [10]P. Haghighat and A. Ghrayeb. Trickle-based interference cancellation schemes for cdma systems. IEEE Trans. Wireless Commun.,8(1):13-17, Jan.2009.
    [11]M. Mossberg, E. K. Larsson, and E. Mossberg. Fast estimators for large-scale fading channels from irregularly sampled data. IEEE Trans. Signal Processing,54(7):2803-2808, Jun.2006.
    [12]R. K. H. Galvao. A. Izhac. V. M. Becerra, and J. W. Bowen. Mimo wiener model identification for large scale fading of wireless mobile communications links. IEEE Commun. Letter,11(6):513-515, Jul.2007.
    [13]J. Linnartz, R. Hekmat, and R. J. Venema. Near-far effects in land mobile random access networks with narrow-band rayleigh fading channels. IEEE Trans. veh. Tech.,41(1):77-90, Feb.1992.
    [14]Y. Zhang and H. Liu. Impact of time-selective fading on the performance of quasi-orthogonal space-time-coded ofdm systems. IEEE Trans. Commun.,54(2):251-260, Feb.2006.
    [15]G. P. Cillardi. G. De Abreu. and R. Kohno. Modified orthogonal space-time block coded for time-selective fading channels. IEEE Trans. Veh. Tech.,57(6):3921-3927, Nov.2008.
    [16]O. Shin and K. B. Lee. Performance comparision of ffh and mcfh spread-spetrum systems with optimum diversity combining in frequency-selective rayleigh fading channels. IEEE Trans. Commun.,49(3):409-416, Mar.2001.
    [17]S. Haykin. Cognitive radio:brain-empower wireless communications. IEEE JSAC,23(2):201-220, 2005.
    [18]A. Goldsmith. Wireless Comminications. Cambridge University Press, Cambridge,2005.
    [19]D. Tse and P. Viswanath. Fundamentals of Wireless Communication. Cambridge University Press, Cambridge,2005.
    [20]A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath. Capacity limits of mimo channels.IEEE JSAC, 21(5):684-702,Jun.2003.
    [21]L. Zheng and D. Tse. Diversity and multiplexing:A fundamental tradeoff in multiple-antenna channels. IEEE Trans. Info. Theory,49(5):1073-1096, May 2003.
    [22]T. Tang and R. W. Heath. Space-time interference cancellation in mimo-ofdm systems. IEEE Trans. Veh. Tech,54(5):1802-1816, Sep.2005.
    [23]C. Chuah, D. Tse, J. M. Kahn, and R. A. Valenzuela. Capacity scaling in mimo wireless systems under correlated fading. IEEE JSAC,23(2):201-220,2005.
    [24]A. A. M. Saleh, A. J. Rustako, and R. S. Roman. Distributed antennas for indoor radio communications. IEEE Trans. Commun.,35:1245-1251, Dec.1987.
    [25]S. Zhou, M. Zhao, X. Xu, J. Wang, and Y. Yao. Distributed wireless communication system:a new arckitecture for future public wireless access. IEEE Wireless Commum., pages 108-113, Mar 2003.
    [26]J. Zhang and J. G. Andrews. Distributed antenna systems with randomness. IEEE Trans. Wireless Commun.,7(9):3636-3646, Sep.2008.
    [27]H. Zhuang, L. Dai, L. Xiao, and Y. Yao. Spectral efficiency of distributed antenna systems with random antenna layout. Eletron. Lett.,39(6):495-496, Mar.2003.
    [28]陈晓明,张朝阳,王超.多用户分布式与集中式天线系统传输容量的分析与比较.中国科学技术大学学报,39(10):1097-1101,Oct.2009.
    [29]M. Alouini and A. Goldsmith. Area spectral efficiency of cellular mobile radio systems. IEEE Trans. Veh.Tech.,48(4):1047-1066, Jul.1999.
    [30]S. Venkatesan, A. Lozano, and R. Valenzuela. Network mimo:overcoming interfcell interference in indoor wireless systems. ACSSC2007, pages 83-87, Nov.2007.
    [31]M. Kobayashi, S. Yang, M. Debbah, and J. Belfiore. Outage efficient strategies for network mimo with partial csit. Submiited to IEEE Trans. Signal Proc. URL http://arxiv.org/abs/1001.2421.
    [32]D. Gesbert, M. Kountouris, R. W. Heath, and C. Chae. From single user to multiuser communications: shifting the mimo paradigm. URL http://citeseerx.ist.psu.edu/viewdoc/summary? doi=10.1.1.103.5937.
    [33]J. Zhang, R. W. Heath, M. Kountouris, and J. G. Andrews. Mode switching for the multi-antanna broadcast channel based on delay and channel quantization. Eurosip Journal on Signal Processing. URL http://www.hindawi.com/journals/asp/2009/802548.html.
    [34]D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews. An overview of limited feedback in wireless communication systems. IEEE J SAC,26(8):1341—1365, Oct.2008.
    [35]M. Sharif and B. Hassibi. A comparison of time-sharing, dpc, and beamforming for mimo broadcast channels with many users. IEEE Trans. Commun.,55(1):11-15, Jan.2007.
    [36]K.Huang. Limited feedback beamforming with delay:Theory and practice. URL http://www. ece.ust.hk/-eehuangk/Slides/NUS07.ppt.
    [37]Q. H. Spendcer, C. B. Peel, A. L. Swindlehurst, and M. Haardt. An introduction to the multi-user mimo downlink. IEEE Commun. Magazine, pages 60-67, Oct.2004.
    [38]J. C. Roh and B. D. Rao. Transmit beamforming in multiple-antanna systems with finite rate feedback: a vq-based approach. IEEE Trans. Info. Theory,52(3):1101-1112, Mar.2006.
    [39]J. Zheng, E. R. Duni, and B. D. Rao. Analysis of multiple-antenna systems with finite-rate feedback using high-resolution quantization theory. IEEE Trans. Signal Processing,55(4):1461-1476, Apr.2007.
    [40]J. C. Roh and B. D. Rao. Design and analysis of mimo spatial multiplexing system with quantizated feedback. IEEE Trans. Signal Processing,54(8):2874-2886, Aug.2006.
    [41]W. Dai, Y. Liu, and B. Rider. Quantization bounds on grassmann manifolds and applications to mimo communications. IEEE Trans. Info. Theory,54(3):1108-1123, Mar.2008.
    [42]B. Mondal, S. Dutta, and R. W. Heath. Quantization on the grassmann manifold. IEEE Trans. Signal Processing,55(8):4208-4216, Aug.2007.
    [43]D. J. Love, R. W. Heath, and T. Strohmer. Grassmannian beamforming for multiple-input mutiple-output wireless systems. IEEE Trans. Info. Theory,49(10):2735-2747, Oct.2003.
    [44]D. Ryan, I. V. L. Clarkson, I. Collings, D. Guo, and M. Honig. Qam and psk codebooks for limited feedback mimo beamforming. IEEE Trans. Commun.,57(4):1184-1196, Apr.2009.
    [45]T. Inoue and R. W. Heath. Kerdock codes for limited feedback precoded mimo systems. IEEE Trans. Signal Processing,57(9):3711-3716, Sep.2009.
    [46]J. Choi, B. Mondal, and R. W. Heath. Interpolation based unitaty precoding for spatial multiplexing mimo-ofdm with limited feedback. IEEE Trans. Signal Processing,54(12):4730-4740, Dec.2006.
    [47]B. C. Banister and J. R. Zeidler. Feedback assisted transmission subspace tracking for mimo systems. IEEE JSAC,21(3):452-463, Apr.2003.
    [48]陈晓明,张朝阳.一种反馈量控制方法及通讯装置及相关设备2008. URI http://www. sipo.gov.cn/sipo2008.
    [49]K. Huang, R. W. Heath, and J. G. Andrews. Space division multiplexing access with a sum feedback rate control. IEEE Trans. Signal Processing,55(7):3879-3891, Jul.2007.
    [50]V. Hassel, M. Alouini, D. Gesbert, and G. E. Oien. Exploiting multiuser diversity using multiple feed-back thresholds. IEEE VTC 2005-Spring,2:1302-1306,2005.
    [51]B. Mielczarek and W. A. Krzymien. Influence of csi feedback errors on capacity of linear multi-user mimo systems. IEEE VTC 2005-Spring, pages 2043-1047,2007.
    [52]T. Wu and V. K. N. Lau. Robust rate, power and precoder adaptation for slow fading mimo channels with noisy limited feedback. IEEE Trans. Wireless Commun.,7(6):2360-2367, Jun.2008.
    [53]Y. Isukapalli and B. D. Rao. Finite rate feedback for spatially and temporally correlated miso channels in the presence of estimation errors and feedback delay. IEEE Globecom 2007, pages 2791-2795,2007.
    [54]N. Vucic and H. Boche. Robust qos-constrained optimization of downlink multiuser miso systems. IEEE Trans. Signal Processing,57(2):714-725, Feb.2009.
    [55]R. W. Heath, S. Sandhu, and A. Paulraj. Antenna selection for spatial multiplexing systems with linear receivers. IEEE Commun. Lett.,5(4):142-144, Apr.2001.
    [56]S. Zhou and G. B. Giannakis. Optimal transmitter eigen-beamforming and space-time block coding based on channel correlations. IEEE Trans. Info. Theory,49(7):1673-1690, Jul.2003.
    [57]M. Vu and A. Paulrai. Optimal linear precoders for mimo wireless correlated channels with nonzero mean in space-time coded systems. IEEE Trans. Signal Processing,54(6):2318-2332, Jun.2006.
    [58]Y. Zhu and K. B. Letaief. Frequency domain equalization with tomlinson-harashima precoding for single carrier broadband mimo systems. IEEE Trans. Wireless Commun.,6(12):4420-4431, Dec.2007.
    [59]Q. H. Spencer, A. L. Swindlehurst, and M. Haardt. Zero-forcing methods for downlink spatial multi-plexing in multiuser mimo channels. IEEE Trans. Signal Processing,52(2):461-471, Feb.2004.
    [60]P. Ding, D. J. Love, and M. D. Zoltowski. Multiple antenna broadcast channels with shape feedback and limited feedback. IEEE Trans. Signal Processing,55(7):3417-3428, Jul.2007.
    [61]X. Chen, Z. Zhang, and H. Chen. On distriubted antenna system with limited feedback precoding-opportunisties and challenges. IEEE Wireless Communications,17(2):80-88, Apr.2010.
    [62]X. Chen, Z. Zhang,and P. Wang. Codebook design and power allocation for distributed space time codes with limited feedback. IEEE VTC2009-Fall, Sep.2009.
    [63]X. Chen and Z. Zhang. Exploiting channel angular domain information for precoder design in dis-tributed antenna system. IEEE Trans. Signal Proc.,58(11):5791-5801, Nov.2010.
    [64]X. Chen and Z. Zhang. Precoder design for distributed antenna system based on channel angular domain information.ICCCAS2009, Jul.2009.
    [65]X. Chen, Z. Zhang, S. Chen, and C. Wang. Opportunistic beamforming for multiuser mimo downlink employing rateless codes with delay constraint. IEEE ICC2010, May 2010.
    [66]X. Chen, Z. Zhang, S. Chen, and C. Wang. Adaptive mode selection for multiuser mimo downlink employing rateless codes with qos provisioning. Submitted to IEEE Trans. Wireless Commun., May 2010.
    [67]X. Chen, Z. Zhang, and C. Wang. A framework of joint optimization of transmit power and codebook size in limited feedback mimo system with qos provisioning. In Preparation.
    [68]S. Han, S. Zhou, M. Zhao, J. Wang, and K. Park. Outage probability based optimal transmission of space time block codes over correlated distributed antennas. IEICE Trans. Commun., E89-B(9):2514-2521, Sep.2006.
    [69]D. Love and Jr. R. W. Heath. Limited feedback unitary precoding for spatial multiplexing systems. IEEE Trans. Info. Theory,51(8):2967-2976, Aug.2005.
    [70]K. Akino, T. Molisch, A. Tao, P. Kuze, and T. Seas. Unified analysis of linear block precoding for distributed antenna systems. IEEE Globecom2009, pages 1-6, Dec.2009.
    [71]S. Zhou and G. Giannakis. Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback. IEEE Trans. Signal Proc.,50(10):2599-2613, Oct.2002.
    [72]G. Jongren, M. Skoglund, and B. Ottersten. Combining beamforming and orthogonal space-time block coding. IEEE Trans. Info. Theory,48(3):611-627, Mar.2002.
    [73]D. Love and Jr. R. W. Heath. Limited feedback unitary precoding for orthogonal space-time block codes. IEEE Trans. Signal Proc.,53(1):64-73, Jan.2005.
    [74]C. Yeung and D. Love. Performance analysis of random vector quantization limited feedback beam-forming. ACSSC2005, pages 408-412, Nov.2005.
    [75]T. Kim, M. Bengtsson, E. Larsson, and M. Skoglund. Combining long-term and low-rate short-term channel state information over correlated mimo channels. IEEE Trans. Wireless Commun.,7(7):1-6, Jul.2008.
    [76]T. Yoo and A. Goldsmith. Capacity and power allocation for fading mimo channels with channel esti-mation error. IEEE Trans. Info. Theory,52(3):2203-2214, May 2006.
    [77]E. K. S. Au, S. Jin, M. R. Mckay, W. H. Mow, X. Gao, and I. B. Collings. Analytical performance of mimo-svd systems in ricean fading channels with channel estimation error and feedback delay. IEEE Trans. Wireless Commun.,7(4):1315-1325, Apr.2008.
    [78]Y. Taesang, Y. Eunchul, and A. Goldsmith. Mimo capacity with channel uncertainty:does feedback help? IEEE Globecom2004, pages 96-100, Dec.2004.
    [79]S. Zhou, B. Li, and P. Willett. Recursive and trellis-based feedback reduction for mimo-ofdm with rate-limited feedback. IEEE Trans. Wireless Commun.,5(12):3400-3405, Dec.2006.
    [80]E. Jorswieck, A, Sezgin, B. Ottersten, and A. Paulraj. Feedback reduction in uplink mimo-ofdm systems by chunk optimization. EURASIP Journal on Advanced in Signal Procesing,2008:1-14, Jan.2008.
    [81]A. Hjorungnes, D. Gesbert, and J. Akhtar. Precoding of space-time block coded signals for joint transmit-receive correlated mimo channels. IEEE Trans. Wireless Commun.,5(3):492-497, Mar.2006.
    [82]A. S. Poon, D. N. C. Tse, and R. W. Broderson. Multiple-antenna channels from a combined phisical and networking perspective. ACSSC2002, pages 1528-1532, Nov.2002.
    [83]H. Bolcskei, M. Borgmann, and A. J. Paulray. Impact pf the propagation environment on the perfor-mance of space-frequency coded mimo-ofdm. IEEE J. Sel. Areas Commun.,21(3):427-439, Apr.2003.
    [84]L. Dai, S. Zhou, and Y. Yao. Capacity analysis in cdma distributed antenna systems. IEEE Trans. Wireless Commun.,4(6):2613-2620, Nov.2005.
    [85]R. Wonil and Paulrai. Mimo channel capacity for the distributed antenna. IEEE VTC2002-Fall, pages 702-709, Dec.2002.
    [86]N. H. Dawod, I. D. Marsland, and R. H. M. Hafez. Improved transmit null steering for mimo-ofdm downlinks with distributed based station antenna array. IEEE J. Sel. Areas Commun.,24(3):419-426, Mar.2006.
    [87]J. Zhang and J. Andrews. Distributed antenna systems with randomness. IEEE Trans. Wireless Com-mun.,7(9):3636-3646, Sep.2008.
    [88]P. W. C. Chan, D. C. K. Lee, F. K. W. Tam, I. Chin-Lin, S. K. Roger, and V. K. N. Lau. Angular-domain channel model and channel estimation for mimo system. IEEE Globecom2008, pages 1-5, Dec.2008.
    [89]H. Zhang, N. B. Mehta, A. F. Molish, J. Zhang, and H. Dai. Asynchronous interference mitigation in cooperative base station systems. IEEE Trans. Wireless Commun.,7(1):155-165, Jan.2008.
    [90]M. Fozunbal, S. W. Mclaughlin, R. W. Schafer, and J. M. Landsberg. On space-time coding in the presence of spatio-temporal correlation. IEEE Trans. Info. Theory,50(9):1910-1926, Sep.2004.
    [91]T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New York,1991.
    [92]L. D. Pascual and A. Ben-Israel. On the solution of maximization problems of optimal design by geometric programming. J. Optim. Theory,4(4):349-360, Oct.1970.
    [93]Z. Liu and G. B. Giannakis. Space-time-frequency coded ofdm over frequency-selective fading chan-nels. IEEE Trans. Signal Proc.,50(10):2465-2476, Oct.2002.
    [94]S. Catreux, V. Erceg, D. Gesbert, and Jr. R. W. Heath. Adaptive modulation and mimo coding for broadband wireless date neworks. IEEE Commun. Mag., pages 108-115, Jun.2002.
    [95]J. Tang and X. Zhang. Quality-of-service driven power and rate adaption for multichannel communica-tions over wireless links. IEEE Trans. Wireless Commun.,6(12):4349-460, Dec.2007.
    [96]Y. Liang, R. Zhang, and J. M. Cioffi. Transmit optimization for mimo-ofdm with delay-constrained and no-delay-contrained traffic. IEEE Trans. Signal Proc.,54(8):3190-3199, Aug.2006.
    [97]. E. S. Lo, P. W. C. Chan, V. K. N. Lau, R. S. Cheng, K. B. Letaief, R. D. Murch, and W. H. Mow. Adaptive resource allocation and capacity comparison of downlink multiuser mimo-mc-cdma and mimo-ofdma. IEEE Trans. Wireless Commun.,6(3):1083-1093, Mar.2007.
    [98]P. Xia, S. Zhou, and G. B. Giannakis. Adaptive mimo-ofdm based on partial channel state information. IEEE Trans. Signal Proc,52(1):202-213, Jan.2004.
    [99]S. Zhou and G. B. Giannakis. How accurate channel prediction needs to be for transmit-beamforming with adaptive modulation over rayleigh mimo channels? IEEE Trans. Wireless Commun.,3(4):1285-1294, Jul.2004.
    [100]R. Wang and V. K. N. Lau. Cross layer design of downlink multi-antenna ofdma systems with imperfect csi for slow fading channels. IEEE Trans. Wireless Commun.,6(7):2417-2421, Jul.2007.
    [101]E. Biglieri, G. Caire, and G. Taricco. Limiting performance of block-fading channels with multiple antennas. IEEE Trans. Info. Theory,47(4):1273-1289, May 2001.
    [102]J. S. Harsini and F. Lahouti. Queuing with adaptive modulation over mimo wireless links for deadline constrained traffic:cross-layer analysis and design. IEEE ICC2007, pages 235-240, Jun.2007.
    [103]J. S. Harsini and F. Lahouti. Optimizing delay performance over mimo fading channels with adaptive transmission. IEEE ICC2008, pages 3547-3552, Jun 2008.
    [104]F. Kelly. Notes on effective bandwidths. Stochastic Networks:Theory and Application,4,1996.
    [105]D. Wu and R. Negi. Effective capacity:a wireless link model for support of quality of service. IEEE Trans. Wireless Commun.,9(5):76-83, Oct.2002.
    [106]T. Taniguchi, S. Sha, and Y. Karasawa. Analysi s and approximation of statistical distribution of eigenval-ues in i.i.d mimo channels under rayleigh fading. IEICE Trans. Fundamentals, E91-A(10):2808-2817, Oct.2008.
    [107]Q. Liu, S. Zhou, and G. B. Giannakis. Cross-layer combining of adaptive modulation and coding with truncated arq over wireless links. IEEE Trans. Wireless Commun.,3(5):1746-1755, Sep.2004.
    [108]H. Yang, N. Belhaj, and M. Alouini. Bandwidth-effcient-power-greedy joint adaptive modulation and diversity combining. IEEE ISIT2006, pages 937-941, Jul.2006.
    [109]H. Weingarten, Y. Steinberg, and S. Shamai. The capacity region of the gaussian multiple-input multiple-output broadcast channel. IEEE Trans. Info. Theory,52(9):3936-3964, Sep.2006.
    [110]S. Sanayei and A. Nosratinia. Opportunistic beamforming with limited feedback. IEEE Trans. Wireless Commun.,6(8):2765-2771, Aug 2007.
    [111]Y. Chen, H. Huang, Z. Zhang, V. K. N. Lau, and P. Qiu. Cooperative spectrum access for cognitive radio network employing rateless codes. IEEE ICC2008, pages 326-331, May 2008.
    [112]J. Castura, Y. Mao, and S. Draper. On rateless coding over fading channels with delay constraints. IEEE ISIT2006, pages 1124-1128, Jul.2006.
    [113]J. Castura and Y. Mao. Rateless coding over fading channels. IEEE Commun. Lett.,10(1):46-48, Jan. 2006.
    [114]M. Shanechi, U. Erez, K. Boyle, and G. Wornell. Time-invariant rateless codes for mimo channels. IEEE ISIT2008, pages 2247-2251, Jul.2008.
    [115]C. H. Ng. Queueing modelling fundamentals. John Wesley and Sons, Oxford,1996.
    [116]M. Sharif and B. Hassibi. On the capacity of mimo broadcast channels with partial side information. IEEE Trans. Info. Theory,51(2):506-522, Feb.2005.
    [117]X. Chen, Z. Zhang, and C. Wang. Dual qos driven power allocation in mimo cognitive network with limited feedback. IEEE WCNC2011, Mar.2011.
    [118]R. Zhang and Y. Liang. Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE J. Sel. Topics Signal Proc,2(1):88-102, Feb.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700