InP基环形激光器的模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微环谐振器被认为是未来光子集成回路或者光子计算机的基础性单元,可以实现诸如激光器、放大器、探测器、光学通道陷波器(OCDFs)、光学分插复用器(OADMs)、开关、路由器、逻辑门、光存储器、延时线等多种光学器件。本文主要研究了环形激光器相关的滤波和双稳态理论,并研制了基于光学双稳态和滤波的InP基环形激光器,验证了相关理论结果。创新性工作主要包括以下几个方面:
     1使用有限元方法系统地研究了半导体光波导的单模条件和耦合系数的计算这两个基本问题,将传输矩阵方法中耦合参数与脊型波导的具体结构结合起来,很大程度上弥补了传输矩阵方法的不足。
     2在环形激光器的滤波理论方面,提出了基于Spice的电路模型,并举例说明了该模型在双环和多环谐振器方面的应用。提出了多环谐振器的综合方法,使用该方法可以从一定滤波特性参数出发,计算得到每个环之间的耦合系数,再根据耦合系数和器件尺寸的关系得到具体的器件尺寸,从而实现光学滤波器从性能特性到器件尺寸设计的一整套完整的解决方案。
     3在环形激光器的双稳态理论方面,使用非线性数学方法系统地计算了背散射参数变化对环形激光器工作分区的影响,环形激光器将呈现不同的非线性动力学行为,包括分岔和混沌。并从物理角度对引发这些复杂的非线性运动的原因进行了分析和计算。
     4系统地研究了完美匹配层边界条件和周期性边界条件下的有限时域差分方法(FDTD),并将其用于环形滤波器的滤波特性和延时线特性的研究中,分析了单环、双环、多环滤波器的滤波特性以及无限长周期性结构的光子能带特性。
     5在器件研制方面,采用InP基InAlGaAs多量子阱激光器外延材料,利用感应耦合等离子体(ICP)干法刻蚀技术和聚酰亚胺介质平坦化工艺,研制了多量子阱半导体环形激光器样品。该器件通过加正偏压的环形结构谐振腔实现光激射,然后借助紧邻的直线波导耦合将光信号输出。使用扫描电子显微镜和原子力显微镜等多种测试手段证实了研制的激光器具有很好的性能,测试了其梳状滤波特性和双稳态特性,进一步验证了上面提出的环形激光器的滤波和双稳态理论。
Micro-ring resonator is considered to be the basic component of optical integrated circuit and optical computer in the future. They can be implemented for such diverse applications such as lasers, amplifiers,sensors, optical channel dropping filters (OCDFs), optical add/drop multiplexers (OADMs), switches, routers, logic gates, optical-memory and optical delay-line. The Theory of foundations in micro-ring is involved with optical filtering, bistablility theory of InP based microring laser, which is mainly discussed in this dissertation. The research on device simulation, modeling and optimization is explained in detail. Furthermore, the fabrication of micro-ring filter which is based on optical filtering and bistability is carried out. The innovation points in this dissertation can be concluded as follows:
     1 The numeric finite element theory analysis is presented for two basic problem of silicon and InP based microring resonator, which are single mode condition and coupling between waveguides. Such a research combine the couping parameter of transfer matrix with the specific geometry structure of SOI and InP rig waveguide. The defect of transfer matrix method is remedied by the research result.
     2 In the aspect of filtering theory, the Spice based circuit model is presented and the application involved in double-ring and multi-ring resonator design is discussed as examples. A System design method of micro-ring based optical filter is provided. Using this method, coupling parameter and passing parameter of series micro-ring resonator are calculated.so a full solution of optical filter design flow from filter charactristics to device geometry is provided.
     3 In the aspect of bibistablility theory,using the methods of the modern nonlinear dynamics, the stability and bifuraction behavior in a semiconductor ring laser are analyzed and calculated。The calculated results show that the change of backscatter parameter can result different dynamics behaviors including bifurcation and chaos in different operation region. Furthermore the physical reason of such complex nonlinear dynamics behavior is given.
     4 Finite-difference time-domain method with perfectly matched layer boundary and period boundary is researched. Moreover, FDTD mothod is used in the design of micro-ring resonator. Single, double and multi rings filtering characteristics and infinite long period structure are analyzed.
     5 In the aspect of device fabrication, InAlGaAs-InP based multi-quantum well ridge waveguide micro-ring laser sample is developed. The process is involved advanced inductive coupled plasma etch technology and Polyimide smoothness technology. Optical lasering is observed with positive-bias ring stucture, and then optical signal is outputed from the line waveguide near the micro-ring. The measurement of electron microscope and atomic force microscope show good performance. The comb filter characteristic and bistablility charcteristis is tested. The result approve the effectivity of filtering and bistability theory.
引文
[1] Rafizadeh D, Zhang GP, Hagness SC. Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range, Optics Letters, 1997, 22(16): 1244~1246
    [2] Rabus D G. Integrated Ring Resonators - The Compendium. Berlin: Springer, 2007.
    [3] Geuzebroek D H, Driessen A. Ring-resonator-based wavelength filter. In: Wavelength Filters in Fiber Optics. Springer series I optical science. Berlin: Springer, 2006: 341-379.
    [4] Chin M K, Youtsey C, Zhao W, et al. GaAs microcavity channel-dropping filter based on a race-track resonator, 1999, 11(12): 1620~1622
    [5] Djordjev K, Seung-June Choi, Sang-Jun Choi, et al. High-Q vertically coupled InP microdisk resonators, 2002,14(3):331~333
    [6] Grover R, Absil P P, Van V, et al. Vertically coupled GaInAsP-InP microring resona- tors, Optics Letters,2001,26(8):506~508
    [7] Grover R, Ibrahim T A, Ding T N, et al.Laterally coupled InP-based single-mode microracetrack notch filter, Photonics Technology Letters, 2003, 15(8): 1082~1084
    [8] Oda K, Suzuki S, Takahashi H. An optical FDM distribution experiment using a high finessewaveguide-type double ring resonator, IEEE Photonics Technology Letters,1994,6(8):1031~1034
    [9] Melloni A, Costa R, Monguzzi P, et al. Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing system.Optics Letters, 2003,28(17):1567~1569
    [10] Hryniewicz J V, Absil P P, Little B E. Higher order filter response in coupled microring resonators, Photonics Technology Letters, 2000, 12(3):320~322
    [11] Ma Y, Chang S H, Chang S S, et al. Impoved optical filter responses in cascaded InGaAsP/InP microdisk resonators, Electronics Letters 2001,37(9):564~565
    [12] Grover R, Van V, Ibrahim T A, Absil P P. Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters, IEEE Journal of Lightwave Technology, 2002,20(5): 900~905
    [13] Little B E, Chu S T, Absil P P, et al. Very high-order microring resonator filters for WDM applications, IEEE Photonics Technology Letters, 2004,16(10):2263~2265
    [14] Scifres D R, Burnham D R, Streifer W. Grating coupled GaAs single heterostructure ring laser,Applied Physics letters, 1976, 28(11):681~683
    [15] Kawaguchi H, Kawakami T. GaAs-AlGaAs half-ring laser fabricated by deep Zn diffusion, Japanese journal of applied physics,1977,16(12):2281~2282
    [16] Matsumoto N, Kumable K. AlGaAs-GaAs semiconductor ring laser, Japanese journal of applied physics,1977,16(8),:1395~1398
    [17] Liao A S H, Wang S. Semiconductor injection lasers with a circular resonator, Appl. Phys. Lett., 1980,36(10):801~803
    [18] Liao A S H, Wang S. Half-ring(GaAl)As double-heterostructure injection laser, Appl.Phys.Letts.1980,36(5):353~356
    [19] Laybourn P J R, Sorel M, Giuliani G. Integrated semiconductor laser rotation sensor, Proc. SPIE,1999,36(20):322~331
    [20] Sarid D. Analysis of bistability in a ring-channel waveguide. Opt.Lett.1981(6): 522~553.
    [21] Van V, Ibrahim T A, Absil P P. Optical signal processing using nonlinear semiconduct or microring resonators,Journal of Selected Topics in Quantum Electronics, IEEE,2002,8(3):705~713
    [22] Stegeman G I, Seaton C T. Nonlinear integrated optics,Appl.Phys., 1985, 58 :57~78
    [23] Born C, Sorel M, Yu Siyuan. Linear and non linear mode interactions in a semiconductor ring laser,IEEE Journal of Quantum Electronics,2005,41(3):261~271
    [24] Sorel M, Giuliani G, ScirèA, et al, Operating Regimes of GaAs–AlGaAs Semiconductor Ring Lasers: Experiment and Model, IEEE JOURNAL OF QUANTUM ELECTRONICS,2003,39(10):1187~1195
    [25] Van V, Ibrahim T A, Absil P P. Optical signal processing using nonlinear semicond- uctor microring resonators,Journal of Selected Topics in Quantum Electronics, IEEE,2002,8(3):705~713
    [26] Scifres D R, Burnham R D, Streifer W. Grating-coupled GaAs single heterostructure ring laser, Applied Physics letters, 1976,28(11):681~683
    [27] Hill M, Dorren H, Vries T. A fast low-power optical memory based on coupled micro-ring lasers,Nature,2004,432:206~208
    [28] Hongjun Cao, Chiyu Liu, Hui Deng, et al. Large S-section-ring-cavity diode lasers: directional switching, electrical diagnostics, and mode beating spectra. Photonics Technology Letter, 2005,17(2):282-284
    [29] B.Li, M.I.Memon, G.Mezosi, et al. All-optical response of semiconductor ring laser to dual-optical injections. 2008, 20(10):770-772
    [30] K.Thakulaukanant, B. Li,I.Memon, et al. All-optical label swapping using bistable semiconductor ring laser in an optical switching node. Journal of lightwave technology,2009,27(6):631-638
    [31] Xu Q, Schmidt B, Pradhan S, et al. Micrometre-scale silicon electrooptic modulator. Nature 2005,435: 325~327
    [32] Sadagopan T, Choi S J, Choi S J, et al. Optical modulators based on depletion width translation in semiconductor microdisk resonators. IEEE Photon. Technol. Lett. 2005,17, 567~569
    [33] Almeida V R, Barrios C A, Panepucci R R, et al. All-optical control of light on a silicon chip. Nature,2004,431:1081~1084
    [34] Madsen C K, Lenz G, Bruce A J, et al. Integrated all-pass filters for tunable dispersion and dispersion slope compensation. IEEE Photon. Technol. Lett, 1999,11, 1623~1625
    [35] Horst F, Berendsen C, Beyeler R, et al. Tunable ring resonator dispersion compe- nsators realized in high-refractive-index contrast SiON technology. Proc.ECOC’2000.
    [36] Madsen C K, Cappuzzo M., Laskowski E J, et al. Versatile integrated PMD emulation and compensation elements. IEEE J. Lightwave Technol. 2004,22, 1041~1050
    [37] Yurii A. Vlasov L, Martin O, et al. Active control of slow light on a chip with photonic crystal waveguides. nature 2005,438(3):6~69
    [38]周建,单模波导与微型谐振环的分析与设计: [硕士学位论文],上海;上海交通大学,2005.
    [39]王帆,基于微环谐振器的全通滤波器的研究: [硕士学位论文],浙江;浙江大学,2006.
    [40]许晓波,微环谐振器阵列滤波器研究: [硕士学位论文],吉林;长春理工大学,2006.
    [41]张晓燕,2D-FDTD法在光学谐振腔问题的应用: [硕士学位论文],云南;云南大学,2004.
    [42]陈丽梅,玻璃基微环谐振器的设计与制作: [硕士学位论文],浙江;浙江大学,2007.
    [43]李林科,基于新型聚合物材料的微环谐振器的基础研究: [硕士学位论文],大连;大连理工大学,2007
    [44] Kogelnik H, Ramaswamy V. Scale Rules for Thin-Film Optical Waveguides Applied Optics,1974:1857~1862
    [45] Hocker G B, Burns W K. Mode dispersion in diffused channel waveguides by effective index method , 1977,1(16):113-117
    [46] Mcllroy P W A, Stern M S, Kendall P C.Spectral Index Method for Polarized Modes in Semiconductor Rib Waveguides, IEEE,Quantum Electronics 1990:1205-1211
    [47] Soref R A, Schmidtchen J, Petermann K. Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SO2 IEEE JOURNAL OF QUANTUM ELECTRONICS. 1991 27: 1971 -1974
    [48] Pogossian S P, Vescan L, Vonsovici A. The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section Journal of Lightwave Technology. 1998,16(10): 1851-1853
    [49] Heiblum M, Harris J H. Analysis of curved optical waveguides byconformal transformation, IEEE Journal of Quantum Electronics, 1975,11:75~83.
    [50]. Heiblum M, Harris J H.Correction to Analysis of curved opticalwaveguides by conformal transformation. IEEE Journal of Quantum Electronics,1976,12: 313~313.
    [51] Marcuse D. Bend loss of slab and fiber modes computed with diffraction theory. IEEE Journal of Quantum Electronics, 1993 29:. 2957~2961.
    [52] Heebner J E, Bond T C, Kallman J S. Generalized formulation for perfor- mance degradations due to bending and edge scattering loss in microdisk resonators. Optics Express, 2007,15, 4452~4473.
    [53] Haus H A, Huang W P. Coupled-Mode theory of optical waveguides Journal of lightwave technology 1987,5(1): 16-23
    [54] Ng W C, Stern M S, Chua S J. The design of triple rib waveguide couplers by discrete spectral index method , Journal of Lightwave Technology ,1999 17(3): 475-482
    [55] Madsen C K, Zhao J H. Optical Filter Desing and Analysis, A Signal Processing Approach. Wiley 1999
    [56] Ruikang Z, Xiaohong Y, Zhen Z, X, et al. Micromechanical tunable optical filter. Chinese Journal of Semiconductors,2003,24(4):347.
    [57] Hagness S C. FDTD Microcavity Simulations: Design and Experimental Realization of Waveguide-Coupled Single-Mode Ring and Whispering–Gallery -Mode Disk Resonators Journal of lightwave technology, 1997,15(11):1357-1402
    [58] Litter B E, Chu S T. Very high-order microring resonator filter for WDM application.IEEE Photonics Technol Lett, 2004, 16(10):2263
    [59] Hryniewicz J V , Absil P P , Little B E, et al . . Higher order filter response in coupled microring resonators. I EEE Photon. Technology Letter, 2000, 12 (3) :320~322
    [60] Dowling E M, Macfarlane D L. Lightwave Lattice Filters for Optically Multiplexed Communication Systems. Journal of lightwave technology, 1994,12(3):471~486
    [61] Choi S J, Djordjev K, Choi S J, et al.Microring resonators vertically coupled to buried heterostructure bus waveguides. IEEE Photon. Technol. Lett. 2004,16:828~830
    [62] Yee K S. Numerical solution of initial boundary value problemds involving Maxwell'equations in isotropic media, IEEE Trans. Anternnas and Propagation.
    [63] Taflove A, Hagness S C. Computational Electrodynamics. The Finite-Difference Time-Domain Method.NY:Artech House, 2000
    [64]葛德彪等.电磁波时域有限差分方法(第二版).西安:西安电子科技大学出版社.2002.
    [65] Berenger J P, Aperfectly matched layer for absorption of electromegnetic wave. J.Computat. Phys.1994,114:185~200
    [66] Sacks Z S, Kingsland D M, Lee R, et al. A perfectly matched anisotropic absorber for use as an absorbing boundary condition, IEEE transactins, Anteenas and propagtion 1995,43(12):1460~1463
    [67] Sorel M,Giuliani G, Scire A. Operating regimes of GaAs-AlGaAs semiconductor ring lasers:experiment and model. IEEE Journal of quantum electronics,2003,39(10):1187~1195
    [68] Numai T. Analysis of signal voltage in a semiconductor ring laser gyro. IEEE Journal of quantum electronics, 2000,36(10):1161~1167
    [69] Yuan Guohui, Yu Siyuan. Ring lasers with external optical injection. 2008,44(1):41~48
    [70] Tang C L, Schremer A, Fujita T. Bistability in tow-mode semiconductor laser via gain saturation. 1987,51(18):1392~1394
    [71] Li B, Memon M I, Mezosi G. All-Optical Response of Semiconductor Ring Laser to dual optical injections, IEEE Photonics Technology Letter ,2008,20(10):770~772
    [72] Liu Y, Hill M T, Calabretta N, et al. Three-State All-Optical Memory Based on Coupled Ring Lasers, IEEE Photon. Tech. Lett, 2003, 15:. 1461~1463.
    [73] Sorel M, Laybourn P G R, Giuliani G,et al. Unidirectional bistability in semiconductor waveguide ring lasers, Appl. Phys. Lett., 2002.,80:1051~3053.
    [74] Kuznetsov Y A, Elements of Applied Bifurcation Theory[M], Third Editions,Springer 2004
    [75] Spreeuw R G C, Neelen R C, Mode coupling in a He-Ne ring laser with backscattering[J] Physical Review A 1990,42(7): 4315~4324
    [76] Dennis M L, Diels J M. Analysis of a ring-laser gyroscope withintracavityphase conjugate coupling, APPLIED OPTICS, 1994, 33(9): 1659~1672
    [77] Nahory R E, Pollack M A, Johnston W D. Band gap versus composition and demostration of Vegard's law for In1-xGaxAsyP1-ylattice matched to InP. Appl. Phys.Lett,1978, 33(7):659~661
    [78] Paul W A; Ilroy M C, KuroBe A,et al. Analysis and application of theoretical gain curves to design of multi-quantum-well laser IEEE Joural of quantum electronics, 1985,21(12):1958~1963
    [79]李效白,砷化镓微波功率场效应晶体管及其集成电路,北京:科学出版社, 1998.
    [80]康昌鹤,杨树人,半导体超晶格材料及其应用,北京:科学出版社, 1998
    [81]王建新,郑燕兰,用于n-p-n HBT的AlGaAs/GaAs多层MBE材料,半导体情报, 1991, 28(6): 7~10.
    [82] Umemoto D K, Velebir J R, Kobayashi K W et al. Integrated npn/pnp GaAs/AlGaAs HBTs grown by selective MBE. Electronics Letters, 1991, 27(17): 1517~1518.
    [83] Lepsa M I, Jülich F. Experiment: Resonant tunneling in quantum structures, CNI-Ferienpraktikum Nanoelektronik 2007, 1~9
    [84] Choudhury P R, Handbook of microlithography, micromachining, and microfabrication: SPIE-International Society for Optical Engine, 1997.
    [85] Forgotson N, Khemka V, Hopwood J. Inductively coupled plasma forpolymer etching of 200 mm wafers, J. Vac. Sci. Tech. B, 1996,14:732~737.
    [86] McAuley S A, Ashraf H, Atabo L, et al. Silicon micromachining using a High-density plasma source," Appl.Phys., 2001, 34, 2769~2774.
    [87] Liu A, Jones R, Liao L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 2004, 427(12):615~618
    [88] Gan F, Kartner F X. High-speed silicon electrooptic Modulator design. IEEE Photonics Technol. Lett.2005,17: 1007-1009.
    [89] Soref R A, Bennett B R. Kramers-Kronig analysis of E-O switching in silicon[J]. SPIE Integrated Opt.Circuit Eng.1986,704: 32-37
    [90]刘恩科,朱秉升,罗晋生,半导体物理学第四版[M],北京,国防工业出版社
    [91] Xu Q, Manipatruni S, Schmidt B, et al. 12.5Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Optics Express,2007,15(2):430~436
    [92] Ibrahim T A. Nonlinear optical semiconductor micro-ring resona- tors[M]. UK, Maryland, 2003
    [93] Heebner J, Grover R, Ibrahim T. Optical Microresonators, Theory, Fabrication and Application[M]. Spring, 2007
    [94] Blom F C, Van Dijk D R, Hoekstra H, et al. Experimental study of integrated-optics microcavity resonators: Toward an all-optical switching device.Appl.Phys.Lett.1997,71(6):747~749
    [95] Heebner J E, Boyd R W. Enhanced all-optical swithcing by use of a nonlinear fiber ring resonator. Optics Lette Experimental study of integrated-optics microcavity resonators r. 1999,24(12):847~849
    [96] Chen Y; Blair S. Nonlinear phase shift of cascaded microring resonators. J.Opt.Soc.Am.B.2003,20(10):2125~2132
    [97] Rasras M S, Madsen C K, Cappuzzo M A, et al. Integrated resonance-enhanced variable optical delay lines.IEEE, Photonics Technology. 2005,17(4):834~836
    [98] Melloni A, Morichetti F, Martinelli M. Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures.Optical and quantum electronics,2003,35:365-379.
    [99] Poon J K S, Scheuer J, Xu Y. Designing coupled-resonator optical waveguide delay lines. Journal of the Optical Society of America B, 2004, 21(9):1665-1673
    [100] Poon J K S, Scheuer J, Mookherjea S, et al. Matrix analysis of microring coupled-resonator optical waveguides. Optics Express, 2004,12(1):90-103
    [101] Zhuang L, Roeloffzen C G H, Van Etten W. Continuously tunable Optical delay line. 12th Annual Symposium of the IEEE/CVT, 2005,Enschede,the Netherlands.
    [102] Heebner J E, Boyd R W. SCISSOR solitons and other novel propagation effect in microresonator-modified waveguides. J.Opt.Soc.Am.B. 2002,19(4):722~730
    [103] Joannopoulos, J D, Johnson S G, Winn J N. Photonics crystals molding the flow of light(Senond edition).US, Princeton University Press,2008.
    [104] Guo S, Albin S. Simple plane wave implementation for photonics crystal calculations. Optics Express.2003,11(2):167~175
    [105] Chan C T, Yu Q L, Ho K M. Order-N spectral method for electromagnetic waves. Physical Review B.1995,51(23):16635~16642
    [106] Ward A J; Pendry J B. A program for calculating photonic band structures and greens function using a non-orthogonal FDTD method. Computer Physics. 1998,112:23~41
    [107] Kuang W, O'Brien J D. Finite-Difference time domain method for nonorthogonal unit-cell two-dimensional photonics crystals. J.Lightwave.Technology. 2007,25(9):2612~2617
    [108] Agrawal G P. Nonlinear fiber optics(Third Edition).UK, Academic,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700