人工源和随机源激发地震波的时域有限差分模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震波模拟是模拟地震波在介质中传播的一种数据模拟技术,是理解波在介质中传播的最有效方法。地震波数值模拟是探测地下结构的地震观测系统布设、资料采集、处理和解释等必不可少的重要环节,对于地震深部构造探测和地震场地条件调查,以及油气和矿产资源勘探等具有重要的科学意义。
     随着地震波理论和计算机技术的发展,现已形成以有限差分法、有限元法、伪谱法和积分方程法等现代地震波数值模拟技术。相对而言,交错网格有限差分法在综合性能(占内存大小、模拟精度、计算效率和并行算法实现)上是实用性最好的方法之一。本论文采用时域有限差分法,模拟探讨了炸药爆破和陆地气枪的人工源与环境噪声及各种微动信号导致的随机源激发的地震波信号特征,为采用近似点源的人工源地震测深方法分析瞬态的地震波场特征及探测提取地下目标体的空间分布特征及物性参数,及利用地脉动随机源探测方法从稳态/似稳态的波场中分析场地的地震动响应特性,提供正演模拟对比分析的参考依据。
     有限差分正演模拟采用有限大小的模型仿真无限大小的模型,需要对无限大小模型进行人工的截断,并在所建立的差分模型边界设置吸引边界用于吸收由于人工截断引起的假反射。本论文分析并实现了复频移-拉伸函数的完美匹配层(Perfectly Matched Layer, PML)吸收边界算法,实验模型结果表明该吸收边界算法计算稳定、效率高。
     在人工源地震测深数据资料实测与正演模型比对分析中,依据炸药震源进行探测的安新-宽城深地震剖面和气枪震源探测地下结构的上关湖水库实验的地壳结构反演结果,建立了分层的数值模拟模型,采用时域有限差分方法(finite difference time domain,即FDTD)模拟得到的合成理论地震图,与实际观测记录的主要震相匹配甚好,PML吸收边界条件能够有效模拟吸收边界处的地震波,模拟结果较传统的射线追踪合成记录有显著改善,表明了FDTD方法在模拟地震波传播方面的有效性和适用性。
     对于地脉动随机源模拟,基于地脉动探测的基本原理,分别建立了水平层状、倾斜层状、直立断层、正断层及逆冲断层五种由简单到复杂的模型进行模拟分析。对数值模拟获得的数据利用H/V谱比分析法(Nakamura方法)反演对比符合良好,表明FDTD的全波正演能很好的模拟获得各种模型在随机源激发下产生的稳定波场信息,为地脉动探测研究和应用提供了科学的依据。
Numerical simulation technique is one of the most effective methods in understanding seismic wave propagation in complex media. It can be used in all steps in assisting seismic surveys for a variety of purposes, from survey design, all the way to the final stage of result interpretation. With the development of the seismic wave theory and the computer technology, numerical simulation using full-wave approaches such as finite difference, finite element, pesudospectral and integral equation methods have gained wide applications in many scientific and engineering fields.
     In general, based on the consideration of memory usage, accuracy, efficiency and parallel computation, the staggered grid finite difference method is reputed as one of the best methods. In this paper, the finite difference time domain (FDTD) method is used to discuss the characteristics of the seismic wave triggered by the artificial explosive and airgun sources and the random ambient noise and microtremors. The simulation results can provide a reference model for characterizing underground objects’distribution and material properties with the artificial quasipoint source sounding. It can also be used to study the seismic response caused by the static/quasi-static wave field due to random microtremor vibrations.
     FDTD technique models wave propagation in a finite domain, which is only a truncated portion of the real world. The absorbing boundary conditions are applied to absorb the unwanted reflection from the artificial truncation boundaries. In this thesis, the perfectly matched layer (PML) absorbing boundary condition using stretched coordinate function is adapted and implemented. The simulated results of the modeling cases discussed in this thesis have approved the superior stabilities and efficiencies of this algorithm.
     Based on the field seismic data acquired from the Anxin-Kuancheng deep seismic sounding profile and the inversion result of the crustal structure obtained from the research of the Shang Guan Lake reservoir underground structure using explosive and airgun sources, the simulated seismic waveforms are obtained with the finite difference time domain (FDTD) method. The simulation results match the recorded waveforms quite well in all main phases. The results are also compared with wave fields using traditional approaches. These results illustrated that FDTD method is highly effective and robust in simulating seismic wave propagation in complex tectionic structures.
     FDTD seismic wave simulations are also conduted for understanding the interaction of microtremor with 5 kinds of fundamental structures: they are horizontal layers, inclined layers, vertical fault, normal fault and reverse fault. The results match the inversion obtained from the H/V spectral contrast method (Nakamura method) very well, which means the FDTD method can also be a good simulation method to obtain the wave field information generated by random sources, and can provide valuable scientific insight for microtremor applications in earthquake engineering studies.
引文
陈棋福, 刘澜波, 王伟君, Eric Rohrbach. 2008. 利用地脉动探测北京城区的地震动场地响应[J].科学通报, 待刊.
    陈颙, 张先康, 丘学林, 等. 2007. 陆地人工激发地震波的一种新方法[J].科学通报, 52(11): 1317~1321.
    陈颙, 朱日祥. 2005. 设立“地下明灯研究计划”的建议[J].地球科学进展, 20(5): 485-489.
    董连成, 陶夏新, 师黎静, 等. 2008. 利用地脉动台阵记录反演场地浅层Vs结构 [J].岩土力学, 29(2): 553~556.
    董良国, 马在田等. 2000.一阶弹性波方程交错网格高阶差分解法[J].地球物理学报,43(3): 411~419.
    高战武, 徐杰, 宋长青. 2001. 张家口-蓬莱断裂带的分段特征[J].华北地震科学, 19(1):35~54.
    郭良迁, 马青, 杨国华. 2007 .华北地区主要构造带的现在运动和应变[J].国际地震动态, 7: 67~75.
    郭明珠, 谢礼立, 闫维明. 2003. 体波地脉动单点谱比发研究[J].岩土力学, 24(1): 109~112.
    郭明珠, 谢礼立, 于海英. 2002. 地脉动机制分析方法研究[J].世界地震工程, 18(2): 17~23.
    郭月明, 任凤华. 2005. 工程场地动力特性分析的地脉动法[J].世界地震工程, 21(4): 139~142.
    郭月珠, 周嗣平, 徐国栋, 等. 2004. 基岩表面地脉动谱比研究[J].岩土力学, 25(7): 1068~1071.
    国家地震局《深部物探成果》编写组. 1986. 中国地壳上地幔地球物理探测成果[M].北京: 地震出版社, 20~137.
    何樵登, 张中杰, 1996. 横向各向同性介质中地震波及其数值模拟, 吉林大学出版社, 第一版:138~154.
    嘉世旭, 刘昌铨. 1995 华北地区人工地震测深震相与地壳结构研究[J].地震地质, 17(2): 97~105.
    嘉世旭, 张先康. 2005.华北不同构造块体地壳结构及其对比研究[J].地球物理学报, 48(3): 611~620.
    赖晓玲, 孙译, 刘志. 2006. 华北强震区地震测深研究[J].大地测量与地球动力学, 26(1): 55~62.
    李友鹏, 邹桂高. 2004. 地脉动测试技术若干问题的讨论[J].岩土工程技术, 18(4): 199~203.
    林建民, 王宝善, 葛洪魁, 等. 2008. 大容量气枪震源特征及地震波传播的震相分析[J].地球物理学报, 51(1): 206~212.
    卢滔, 周正华, 周雍年, 等. 2006. 关于 Nakamura 方法有效性的讨论[J].地震工程与工程振动, 26(1): 43~48.
    罗桂纯, 王宝善, 葛洪魁, 等. 2006.气枪震源在地球深部结构探测中的应用研究进展[J].地球物理学进展, 21(2): 400~407.
    聂文英, 祝治平, 张先康, 等. 1998. 穿过张家口—渤海地震带西缘的折射剖面所揭示的地壳上地幔构造与速度结构[J].地震研究, 21(1):95~102.
    裴正林, 牟永光. 2004. 地震波传播数值模拟[J].地球物理学进展, 19(4): 933~941.
    裴正林. 2002. 地震物理模型数据处理研究[D]. 北京石油大学博士后研究报告.
    裴正林. 2004. 任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J]. 石油地球物理勘探, 39(6): 629~636.
    彭远黔, 李雪英, 高登平. 2000. 地脉动卓越周期在工程抗震中的应用[J].华北地震科学, 18(4): 61~68.
    师黎静. 2002.利用地脉动观测反演工程场地剪切波速度结构[D].中国地震局工程力学研究所硕士学位论文
    陶夏新, 师黎静, 等. 2002. 中日地脉动台阵联合观测[J].世界地震工程, 18(2): 24~31.
    田钢, 刘菁华, 曾昭发. 2005. 环境地球物理教程[M].北京地质出版社44~46.
    王夫运, 张先康, 陈颙, 等. 2004. 张渤构造带中东段二维P波速度结构——安新-
    香河-宽城剖面[J].地震学报, 26(增刊):31~41.
    王若柏, 顾国华, 徐杰, 等. 2004. 张家口-渤海地震构造带的地壳形变研究[J].地震地质, 26(4):587~596.
    王帅军, 张先康, 刘宝峰, 等. 2005. 张渤地震构造带中西段及邻区深部构造探测[J].大地测量与地球动力学, 25(3):110~115.
    王伟君, 刘澜波, 陈棋福, 张杰. 2008. 应用地脉动H/V 谱比法和台阵技术探测五棵松体育场馆的场地响应[J].投寄地球物理学报.
    王雪秋. 2002.利用有限积分变换-有限差分方法模拟地震波场[D].吉林大学硕士学位论文.
    王振东.1986. 微动的空间自相关法及其实用技术[J].物探与化探, 10(2):123~13 3.
    吴世明. 1997. 土介质中的波[M].北京: 科学出版社.
    杨国华, 韩月萍. 2002. 华北地壳运动新特征[J].大地测量与地球动力学, 22(3): 28~33.
    张世民, 吕悦军, 任俊杰. 2006. 华北平原强震构造带与潜在震源区划分[J].震灾防御技术, 1(3): 234~244.
    张文生. 2006.科学计算中的偏微分方程有限差分法[M].北京:高等教育出版社, 328~331.
    张先康, 王椿镛, 刘国栋, 等. 1996.延庆怀来地区地壳细结构利用深地震反射剖面[J].地球物理学报, 39(3): 356~364.
    张先康, 祝治平, 张成科, 等. 1998 .张家口—渤海地震带及其两侧地壳上地幔构造与速度结构研究[A]. 见:活动断裂研究编委会和中国地震局科技发展司编. 活动断裂研究(6) [C]. 北京: 地震出版社, 1~16.
    郑炳华, 虢顺民, 徐好民. 1981.燕山地区北西向和北西西向断裂构造基本特征初步探讨[J].地震地质, 3(2): 32~40.
    祝治平, 张建狮, 张先康, 等. 1999. 张北-尚义地震区的壳幔构造[J].中国地震, 15(1): 65~73.
    Aki K. 1957. Space time spectra of stationary stochastic waves with special reference to microtremors[J]. Bull. Earthquake Res. Inst Tokoy Univ, 35: 415~457.
    Alford R.M., Kelly K.R., Boore D.M., 1974. Accuracy of finite-difference moding of the acoustic wqve equation[J]. Geophysics, 39(4): 838~942.
    Bayliss A., Jordan K.E., LeMesurier B.J., Turkel E.,1986. A fourth-order accurate finite-difference scheme for the computation of elastic waves[J]. Bull. Seism. Soc. Am., 76: 1115~1132.
    Bérenger, J. P., 1994.A perfectly matched layer for absorption of electromagnetic waves[J]. Journal of Computational Physics, 114:185~200.
    Bonnefoy-Claudet S, Cotton F, Bard P Y, et al. 2006. Robustness of the H/V ratio peak frequency to estimate 1D resonance frequency. Third International Symposium on the Effects of Surface Geology on Seismic Motion, Grenoble, France, Paper Number: 85.
    Carcione J.M., Quiroga-Good G., 1996. Some aspects of the physics and numerical modeling of Biot compressional waves[J]. J computer Acous, 3: 261~280.
    Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef, 1985. A non-reflecting boundary condition for discrete acoustic and elastic wave equation[J]. Geophysics, 50: 705~708.
    Chavez-Garc?a F J, Dom?nguez T, Rodr?guez M, et al. 2007. Site Effects in a Volcanic Environment: A Comparison between HVSR and Array Techniques at Colima, Mexico[J].Bull. Seism. Soc. Am., 92: 591~604.
    Chen, Yong, L. Liu, H. Ge, B. Liu, and X. Qiu. 2008. Using airgun array in a land reservoir as the seismic source for seismotectonic studies in Northern China: Experiments and preliminary results[J]. Geophysical Prospecting, 56: 601~612 .
    Chew,W.C., and Q. H. Liu, 1996. Perfectly matched layers for elastodynamics: A new absorbing boundary condition[J]. Journal of Computational Acoustics, 4: 341~359.
    Chew,W.C., and Q. H. Liu, 1996. Perfectly matched layers for elastodynamics: A new absorbing boundary condition[J]. Journal of Computational Acoustics, 4: 341~359.
    Clayton, R., and B. Engquist, 1977. Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bull. Seism. Soc. Am., 67: 1529~1540.
    Collino, F., and C. Tsogka, 2001. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J]. Geophysics, 68: 294~307.
    Dablain M.A., 1986. The application of high-order differencing to scalar wave equation[J]. Geophysics, 51(1): 54~56.
    Dragoset B, Gabizsch J. 2007. Introduction to this speial section:Low-frequency seismic[J].The Leading Edge, 26(1): 34~35.
    Francis H. Drossaert, Antonios Giannopoulos. 2007. A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves[J]. Geophysics, 72(2): T9~T17.
    Gedney, S. D., 1998. The perfectly matched layer absorbing medium, in A. Taflove, ed., Advances in computational electrodynamics: The finite-difference time-domain method:Artech House.
    Graves R.W., 1996. Simulating seismic wave propagation in 3-D elastic media using staggered-grid finite difference[J]. Bull Seism Soc Am, 86: 1091~1106.
    Hastings, F. D., J. B. Schneider, and S. L. Broschat, 1996. Application of the perfectly matched layer _PML_ absorbing boundary condition to elastic wave propagation[J].Journal of the Acoustical Society of America, 100: 3061~3069.
    Higdon, R. L., 1991. Absorbing boundary condition for elastic waves[J]. Geophysics, 56: 231~241.
    Hobbs R W, Snyder D. 1992. Marine seismic sources for deep seismic reflection profiling[J].First Break, 10: 417~426.
    Igel, H., Riollet, B. and Mora, P., 1995. Anisotropic wave propagation through finite-difference grids[J].Geophysics, 60: 1203-1216.
    Kelly K.R., Ward R.W., Treitel S., et al., 1976. Synthetic seismograms, afinite difference approach[J]. Geophysics, 41(1): 2~27.
    Kiyoshi Kanai and Teiji Tanaka. 1954. On Microtremors, VIII. [J]Bulletin of the earthquake research institute. 39: 97~114.
    Kudo k. 1995. Practical estimates of site response: state of the art. Report proceding of the Fifth Internationac Conf. Seismic Zonation, 1878~1 906.
    Kuzuoglu, M., and R. Mittra, 1996. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[J]. IEEE Microwave and GuidedWave Letters, 6: 447~449.
    Lachet C, Bard P. 1994. Numerical and theoretical investigations on the possibilities and limitations of the Nakamura’s technique[J]. Journal of Physics of the Earth., 42: 377~397.
    Lan K W H, White R S, Christie P A F. 2007.Low-frequency source for long-offset, sub-basalt and deep crustal penetration[J].The Leading Edge, 26(1): 36-39.
    Lanbo Liu, Steve A.Arcone, 2003. Numerical simulation of the wave-guide effect of the near-surface thin layer on radar wave propagation[J].Journal of Environmental and Engineering Geophysics, 8(2): 53~ 61.
    Lermo, J., M. Rodrigrez, and S.k.Singh.1988.The Mexico earthquake of September 19,1985-Natureal period of sites in the valley of Mexico from microtremor measurements and strong motion data[J].Earthquake Spectra, 4: 805~814. Levander A.R., 1988. Fourth-order finite-difference P-SV seismograms [J].Geophsics, 53(11): 1425~1436.
    Liao, Z. P., H. L. Wong, B. P. Yang, and Y. F. Yuan, 1984. A transmitting boundary for transient wave analysis[J]. Scientia Sinica, 27: 1063~1076.
    Malte Ibs-von Seht, Jurgen Wohlenberg. 1999. Mivrotremor measurements used to map thickness of soft sediments[J]. Bull. Seism. Soc. Am., 89(1): 250~259.
    Nakamura , Y . 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Quarterly Report Railway Tech. Res. Inst., 30(1): 25~30.
    Nakamura. 2000. Clear identification of fundamental idea of Nakamura technique and its applications[R].12WCEE, #2656.
    Ozdenvar T, McMechan G., 1997. Algorithms for staggered-grid computations for poroelastic, elastic acoustic, and scalar wave equation[J].Geophys Prosp., 45: 403~420.
    Parolai S, Bormann P, Milkereit C. 2002. New Relationships between Vs , Thickness of Sediments, and ResonanceFrequency Calculated by the H/V Ratio of Seismic Noise for the Cologne Area (Germany)[J].Bull. Seism. Soc. Am., 92: 2521~2527.
    Peng, C. B., and M. N. T?ksoz, 1995. An optimal absorbing boundary condition for elastic wave modeling[J].Geophysics, 60: 296~301.
    Randall, C. J., 1989. Absorbing boundary condition for the elastic wave equation:Velocity-stress formulation[J].Geophysics, 54: 1141~1152.
    Roden, J. A., and S. D. Gedney, 2000. Convolutional PML_CPML_:An efficient FDTD implementation of the CFS-PML for arbitrary media[J].Microwave and Optical Technology Letters, 27: 334~339.
    Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, 1995. A perfectly matched anisotropic absorber for use as an absorbing boundary condition[J]. IEEETransactions on Antennas and Propagation, 43: 1460~1463.
    Saenger, E. H., andT. Bohlen, 2004. Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid[J]. Geophysics, 69:583~591.
    Saenger, E. H., N. Gold, and S. A. Shapiro, 2000. Modeling the propagation of elastic waves using a modified finite-difference grid[J].Wave Motion, 31: 77~92.
    Sochacki, J., R. Kubichek, J. George,W. R. Fletcher, and S. Smithson, 1987. Absorbing boundary conditions and surface waves[J].Geophysics, 52: 60~71.
    Taflove, A., and S. C. Hagness, 2000. Computational electrodynamics: The finite-difference time-domain method:Artech House.
    Tal-Ezer H., Carcione J.M.and Kosloff D., 1990. An accurate and efficient scheme for wave propagantion in linear viscoelastic media[J].Geophysics, 55(8): 1366~1375.
    Udwadia F E and Trifunac M D. 1973. Comparison of earthquake and micortremor ground motions in EL CEMCER, CALIFORNIA. [J]. Bull. Seism. Soc. Am., 63(4):1227~1253.
    Virieux J., 1986. P-SV wave propagation in heterogeneous media; velocity-stress finite-difference method[J]. Geophysics, 51(4): 889~901.
    Wang, T., and X. Tang, 2003. Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach[J]. Geophysics, 68: 1749~1755.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700