用户名: 密码: 验证码:
面向空间任务的追踪理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文面向分布式卫星系统构形重构与反卫星卫星对抗任务,借鉴生物运动的追踪策略,开展循环追踪算法在编队构形重构、运动伪装算法在对抗武器隐身轨迹设计方面的理论与应用研究。具体研究内容如下:
     本文提出了满足分布式卫星系统自主重构要求、具有局部稳定性的构形重构控制算法。引入“虚拟灯塔”导引改进已有非线性循环追踪控制算法,得到兼具构形调整、集体定位功能的“虚拟灯塔”导引非线性循环追踪控制算法;根据两种算法的矛盾性,调整参数设置,使定速的非线性循环追踪、变速的非线性循环追踪、“虚拟灯塔”导引定位三种算法的运动规律及其稳定性得到统一;应用所设计控制算法到全员运动,或成员之一的单员运动,得到编队均可以达到期望构形的结论;对特征值的分析证明,两种受控方式下的系统均具有局部稳定性。
     结合所设计算法,采用脉冲推力与连续小推力控制,对分布式卫星系统进行构形调整分析。提出平面内采用循环追踪、绕飞面法向施行比例微分反馈的控制律设计方法;配合多脉冲与连续控制方案,对编队向参考中心回收、编队半径大小调整、编队相位调整以及线形编队构形保持等任务进行了仿真分析;根据控制过程中循环追踪算法与“虚拟灯塔”导引算法施行的制约性,给出了控制增益设置建议;由连续小推力一定范围能量不足、循环追踪链一处断裂时的构形调整情况,得到所设计循环追踪相关控制方法具有较高可靠性与稳定性的结论。
     在个体运动伪装策略的空间任务应用中,主要面向反卫星卫星对抗任务,假设反卫星卫星无测距设备且对抗武器始终呈现点图像,进行了对抗武器隐身轨迹的设计与控制实现研究。建立了对抗武器隐身轨迹的多脉冲控制模型,实现了参数配置优化;分析得到多脉冲的运动伪装更适宜于快速攻击,提出一种在线次最优的最小时间控制策略;为实现隐身轨迹的精确控制,采用连续小推力的控制方式,建立其作用下的空间运动伪装模型;根据其初始相对速率为零的边界条件限制,设计隐身轨迹,对能量消耗最小时的攻击时间值与推力约束下的攻击过程时间可行域进行求解;采用伪谱法优化位置比率曲线,实现无攻击过程时间约束下的能量优化;依据欺骗对象与攻击目标分离的数学原理,建立了基于运动伪装策略的小行星软着陆、硬着陆模型,航天器交会对接模型。
     空间小型武器的进攻,群组型的方式不仅能提高命中概率,还能有效减弱其图像不为点图像时运动伪装带来的隐现效应。仍假设反卫星卫星无测距设备但能感知图像大小变化,引入组织型、编队型与集团型的群组型运动伪装,建立了分别以时间、距离为指标、按“获取目标信息”与“获取领导者信息”两种方式、位置比率为二次函数的空间线形编队运动伪装模型;结合编队型与集团型群组构成的特点,提出V形集团的运动方式,推导其构形保持与图像隐现抑制下的构形变换模型,对运动过程进行了仿真分析。
     本文面向循环追踪算法对分布式卫星的构形调整、运动伪装算法设计对抗反卫星卫星武器的隐身轨迹两大任务,系统研究了相应控制算法的理论、模型与应用规律。指出两种算法的适用特点符合现代空间技术的发展方向,因此带给解决相关问题的全新启示。
Inspired by the pursuit strategy in creatures’motion, this paper makes a research on the principles and application of cyclic pursuit algorithm in satellites formation reconfiguration and motion camouflage algorithm in space weapon counteracting anti-satellite satellite. The main contents are shown as follows.
     The control laws which meet with satellites formation autonomous reconfiguration requirements with local stability characteristics are obtained. Virtual Beacon’s Guidance is integrated to improve the existing Nonlinear Cyclic Pursuit law to deduce a method of Nonlinear Cyclic Pursuit & Beacon’s Guidance in which the formation can get reconfiguration and reorientation simultaneously. On account of their contradiction, control gain is reset to coordinate the system’s motion and stability in control. Analysis and simulation results prove the mission could be achieved whether Nonlinear Cyclic Pursuit & Beacon’s Guidance is applied to the crew or only a single member. In addition, to verify the local asymptotical stability of the motion, special techniques are adopted.
     Applying the control laws to Distributed Satellite Systems reconfiguration, thus the rules of their utilization in missions by means of impulses or low-thrust system are deduced. In consider of the motion regulation in aerodynamics, the idea of planar cyclic pursuit and normal proportional derivative feedback combined control laws are proposed. Since multi-impulses and continuous low thruster are the most popular power plants, missions of formation recovery to reference center, separation adjustment, phase angle adjustment, and linear configuration maintanence are simulated. In addition, presumption of impetus’insufficiency and one breakdown of pursuit chain are set, on which the pursuit tasks could still be achieved in simulation, so that these control methods are considered of high reliability and stability in conclusion.
     In single Motion Camouflage aspect, the camouflage trajectories of weapons in counteracting anti-satellite satellite are studied on the assumption there is no telemeter installed on the target and the weapon’s image is always in a pixel. The models of stealth trajectories are established in multi-impulse system in which parameters setting are optimized and relevant rules are deduced. Based on the formal analysis, multi-impulse system is more preferred in short period attack, an on-line suboptimal minimal approaching time consumption method is developed and progressively, the space relative motion camouflage in low continuous thrust model is developed. To meet with the boundary constraint of initial zero relative rates, a special camouflage trajectory is obtained along with the analytical expressions of accelerations in need, time consumption in minimal fuel consumption and feasible region of progress duration in thrust restriction. In addition, Pseudo-spectral method is integrated to optimize the position ratio in fuel consideration. In view of the mathematical fundamentals of Motion Camouflage, models of asteroid soft landing and hard landing, as well as model of rendezvous and docking are developed.
     Multi-agents’team work in Motion Camouflage can not only enhance the shooting probability, but also reduce the looming cues. In view of the team work and still on the presumption there is no telemeter installed on the target but the image change can be detected, approaching types of pack hunting, flying in formation and flying in swarm are introduced. Especially for the follower’s motion in formation, resolution to the control if position information is about the target or the leader with boundary contraints are deduced. Take the advantage of motion in V-formation and in swarm, formation configuration in V-swarm is proposed, and models of configuration maintainence and looming cues reduction are developed and simulated.
     In summary, this paper aiming at resolving satellites reconfiguration in Cyclic Pursuit and developing camouflage trajectories for space weapons to counteract anti-satellite satellite has made a systematical research on relevant principles, models and application regulations. Matching upto the development of science and technology, control laws studied in this paper are believed to have a good prospect in future engineering application.
引文
[1]周克强.空间飞行器智能自主控制研究[D].西北工业大学, 2006.
    [2] Henry H, Rino F C. Delegation and control: From Inter-Agent to Groups[C]//AAAI Workshop Technical Report WS-02-03, AIAA Press, 2000: 57-63.
    [3] Christopher K, Michael S. Autonomous operations experiments for the distributed Emerald Nanosatellite missions[C]//SSC00-IX-5, 2000.
    [4]张健.分布式卫星自主构形重构技术研究[D].长沙:国防科学技术大学航天与材料工程学院, 2006.
    [5] Martin M, Kilberg S. TechSat 21 and Revolutionizing Space Missions using Microsatellites[C]//SSC01-1-3, 15th Annual AIAA/USU Conference on Small Satellites, 2001:1-3.
    [6] Chien S, Sherwood R. The Techsat-21 Autonomous Sciencecraft Constellation Demonstration[C]//Proceedings of i_SAIRAS, Montreal, Canada, 2001.
    [7] Das A, Cobb R. TechSat-21 - SpaceMissions Using Collaborating Constellations of Satellites[C]//SSC98-Ⅵ-1, 2th Annual AIAA/USU Conference on Small Satellites, Logan Utah, 1998.
    [8] Nasa. Terrestiral Planet Finder Interferometer [EB/OL]. http://planetquest.jpl. nasa.gov/TPF/tpf_index.cfm.
    [9] Lieber M, Gallagher D. System performance evaluation of the MAXIM concept[C]//Proceedings of SPIE, X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy, 2003: 557-567.
    [10] Moreira A, Krieger G. TanDEM-X: A TerraSAR-X Add-On Satellite for Single-Pass SAR Interferometry[C]//IEEE 0-7803-8743-0/04, 2004.
    [11] Moreira A, Krieger G. Spaceborne Synthetic Aperture Radar (SAR) Systems: State of the Art and Future Developments[C]//11th GAAS Symposium, Munich, Germany, 2003: 385-388.
    [12] Fiedler H, Krieger G. Analysis of Satellite Configurations for Spaceborne SAR Interferometry[C]//Proceedings of International Symposium Formation Flying Mission & Technologies, Toulouse, France, 2002.
    [13] Kirschner M, Monotenbruck O, Bettadpur S. Flight Dynamics Aspects of the Grace Formation Flying[C]//Proceedings of 2nd International Workshop on Satellite Constellations and Formation Flying, Haifa, Israel, 2001.
    [14]闻新,马文弟,周露.小卫星编队飞行的应用模式分析及展望[J].中国航天, 2005, (8): 40-43.
    [15]孟云鹤.近地轨道航天器编队飞行控制与应用研究[D].长沙:国防科技大学航天与材料工程学院, 2006.
    [16] Tillerson M, Inalhan G, Jonathan P H. Coordination and control of distributed spacecraft systems using convex optimization techniques[J]. International Journal of Robust Nonlinear Control, 2002, (12): 207-242.
    [17] Wright D, Grego L, Gronlund L.太空安全物理学[EB/OL]. http://www. amacad.org/projects/science.aspx.
    [18]周克强,高晓光,奕白.反卫星卫星攻击方式研究[J].飞行力学, 2006, 24(4): 80-83.
    [19] Richards A, Schouwenaars T. How J.Spacecraft trajactory planning with collision avoidance constraints[J]. Journal of Guidance control and dynamics, 2002, 25(4).
    [20] Beard R, Hadaegh F. Finite thrust control for satellite formation flying with state constraints[C]//American Control Conference, 1999: 4383-4387.
    [21] Beard R, Hadaegh F. Constellation templates: an approach to autonomous formation flying[C]//Automation Congress, Anchorage, AK, 1998.
    [22] Richards A, How J. Pulme avoidance maneuver planning using mixed integer linear programming[C]//AIAA-01-4091, 2001.
    [23] Beard R, Hadaegh F. Fuel optimization for unconstrained mtaions of spacecraft formations[J]. Journal of Astronautics Science, 1999, 47(3): 259-273.
    [24]吴文昭.分布式卫星系统构形调整规划研究[D].湖南,长沙:国防科学技术大学, 2007.
    [25] Vadali S R, Vaddi S, Alfriend K. Orbit Establishment For Formation Flying of Satellites[C]//Advances in the Astronautical Sciences, AAS 00-111, 2000: 181-194.
    [26] Schaub H, Alfriend K T. Impulsive Spacecraft Formation Flying Control to Establish Specific Mean Orbit Elements[C]//AAS Space Mechanics Specialist Meeting, AAS 00-113, Clearwater, Florida, CO, Jan 23-26, 2000.
    [27] Mailhe L, Schiff C, Hughes S. Formation Flying In Highly Elliptical Orbits Initializing the Formation[C]//International Symposium on Space Dynamics, Biarritz, France, CNES, June 26-30, 2000.
    [28] Vadali S R, Schaub H, Alfiend K T. Initial Conditions and Fuel.Optimal Control for Formation Flying of Satellites[C]//AIAA GN&C Conference, AIAA 99-4265, Aug. 9-12, 1999.
    [29] Der G. An Elegant State Transition Matrix[J]. The Joumal of the Astronautical Sciences, 1997, 45(4): 371-390.
    [30]王兆魁.分布式卫星动力学建模与控制研究[D].国防科技大学航天与材料工程学院, 2006.
    [31] Mailhe L, Schiif C H. Initialization of Formation Flying Using Primer Vector Theory[C]//International Symposium of Formation Flying missions & Technique, Toulouse, France, 2002.
    [32] Ulybyshev Y. Long-Term Formation Keeping of Satellite Constellation Using Linear Quadratic Controller[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(1): 109-115.
    [33] Kapila V, Sparks A G, Buffington J M, et al. Spacecraft Formation Flying: Dynamics and Control[C]//American Control Conference, San Diego, California, June, 1999: 4137-4141.
    [34] Schaub H, Vadali S R, Junkins J L, et al. Spacecraft Formation Flying: Control Using Mean Orbit Elements[C]//AAS Astrodynamics Specialia Conference, AAS 99-310, Greenwood, Alaska, Aug 16-18, 1999.
    [35] Tan Z, Bainum P M, Strong A. The Implementation of Maintaining Constant Distance Between Satellites in Elliptic Orbits[C]//AAS Spaceflight Mechanics Meeting, AAS 00-141, Clearwater, Florida, Jan, 2000.
    [36] Naasz B J, Karlgaardy C D, Hall C D. Application of Several Control Techniques for the Ionospheric Observation Satellite Formation[C]//AAS 02-188, 2002.
    [37] de Quekoz M S, Kapila V, Yah Q. Adaptive Nonlinear Control of Multiple Spacecraft Formation Flying[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3): 385-390.
    [38] Naasz B J. Classical Element Feedbaek Control for Spacecraft Orbital Maneuvers[D]. Blacksburg, VA: Virginia Polytechnic Institute and State University, May, 2002.
    [39] Vadali S R, Vaddi S, Alfriend K. An Intelligent Control Concept for Formation Flying satellites[J]. Int. J. Robust Nonlinear Control, 2002, (12): 97-115.
    [40] Tillerson M. Coordination and Control of Distributed Spacecraft Systems Using Convex Optimization Techniques[D]. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2002.
    [41] Vadali S, Vaddi S, Naik K. Control of Satellite Formation[C]//AIAA GN&C Conference, Aug, 2001.
    [42] Wang P K C, Hadaegh F Y. Optimal Formation Reconfiguration for Multiple Spacecraft[C]//AIAA Guidance, Navigation, and Control Conference, Reston, VA, 1998: 686-696.
    [43] Wang P K C, Hadaegh F Y. Minimum-fuel formation reconfiguration of multiple flee-flying Spacecraft[C]//Univ.California, Los Angeles, Dec, 1997.
    [44]张玉锟.卫星编队飞行的动力学与控制技术研究[D].国防科学技术大学航天与材料工程学院, 2002.
    [45] Kong E M C. Spacecraft Formation Flight Exploiting Potential Fields[D]. Massachusetts Institute of Technology, Feb, 2002.
    [46] Kong E M C, Miller D W. Optimal Spacecraft Re-Orientation for Earth Orbiting Clusters: Applications to TechSat 21[C]//51st International Astronautical Congress, IAF-00-406, 2000.
    [47] Massari M, Armellin R, Ercoli-Finzi A. Optimal Trajectory Generation and Control for Recontiguration Maneuvers of Formation Flying using Low-thrust Propulsion[C]//14th AAS/AIAA Space Flight Mechanics Meeting, Maui, Haw, Feb, 2004.
    [48] Armellin R, Massari M, Ercoli-Finzi A. Optimal Formation Flying Reconfiguration and Station Keeping Maneuvers using Low-thrust Propulsion[C]//18th International Symposium on Space Flight Dynamics, Munich,Germany, Oct, 2004.
    [49]闻新,马文弟.小卫星编队与反卫星卫星[J].中国航天, 2006, (4): 11-14.
    [50]神州7伴飞卫星—BX-1 (THE ACCOMPANYING SATELLITE OF SHENZHOU 7—BX-1)[EB/OL]. http://space.yoka.com/blog/1416052/.
    [51] Bernhart A. Polygons of pursuit[J]. Scripta Mathematic, 1959, 24: 23-50.
    [52] Mathworld W. Pursuit Curve[DB/OL]. http://mathworld.wolfram.com/Pursuit Curve.html.
    [53] Severdia M. Pursuit Curves[DB/OL]. http://online.redwoods.cc.ca.us/instruct /darnold/deproj/sp08/mseverdia/pursuit.pdf.
    [54] Nahin, Paul J. Chases and Escapes: The Mathematics of Pursuit and Evasion[M]. Princeton, New Jersey: Princeton University Press, 2007.
    [55] Marshall J A. Coordinated Autonomy:Pursuit Formations of Multi-agent System[D]. Toronto, Ontario: University of Toronto, 2005.
    [56] Klamkin M S, Newman D J. Cyclic pursuit or the three bugs problem[J]. The American Mathematical Monthly, 1971, 78(6): 631-639.
    [57] Bruckstein A M, Cohen N, Efrat A. Ants, Crickets and Frogs in Cyclic Pursuit (Center for Intelligent Systems technical report #9105)[R]. Haifa, Israel: Technion-Israel Institute of Technology, 1991.
    [58] Bruckstein A M. Why the ant trails look so straight and nice[J]. The Mathematical Intelligencer, 1993, 15(2): 59-62.
    [59] Bruckstein A M, Sapiro G, Shaked D. Evolutions of planar polygons[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1995, 9(6): 991-1014.
    [60] Sepulchre R, Paley D A, Ehrich N. Stabilization of Planar Collective Motion: All-to-all Communication[J]. IEEE Transactions on Automatic Control, 2007.
    [61] Kobayashi K, Otsubo K, Hosoe S. Design of decentralized capturing behavior by multiple robots[C]//In IEEE workshop on distributed intelligent systems: Collective intelligence and its applications, 2006: 463-468.
    [62] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Trans. Automat. Contr., 2003, 48(1): 988-1001.
    [63] Vicsek T, Czirok A, Jacob E B, et al. Novel type of phase transitions in a system of self-driven particles[J]. Physical Review Letters, 1995, 75: 1226-1229.
    [64] Lin Z, Francis B A, Maggiore M. Necessary and sufficient graphical conditions for formation control of unicycles[J]. IEEE Transactions on Automatic Control, 2005, 50(1): 121-127.
    [65] Lin Z, Broucke M E, Francis B A. Local control strategies for groups of mobile autonomous agents[J]. IEEE Transactions on Automatic Control, 2004, 49(4): 622-629.
    [66] Sinha A, Ghose D. Generalization of nonlinear cyclic pursuit[J]. automatica, 2007, (43): 1954-1960.
    [67] Tiwari A, Fung J, Carson J M, et al. A framework for Lyapunov Certificates for Multi Vehicle Rendezvous Problem[C]//Proceedings of 2004 American Control Conference, Boston, Massachusetts, 2004: 5582-5587.
    [68] Lua C A, Altenburg K, Nygard K E. Synchronized multi-point attack by autonomous reactive vehicles with simple local communication[C]//Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, 2003.
    [69] Mclain T, Beard R. Cooperative Rendezvous of Multiple Unmanned Air Vehicles[C]//AIAA-2000-4369:AAO-37126, Proceedings of AIAA Guidance, Navigation and Control Conference, Denver, CO, 2000.
    [70] Marshall J A, Broucke M E, Francis B A. Formations of vehicles in cyclic pursuit[J]. IEEE Transactions on automatic control, 2004, 49(11): 1963-1974.
    [71] Marshall J A, Broucke M E, Francis B A. A pursuit strategy for wheeled vehicle formations[C]//Proceedings of the 42nd IEEE Conference on Decision and Control, 2003: 2555-2560.
    [72]张世杰,段广仁,曹喜滨.循环追踪控制下多个体系统稳定性分析[C]. 2009中国控制与决策会议论文集, 2009: 5034-5038.
    [73]张世杰,段广仁.基于分布式控制的多个体系统的循环追踪控制[J].吉林大学学报, 2010, 40(2): 506-510.
    [74] Kim T, Sugie T. Cooperative control for target-capturing task based on a cyclicpursuit strategy[J]. Automatica, 2007, 43: 1426-1431.
    [75] Ramirez J L, Pavone M, Frazzoli E. Cyclic Pursuit for Spacecraft Formation Control[C]//ACC, Sanya, China, 2009.
    [76] Collett T S, Land M F. Visual control of flight behaviour in the hoverfly[J]. Journal of Comparative Physiology, 1975, 99: 1-66.
    [77] Collett T S, Land M F. How hoverflies compute interception courses[J]. J. comp. Physiol, 1978, 125: 191-204.
    [78] Mizutani A, Chahl J S, Srinivasan M V. Motion camouflage in dragonflies[J]. Nature, 2003, 423: 604.
    [79] Srinivasan M V, Davey M. Strategies for active camouflage of motion[C]//London: The Royal Society, 1995: 19-25.
    [80] Carey N E, Ford J J, Chahl J S. Biologically inspired guidance for motion camouflage[C]//IEEE 5th Asian Control Conference, Melbourne, 2004: 846-849.
    [81] Glendinning P. The mathematics of motion camouflage[C]//London: The Royal Society, 2004: 477-481.
    [82] Anderson A J, Mcowan P W. Motion camouflage team tactics[C]//Proceedings of Evolvability & Interaction Symposium: Evolutionary Substrates of Communication, Signaling, and Perception in the Dynamics of Social Complexity, London: John Benjamins, 2003.
    [83] Anderson A J. Sensorimotor neural systems for a predatory stealth behaviour camouflaging motion[D]. London: Queen Mary, University of London, 2003.
    [84] Justh E W, Krishnaprasad P S. Steering laws for motion camouflage, In: Proceedings of the Royal Society B (eds. Michael, P., Hassell, FRS.)[C]// London: The Royal Society, 2006: 3629-3643.
    [85]钱杏芳.导弹飞行力学[M].北京理工大学出版社, 2000.
    [86] Reddy P V, Justh E W, Krishnaprasad P S. Motion camouflage in three dimensions[C]//2006 45th IEEE Conference on Decision and Control, San Diego, CA, 2006: 3327-3332.
    [87] Anderson A J, Mcowan P W. Towards an autonomous motion camouflage control system[C]//IEEE International Joint Conference on Neural Networks, Honolulu, Hawaii, 2002: 2006-2011.
    [88] Lioi J. Undergraduate Report,Simulations of Robotic Pursuit Using Matlab and Simulink[R]. Toronto, Ontario: Department of Electrical and Computer Engineering, University of Toronto, 2006.
    [89] Ceccarelli N, Dimarco M, Garulli A, et al. Collective circular motion of multi-agent systems[R]. 2008: 3025-3035.
    [90] Kang W, Sparks A, Siva B. Multi-satellite formation and reconfiguration[C]//American Control Conference, Chicago, Illinois, 2000: 379-383.
    [91] Schetter T, Campell M, Surka D. Multiple agent-based autonomy for satellite constellations[J]. Artificial Intelligence, 2003, 145: 147-180.
    [92]张爱萍.循环矩阵的性质及其对角化[J].广西师院学报, 2000, (4): 10-13.
    [93] Davis P J. Circulant Matrices[M]. 2 ed. New York: Chelsea Publishing, 1994.
    [94]刘炳初.泛函分析2 [M].北京:科学出版社, 2004.
    [95] Halmos P R. Finite-dimensional Vector Speces[M]. Princeton, New Jersey: D. Van Nostrand Company, Inc., 1958.
    [96] Luenberger D G. Introduction to dynamic systems: Theory, models, and applications[M]. New York: John Wiley & Sons, Incorporation, 1979.
    [97] Abraham R, Marsden J E. Foundations of Mechanics (2nd ed.)[M]. Cambridge, Massachusetts: Westview Press, 1977.
    [98]尤政,李滨,董哲.日地系统拉格朗日点航天器编队飞行现状与关键技术[J].中国航天, 2005: 27-31.
    [99]闻新,沈毅,马文弟.国外小卫星编队飞行试验面面观[J].中国航天, 2005, (5): 19-22.
    [100] InterferometerArchitecture[EB/OL].http://planetquest.jpl.nasa.gov/TPF-I/architectureTradeStudies.cfm.
    [101]朱彦伟.航天器近距离相对运动轨迹规划与控制研究[D].长沙:国防科学技术大学航天与材料工程学院, 2009.
    [102]朱仁璋,林彦,李颐黎.空间交会V-bar接近冲量运动分析[J].中国空间科学技术, 2003, 23(3): 1-6.
    [103] Straight S D. Maneuver Design for Fast Satellite Circumnavigation[D]. Ohio: Air University, 2004.
    [104]陈国良,王熙法.遗传算法及其应用[M].北京:北京人民邮电出版社, 1996.
    [105]屈香菊.直接多重打靶法在轨迹优化方面的应用[J].飞行力学, 1992, 10(1): 13-21.
    [106]孔凡亮.废弃卫星返回的燃料质量—时间优化研究[D].哈尔滨:哈尔滨工业大学, 2007.
    [107]王华,唐国金,雷勇军.有限推力轨迹优化问题的直接打靶法研究[J].中国空间科学技术, 2003, (5): 51-56.
    [108] Koppel C R. Smart-1 Electric Propulsion System Using A System Simulation Software Ecosimpro[EB/OL]. www.siaa.asn.au/get/2451313693.pdf.
    [109]汤海滨,贾永刚,赵勇.微推进技术及研究发展现状[C].中国宇航学会2005年固体火箭推进第22届年会论文及(发动机分册), 2005.
    [110]尤政,林杨,张高飞.基于微机电系统的微推进发展新趋势[J].中国航天,2005, (6): 12-15.
    [111]符曦.系统最优化及控制[M].机械工业出版社, 1995.
    [112] Anderson A J, Mcowan P W. Humans deceived by predatory stealth strategy camouflaging motion[C]//London: The Royal Society, 2003: 18-20.
    [113] Mcinnes C R, Radice G. Line-of-sight guidance for descent to a minor solar system body[J]. Journal of Guidance, Control and Dynamics, 1996, 19(3): 740-742.
    [114] Misu T, Hashimoto T, Ninomiya K. Optical guidance for autonomous landing of spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 459-472.
    [115] Frazzoli E. Guidance laws for asteroid rendezvous[C]//44th Congress of the International Astronamical Federation, Graz, Austria, 1993: 16-22.
    [116] Guelman M. Powerlimited soft landing on an asteroid[J]. Journal of Guidance, Control and Dynamics, 1994, 17(1): 15-20.
    [117] Lafontaine J D. Autonomous spacecraft navigation and control for comet landing[J]. Journal of Guidance, Control and Dynamics, 1992, 15(3): 567-576.
    [118] Dawson S, Potterveld C W, Konigsmann H. Autonomous controlled landing on cometary bodies[C]//AAS, 1998: 98-185.
    [119]马洪忠,彭建平,吴维等.智能变形飞行器的研究与发展[J].飞航导弹, 2006, (5): 8-11.
    [120]周清春.变形飞行器:未来的空中“变形金刚”[EB/OL]. http://www.stdaily. com/kjrb/content/2009-07/30/content_88606_2.htm.
    [121] Ellipse[EB/OL]. http://en.wikipedia.org/wiki/Ellipse.
    [122] Bruckstein A M, Cohen N, Efrat A. Ants, Crickets and Frogs in Cyclic Pursuit[R]. Haifa, Israel: Technion-Israel Institute of Technology, 1991.
    [123]振动[EB/OL] http://physics.njnu.edu.cn/netcourse/lixue/teach_content/ chapter _7/chapter_72.htm.
    [124]胡朝江,陈士橹.改进直接多重打靶算法及其应用[J].飞行力学, 2004, 22(1): 14-17.
    [125] Estublier D, Saccoccia G, et al. Electronic Propulsion on Smart-1[J]. Technical & Quality Management, 2007, (2):41-46.
    [126] Koppel C R, Estublier D. The Smart-1 Electric Propulsion Subsystem[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama: 20-23 July 2003, AIAA 2003-4545.
    [127]时剑波.交会小行星的自主导航方法研究[D].哈尔滨工业大学, 2006.
    [128]时剑波.深空探测器小天体交会段自主导航方法研究[J].航天控制, 2009, 27(4): 37-42.
    [129]邢继祥,张春蕊,徐洪泽.最优控制应用基础[J].北京:科学出版社, 2003.
    [130] Banks H T, Fahroo F. Legendre-Tau Approximations for LQR Feedback Control of Acoustic Pressure Fields. Journal of Mathematical Systems Estimation and Control, 1995,5(2):271-274.
    [131] Elnagar J, Kazemi M A, Razzaghi M. The Pseudospectral Legendre Method for Discretizing Optimal Control Problems[J]. IEEE Transactions on Automatic Control, 1995,40(10):1793-1796.
    [132] Strizzi J D. Pseudospectral Methods for Rapid Computation of Optimal Controls D]. Naval Postgraduate School, Monterey, CA, December, 2002.
    [133]胡正东.天基对地打击武器轨道规划与制导技术研究[D].国防科技大学航天与材料工程学院,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700