起伏地表条件下的地震波场数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究目的是提出一种解决起伏地表条件下地震波场数值模拟的方案。研究方法是将网格映射和有限积分变换-有限差分法(FIFT—FD)相结合。
     全文共分六章,第一章对现有的起伏地表地震波场数值模拟方法进行了概述;第二章介绍了有限积分变换方法的原理,此方法在数学物理问题中和在地球物理学中的发展概况;波动方程FIFT-FD法应用在第三章进行了讨论,在这一章给出了水平和起伏地表条件下的波动方程FIFT—FD法的离散方程形式;第四章首先讨论震源函数类型,然后对震源的限积分变换处理进行说明;第五章主要对FIFT-FD法解弹性波方程时出现的高振荡函数积分进行计算并编制程序,给出算法的实例并分析其近似效果;第六章根据导出来的变换域波动方程的FIFT-FD法对水平地表的情况进行地震波场数值模拟;最后,在第七章对全文的研究结果做了总结,提出了对今后进一步深入研究的方向。
Seismic exploration is an important geophysical methods. The useful geological information was carried from seismic waves, so the characteristics of the seismic wave field awareness is very important.
     Generally, the study seismic waves There are two ways: physical methods and mathematical methods, often referred to as the physical simulation and numerical simulation. Physical simulation is by a certain scale, with certain materials to and the actual geological body in shape, structure and properties, and so on the main features of proportion to the physical models in the laboratory simulation of this physical model of seismic exploration of the field work, Various methods of data collection, given the necessary seismic records and collection of data and make the appropriate process. Physical simulation was accomplished in the laboratory. Beacuase the physical parameters, structural and tectonic patterns of physical model was known, and the sources can be controlled, the seismic wave field reflects the characteristics clearly, and help us to interpret the actual formation lithology and structure.
     In contrast with the physical simulation, numerical simulation is in a given mathematical model (such as elastic wave equation, acoustic equation, etc.), the source, and underground geometry interface, physical parameters (rock density, velocity, etc.). studied acoustic or elastic waves’dynamic features. Numerical simulation can be intuitive understanding of seismic wave field, and provide the necessary basis for exploration seismic data inversion (the so-called inversion is the methods of using the observation wells in the ground or the data or physical phenomena within the media to speculate the Earth's physical state).
     Seismic wave field of numerical simulation in seismic data processing method plays a very important role, it is one of the means to study and understand the importance of seismic wave field, in the oil and gas exploration and development occupies a very important and irreplaceable status. On the one hand, use of numerical simulation of seismic records, test results of the seismic data processing quality and effectiveness of the treatment. On the other hand, forward modeling can be used as the basis of the study inversion. In this paper, the limited integral transformation - finite difference method (FIFT-FD) is one of the many numerical simulation technologies.
     Called combination of finite integral Fourier transform and finite difference technique (FIFT-FD) will be researched in this paper. The method was firstly proposed byМихайленко.Б.Г.firstly, based on the principles of the method, two versions are deduced for acoustic wave equations. Then finite difference equations are created for the methods. At last, utilizing appropriate source functions, seismic responses are calculated for homogeneous and layered earth. Based on the same principle, the method is adapted to elastic wave equations for many other earth models, And discrete forms of the equations are deduced.
     This article combinated mesh mapping and limited integral transformation - finite difference, a surface mapping will be ups and downs to the rules of a rectangular grid coordinate system, according to transform guided by the use of the limited domain wave equation integral transformation finite difference method Seismic wave field of numerical simulation methods to solve the rugged surface under conditions of simulated. Through this work, the limited DCT-based Fourier Fourier limited or sine-wave seismic methods numerical simulation was more widely applied.
     By the work of this thesis, the new characters of FIFT-FD method can be gained:
     (1)Finite sine/cosine transform belongs to classical method of solution partial differential equation(PDE). It can decrease the PDE’s spacial dimension, that is able to transform the PDE to ordinary differential equation(ODE), which would be more easy to solve.
     (2) The FIFT-FD used to model SH wave. We found it could be applied widely. For example we used this method to model acoustic wave equation. It also adapted to the elastical wave equation in isotropic medium. The only difference was the given medium parameter.
     (3)The method enabled extend the model to infinite in transform direction, so that was suitable for large scale problems. When dealed with arbitrary velocity or density distribution, this method nearly no computation increment.
     (4)The FIFT-FD transformed function to sine/cosine functions, then accumulated the function series. Not like pseudospectral method, it had no folding effect resulted from the periodicity of Fourier transform, and it had infinite order accuracy.
     (5)The selection of surface function was very important when the surface was irregular, and it effected the equation’s difference scheme and the accuracy of solution.
     Anyway we can draw a conclusion that the FIFT-FD was a simple, efficient and parsimonious method. However, its disadvantage was not neglectable. Because it included the finite integral of derivative of wave equation parameter, so the given parameter model must sufficient smooth.
     In this paper, the method of study on a formula derived and the computation of integral of high-oscillation function. Because of the time relatively tight, the specific examples of calculation the rugged surface models have not given, but given the plane surface examples. The rugged surface of the calculation example would be research and analysis in the further.
引文
1 孙建国.复杂地表条件下地球物理场数值模拟方法评述.世界地质[J], 2007,26(3): P345~362.
    2 吴永刚, 吴清岭. 有限差分法弹性波场数值模拟.大庆石油地质与开发[J], 1994, 13(3): P1~6.
    3 林小竹, 姚本全. 弹性波虚谱法模拟. 石油地球物理勘探[J], 1991, 26(6): P688~699.
    4 薛东川, 王尚旭, 焦淑静. 起伏地表复杂介质波动方程有限元数值模拟方法. 地球物理学进展[J], 2007, 22(2): P522~529.
    5 张剑峰. 弹性波数值模拟的非规则网格差分法, 地球物理学报[J], 1998(增刊),41:P357~366.
    6 徐世浙, 地球物理中的有限单元法(第一版), 科学出版社[M], 1994.
    7 张宝琳, 袁国兴, 刘兴平. 偏微分方程并行有限差分方法. 科学出版社[M], 1994.
    8 佘德平. 波场数值模拟技术. 勘探地球物理进展[J], 2004, 27(1): P16~21.
    9 张中杰. 2D和3D横向各向同性波动问题研究. 长春地质学院博学位士论文, 1991: P55~79.
    10 克莱鲍特 J F. 地震成像理论及方法(第一版), 石油工业出版社[M], 1991: P61~69.
    11 张伟, 陈晓非. 中国地球物理学会年刊. 2001—三维交错网格有限差分方法及其在模拟地震波传播问题中的应用. 云南科技出版社[M], P351.
    12 Kelly K R, Ward R W, Sven Treitel, Alford R M. Synthetic seismograms: afinite-difference approach. Geophysics [J], 1946, 41(1): P2~27.
    13 裴正林. 任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟. 石油地球物理勘探[J], 2004, 39(6): P629~634.
    14 Kindelan M, Kamel A, Sguazzero P. On the construction and efficiency of staggered numerical differentiators for the wave equation. Geophysics[J], 1990, 55(1): P107~110.
    15 桂志先. 2n 阶有限差分的计算与复杂介质波场数值模拟. 石油天然气学报(江汉石油学院学报) [J], 2005, 27(3): P334~337.
    16 李信富, 李小凡.伪谱法地震波场数值模拟. 桂林工学院学报[J], 2007, 27(2): P178~181.
    17 Gazdag J. Modelling of the acoustic wave equation with transform method. Geophysics[J], 1981, 46(6): P854~859.
    18 Kosloff D, Baysal E. Forward modeling by a Fourier method. Geophysics[J], 1982,47(10): P1402~1412.
    19 Kindelan M, Kamel A, Sguazzero P. On the construction and efficiency of staggered numerical differentiators for the wave equation. Geophysics[J], 1990, 55(1): P107~110.
    20 刘洋, 李承楚, 双相各向异性介质中弹性波传播伪谱法数值模拟研究. 地震学报[J], 2000, 22(2): P132~138.
    21 程冰洁, 李小凡, 徐天吉. 复杂非均匀介质伪谱法波场数值模拟.石油物探[J], 2007, 46(1): P16~19.
    22 王永红, 包吉山. 弹性波波场正演模拟的研究.石油地球物理勘探[J], 1990, 25(3): P277~285.
    23 何樵登, 熊维纲. 应用地球物理教程—地震勘探. 地质出版社[M], 1986.
    24 王祥春, 刘学伟.变换坐标系下相移法起伏地表地震波场延拓. 地球物理学进展[J], 2005, 20(3): P677~680.
    25 Tessmer E, Kosloff D, Behle A. Elastic wave propagation simulation in the presence of surface topography. Geophysics[J], 1992, 108: P621~ 632.
    26 Tessmer E, Kosloff D. 3-D elastic modeling with surface topography by a chebychev spectral method. Geophysics [J], 1994, 59(3): P 464~473.
    27 Hesthlom S, Ruud B. 2D finite-difference elastic wave modeling including surface topography. Geophysical Prospecting[J], 42(1): P371~390.
    28 Hestholm S. Finite-difference seismic wave modeling including surface topography. PHD thesis of Rice Univerity[J], 1999.
    29 陈伟. 起伏地表条件下二维地震波场的数值模拟. 勘探地球物理进展[J], 2005, 28(1): P25~31.
    30 Hesthlom S, Ruud B. 3-D finite-difference elastic wave modeling inclding surface topography. Geophysics[J], 63(2): P613~622.
    31 王雪秋, 孙建国, 张文志. 复杂地表地质条件下地震波数值模拟综述. 吉林大学学报(地球科学版)[J], 2005(增刊).
    32 束仁贵. 有限积分变换法. 大学物理[J], 24(6): P8~10.
    33 Sneddon I N. 富利叶变换(第一版). 科学出版社[M], 1958: P82.
    34 Rutzer P L, Nessel R J. FOURIER 分析与逼近论第一卷上册. 高等教育出版社[M], 1985.
    35 梁昆森.数学物理方法.人民教育出版社[M], 1978.
    36 Ko щляков H C, Глинер З Б, Смирнов М М. Основные дифференциаль -ные уравнения математической физики. физматгиз Москва[J], 1962.
    37 同登科, 葛家理. 分形油藏不稳定渗流问题的精确解.力学学报[J], 1998, 30(5): P621~627.
    38 刘爱萍,邢黎军. 有限积分变换法求解汽缸内气体的流动. 水动力学研究与进展[J], 2000, 15(4): P485~492.
    39 钟阳, 孙爱民等. 弹性地基上四边自由矩形薄板分析的有限积分变换法.岩土工程学报[J], 2006, 28(11): P2019~2022.
    40 Mikhailenko B G, Korneev V I. Calculation of synthetic seismograms for complex subsurface geometries by a combination of finite integral Fourier transforms and finite difference techniques. Journal of Geophysics[J], 1984, P195~206.
    41 冯德益. 地震波理论与应用(第一版). 地震出版社[M], 1988.
    42 Алексеев A C, Михайленко Б Г. Решение задачи Лэмба для вертикально неоднородного упругого полупространства. Изв АН СССР Физика Земли [J] , 1976.
    43 Алексеев A C, Михайленко Б Г. Метод расчета теоретически сейсмо -грамм для сложнопостроенных моделей сред. ДАН СССР[J], 1978, 240(5).
    44 Михайленко Б Г. Метод решения динамических задач сейсмики для двумерно-неоднородных моделей сред. ДАН СССР[J], 1979, 254(1): P47~51.
    45 Аксенов B B. Прямые задачи интерпретации естественного электрома -гнитного поля земли. НИИсистем Новосибирск[J], 1981.
    46 何柏荣, 王振彪, 冯德益等. 解弹性波动力学问题德部分分离变量—有限差分方法. 计算物理[J], 1987, 4(1):P23~34.
    47 Фатьянов А Г, Михайленко Б Г. Метод расчета нестационарных волно -вых полей в неупругих слоисто-неоднородных средах. Доклады АН СССР[J], 1988.
    48 孙建国. 大尺度强变速地震波场数值模拟与偏移成像的有限积分变换方案. 石油地球物理勘探[J], 2005, 40(1): P76~82.
    49 王雪秋.利用有限积分变换—有限差分法模拟地震波场. 吉林大学硕士学位论文, 2002.
    50 陆基孟. 地震勘探原理. 石油大学出版社[M], 1993.
    51 埃蒙 C 著, 吕仲林译. 波动方程与模型. 石油物探译丛[J]. 1978.
    52 于海英. 2 维、2.5 维、3 维和 4 维的差别. 世界地质[J], 1997, 16(3): P101~102.
    53 何樵登, 熊维纲. 应用地球物理教程—地震勘探. 地质出版社[M], 1986.
    54 杨文采. 地球物理反演的理论与方法(第一版) . 地质出版社[M], 1997.
    55 徐士良. C 常用算法程序集(第一版). 清华大学出版社[M]. 1996: P147~150.
    56 William H, Press 等著. 傅祖芸, 赵梅娜, 丁岩石等译. C 数值算法(第二版)= Numerical recipes in C the art of scientific computing (美), 电子工业出版社[M], 2004.
    57 张善杰, 唐汉, 高瑞章. 实用计算方法(第一版). 南京大学出版社[M], 2000: P271~280.
    58 沈永欢, 梁在中, 许履瑚, 蔡茜茜. 实用数学手册(第一版). 科学出版社[M], 1992:P614~617.
    59 杨华中, 汪蕙等. 数值计算方法与 C 语言工程函数库. 北京科学出版[M], 1996.
    60 付旦丹. 《正交各向异性介质弹性波动方程正演及其非线性反演方法研究》. 长春科技大学博士学位论文, 1998: P21~39.
    61 李世华, 杨有发. 物探数据处理(第一版). 地质出版社[M], 1995: P153~156.
    62 徐长发. 实用偏微分方程数值解法(第一版). 华中理工大学出版社[M], 1990: P1~90.
    63 里奇特迈尔 R D. 初值问题的差分方法. 科学出版社[M], 1966: P32~42.
    64 Ivo Oprsal,Jili Zahradnik. Elastic finite-difference method for irregular grids. Geophysics, 1999, 64(1): P240-250.
    65 Martin Kaser, Heiner Igel. Numerical simulation of 2D wave propagation on unstructured grids using explicit differential poerators, Geophysical Prospecting, 2001, 49: P607~619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700