基于钟控方法的伪随机序列生成器的设计和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伪随机序列在模拟仿真、通信系统、软件测试以及密码学领域都有着广泛的应用。流密码体制在资源极端受限的领域及需要极高加解密速度的地方依然具有不可比拟的优势。以往的流密码通常采用硬件实现,而软件实现效率较低。如何弥补流密码在软件方面的弱点,发挥其优势,设计具有稳定性高、速度快和占用资源少的流密码算法一直是众多密码学家追求的目标。
     流密码的优势是简单快速,特别是硬件实现模块体积小,运行速度远高于其他密码体制。流密码的劣势是仅适用于持续的保密通信,不适用于灵活的文件加解密。流密码,特别是其使用的伪随机序列在各个系统中的广泛应用,使得流密码仍然是密码学研究的热点。密钥流生成器的设计与分析永远是流密码学研究的中心课题,在这个领域的研究工作一直都是生机勃发,成果倍出。
     本文在总结已有研究结果的基础上,也做了一些有益的尝试和探索,主要取得以下成果:
     1.通过分析一般布尔函数的Walsh谱,得到了布尔函数相关免疫性的一个判定条件,给出了n元布尔函数f(x)是m阶相关免疫的充分条件,并给出了一些相关免疫布尔函数的性质;通过讨论相关免疫的和函数的相关免疫性,得出了有限个相关免疫和函数为相关免疫的等价条件。
     2.通过对两个级数互素的LFSR诱导出的乘积序列的分析,得到周期序列的自相关函数与乘积序列的重量之间的关系,由此得到两个周期互素的m序列的乘积序列的自相关函数的值及其在一个周期内的Hamming重量。
     3.通过对任意有限个级数互素的m序列的乘积序列的相关分析,得出对于任意l个m序列的乘积序列,其自相关函数永远是l+1值函数,且其主峰值R Y(0)很高。
     4.基于抵抗BAA攻击和基于稳定性理论的其它攻击,利用钟控方法产生的控制序列,并对钟控序列生成器的内部结构作一定的改进,使其各个移位寄存器产生相互控制的关系,构造了“互控”钟控移位寄存器模型(该模型及所谓“互控”的概念由本论文作者提出,参见本论文“攻读博士学位期间的研究成果”部分),分析了其输出序列的伪随机性质,证明了由其产生的序列具有大的周期及相当高的线性复杂度。通过分析指出,“互控”钟控移位寄存器序列综合了安全性和稳定性指标,理论上是可行的,并且软件实现效率较高,具有一定的实用价值。
Pseudorandom sequences witness wide applications in simulation, softwaretesting,global positioning systems,ranging systems,code division multiple-accesssystems,radar navigation systems,spread-spectrum communication systems,andstream ciphers.Stream cipher still has incomparable advantages in extremely limitedresources and high decryption speed place. Stream cipher previous usually withhardware,and software implementation low efficiency. How to make up the streamcipher software weakness, give play to its advantage, the design has high stability, fastspeed and less resource stream cipher algorithm has been many cryptographers goal.
     In this paper, based on summarizing existing research results, the author madesome beneficial attempt and exploration, following the major achievements:
     1. The analysis of general Boolean function of the Walsh spectrum, a criterion ofcorrelation immunity Boolean function is achieved, the n element Boolean function f (x)is a sufficient condition of m order correlation immune, and gives some properties ofBoolean functions with correlation immunity; Based on the discussion of the relatedimmune function of the sum function,the equivalent conditions for a finite correlationimmunity sum function is still immune function were obtained.
     2On the analysis of the product sequence of two series of Coprime LFSR induced,the relationship between periodic sequence autocorrelation function and productsequence of weight is achieved, the value of two coprime period m-sequences productautocorrelation and Hamming weight in a period is also obtained.
     3. Through the correlation analysis of product sequences on any finite ordercoprime m sequence, the autocorrelation function is always the l+1value function forthe product of the sequence of arbitrary l m sequences,, and the peak value of RY(0)high.
     4. Based on the resistance of BAA attack and other attacks based on stability theory,the control sequence generated by the clock control method, a modified internalstructure and control sequence generator on the clock, make its each shift registergenerates relationship of mutual control, constructed the clock "mutual-controlled"shift register model, analyzes the pseudorandom properties its output sequences, provedthat the sequence generated by the large period and linear complexity is very high.Through the analysis pointed out that, clock "mutual controlled" shift register sequenceof comprehensive security and stability index, the theory is feasible, and the software to achieve higher efficiency, has a certain practical value.
引文
[1] Arasu K T, Ding C,Helleseth T, et al. Almost difference sets and their sequences with optimalautocorrelation [J]. IEEE Transactions on Information Theory,2001,47(7):2934-2943.
    [2] Bai E,Liu X,Xiao G, Linear Complexity of New Generalized Cyclotomic sequences of orderof length [J]. IEEE Transactions on Information Theory,2005,51(5):1849-1853.
    [3] Bai E, Xiao G. On the linear complexity of generalized cyclotomic sequences of order fourover Zpq[J], IE1CE Trans. Fundamentals,2005,E88-A(l):392-395.
    [4] Baumert L D. Cyclic Difference Sets[C]. New York: Springer-Verlag,1971,182.
    [5] Brandstatter N, Winterhof A. Some notes on the two-prime generator of order2[J]. IEEETransactions on Information Theory,2005,51(10):3654-3657.
    [6] Cha J S. Class of ternary spreading sequences with zero correlation duration [J]., ElectronicsLetters,2001,37(10):636-637.
    [7] Cheng H, Xiao G. The Linear Complexity of Binary Sequences with Periad(2n-1)K”[J]. IEEETransactions on Information Theory, Vol.37, No.3, May1991..102-105
    [8] Chung H, No J S. Linear Span of Extended Sequences and Cascaded GMW Sequences [J].IEEE Transactions on Information Theory,1999,45(6):2060-2065.
    [9] Cusick T, Ding C, Renvall A. Stream Ciphers and Number Theory [M]. North-HollandMathematical Library55: Elsevier/North-Holland,1998.
    [10] Damgaard I, On the randomness of Legendre and Jacobi sequences [A]. Advances inCryptology: CRYPTO'88[C]. LNCS403. Berlin: Springer-Verlag,1990:163-172.
    [11] Dai Z D, Gong G, Song H Y. Trace representation of binary Jacobi sequences [DB/OL].http://www.cacr.math.uwaterloo.ca/,Technical Reports CORR2002-32,2002.
    [12] Ding C. Binary cyclotomic generators [A], in Fast Software Encrytion [C]. LNCS1008.Berlin: Springer-Verlag,1995:20-60.
    [13] Dai Z D, Yang J H, Gong G, et al. On the linear complexity of generalized Legendresequences [DB/OL]. http://www. cacr. math. uwaterloo. ca/, Technical Reports CORR2001-34,2001.
    [14] Deng X M, Fan P Z. Spreading sequence sets with zero correlation zone [J].IEE Electron.Letter,2000,36():982-983.
    [15] Ding C. Linear complexity of some generalized cyclotomic sequences [J]. InternationalJournal on Algebra and Computation,1998,8(4):431-442.
    [16] Ding C, Linear complexity of generalized cyclotomic binary sequences of order2[J]. FiniteFields and Their Applications,1997,3(2):159-174.
    [17] Ding C, Helleseth T. New generalized cyclotomy and its applications [J]. Finite Fields andTheir Applications,1998,4(2):140-166.
    [18] Ding C. Pattern distributions of Legendre sequences [J]. IEEE Transactions on InformationTheory,1998,44(4):1693-1698.
    [19] Ding C. Autocorrelation values of generalized cyclotomic sequences of order two [J]. IEEETransactions on Information Theory,1998,44(4):1699-1702.
    [20] Ding C, Helleseth T. On cyclotomic generator of order r [J]. Information Processing Letters,1998,66(1):21-25.
    [21] Ding C, Helleseth T, Lam K Y. Several classes of binary sequences with three-levelautocorrelation [J]. IEEE Transactions on Information Theory,1999,45(7):2606-2612.
    [22] Ding C, Helleseth T, Martinsen H. New families of binary sequences with optimal three-levelautocorrelation [J]. IEEE Transactions on Information Theory,2001,47(1):428-433.
    [23] Ding C, Helleseth T, Shan W J. On the linear complexity of Legendre sequences [J]. IEEETransactions on Information Theory,1998,44(3):1276-1278.
    [24] Ding C, Pless V, Cyclotomy and duadic codes of prime lengths [J]. IEEE Transactions onInformation Theoy,1999,45(3):453-466.
    [25] Ding C, Pei D, Salomaa A. Chinese Remainder Theorem: Applications in Computing, Coding,Cryptography [M]. Singapore: World Scientific,1996.
    [26] Ding C, Xiao G, Shan W. The Stability Theory of Stream Ciphers [M]. LNCS561. Berlin:Springer-Verlag,1991.
    [27] Fan P, Darnell M. Sequence Design for Communications Applications [M]. John Wiley,Research Studies Press, Taunton,1996.
    [28] Fan P Z, Hao L. Generalized orthogonal sequences and their applications in synchronousCDMA systems [J], IEICE Trans. Fundamentals,2000, E83-A(ll):2054-2069.
    [29] Fan P Z, Suehiro N, Kuroyanagi N et al. A class of binary sequences with zero correlationzone[J]. IEE Ilectron. Letter,1999,35(10):777-779.
    [30] Gold R. Optimal binary sequences for spreading spectrum multiplexing [J]. IEEE Transactionson Information Theoy,1967,13(4):619-621,
    [31] Golomb S W. Shift Register Sequences [M], San Francisco, CA: Holden-Day,1967. Revisededition: Laguna Hills, CA: Aegean Park,1982.
    [32] Golomb S W, Gong G. Signal Designs With Good Correlation: For Wireless Communications,Cryptography and Radar Applications [M]. Cambridge, U.K.: Cambridge University Press,2005.
    [33] Gong G, Golomb S W. Binary Sequences with Two Livel Autocorrelation [J]. IEEETransactions on Information Theory,1999,45(2):692-693.
    [34] Gong G. Cryptographic properties of the Welch-Gong transformation sequence generators [J].IEEE Transactions on Information Theory,2002,48(11):2837-2846.
    [35] Gong G, Golomb W. The Decimation-Hadamard transform of two-level autocorrelationsequences [J]. IEEE Transactions on Information Theory,2002,48(4):853-865.
    [36] Gong G. Theory and applications of q=ary interleaved sequences [J]. IEEE Transactions onInformation Theory,1995,41(2):400-411.
    [37] Gong G. Q—ary Cascaded GMW Sequences [J]. IEEE Transactions on Information Theory,1996,42(l):263-267.
    [38] Gong G. New disigns for signal sets with low cross correlation, balance property, and largelinear span: GF(p) case [J], IEEE Transactions on Information Theory,2002,48(ll):2847-2867.
    [39] Gong G, Golomb S W, Song H Y. A note on low-correlation zone signal sets [J]. IEEETransactions on Information Theory,2007,53(7):2575-2581.
    [40] Green D H, Choi J. Linear complexity of modified Jacobi sequences [J]. IEE Proceedings:Computers and Digital Techniques,2002,149(3):97-101.
    [41] Green D H, Green P R. Modified Jacobi sequences [J]. IEE Proceedings: Computers andDigital Techniques,2000,147(4):241—251.
    [42] Green D H, Green P R. Polyphase related-prime sequences [J]. IEE Proceedings: Computersand Digital Techniques,2001,148(2):53-62.
    [43] Green D H, Martzoukos N. Linear complexity of polyphase power residue sequences [J]. IEEProceedings: Communications,2002,149(4):195-201.
    [44] Hamelin E, Rusch L A, Fortier P. New cross-correlation results for mult irate CDMA [J]. IEEEInternational Conference on Communications,1998,2:693-698.
    [45] Helleseth T, Gong G. New nonbinary sequences with ideal two-level autocorrelation function[J]. IEEE Transactions on Information Theory,2002,48(11):2868-2872.
    [46] Helleseth T, Kumar P V. Sequences with low correlation [A], in Handbook of CodingTheory[M]. The Netherlands: Elsevier,1998:1765-1854.
    [47] Helleseth T, Kumar P V, Martinsen H. A new family of ternary sequences with ideal two levelaotocorrelation function [J]. Designs, Codes and Cryptography,2001,23(2):157-166.
    [48] Hayashi T, Binary sequences with orthogonal subsequences and a zero-correlation zone: pairpreserving shuffled sequences [J]. IEICE Trans. Fundamentals,2002, E85-A(6):1420-1425.
    [49] Ireland K, Rosen M. A Classical Introduction to Modern Number Theory [M]. Berlin:Springer-Verlag,1982.
    [50] Jang J W, No J S, Chung H et al. New sets of optimal p-ary low correlation zone sequences [J].IEEE Transactions on Information Theory,2005,53(2):815-821.
    [51] Jang J W, No J S, Chung H. A new construction of optimal p2—ary low correlation zonesequences using unified sequences [J]. IEICE Trans. Fundamentals,2006,E89-A(ll):2656-2661.
    [52] Jungnickel D. Finite Fields, ser. Structure and Arithmetics. Mannhenm, Germany:Bibliographisches Institut,1993.
    [53] Kim J H. Trace representation of Legendre sequences [J].Design, Codes and Cryptography,2001,24(3):343-348.
    [54] Kim S H, No J S. New families of binary sequences with low correlation [J]. IEEETransactions on Information Theory,2003,49(11):3059-3065.
    [55] Kim S H, Jang J W, No J S et al. New constructions of quaternary low correlation zonesequences [J]. IEEE Transactions on Information Theory,2005,51(4):1469-1477.
    [56] Kim Y S, Jang J W, No J S et al. New design of low-correlation zone sequence sets [J]. IEEEIVansactions on Information Theory,2006,52(10):4607-4616.
    [57] Klapper A. d-form sequences: Families of sequences with low correlation values and largelinear span [J]. IEEE Transactions on Information Theory,1995,48(9):423-431.
    [58] Klapper A, Chan A H, Goresky M. Cascaded GMW sequences [J]. IEEE Transactions onInformation Theory,1993,39(1):177-183.
    [59] Kolokotronis N, Rizomiliotis P, Kalouptsidis N. Minimum linear span approximation ofbinary sequences [J]. IEEE Transactions on Information Theory,2002,48(10):2758-2764.
    [60] Kumar P V. Frequency-hopping code sequence designs having large linear span [J]. IEEETransactions on Information Theory,1988,34(1):146-151.
    [61] Kumar P V, Scholtz R A, Welch L R. Generalized bent functions and their properties. J.Combinatorial Theory, Ser A,1985,40:90-107.
    [62] Kumar P V,Moreno O. Prime-phase sequence with periodic correlation properties better thanbinary sequences [J], IEEE Transactions on Information Theory,1991,37(5):603-616.
    [63] Kurosawa K, Sato F, Sakata T, et al. A relationship between linear complexity and k-errorlinear complexity [J]. IEEE Transactions on Information Theory,2000,46(2):694-698.
    [64] Lahtonen J. On the odd and the aperiodic correlation properties of the Kasami sequences [J].IEEE Transactions on Information Theory,1995,41(5):1506-1508.
    [65] Lauder A, Paterson K. Computing the error linear complexity spectrum of a binary sequenceof period2n[J], IEEE Transactions on Information Theory,2003,49(1):273-280.
    [66] Lee Y H, Kim S J. Sequences acquisition of DS-CDMA systems employing Gold sequences[J]. IEEE Trans. Vehi. Technology.2000,49(6):2397-2404.
    [67] Lee Y H, Kim S J. Acquisition performance of Gold suquence based DS-CDMA systems. TheIEEE International Symposium of Personal Indoor and Mobile Radio communication.1997,(2)347-351.
    [68] Lidl R, Niederreiter H. Finite Fields [M]. Reading, MA: Addison-Wesley,1983.
    [69] Lidl R, Niederreiter H. Introduction to Finite Fields and Their Applications[M]. UK:Cambridge University Press,1986,
    [70] Liu S C, Komo J J. Nonbinary Kasami Sequences over GF(p)[J], IEEE Transactions onInformation Theory,1992,38(4):1409-1412.
    [71] Li S Q, Chen Z X,Sun R et al. On the randomness of generalized cyclotomic sequences oforder two and length pg [J]. IEICE Trans. Fundamentals,2007, E90-A(9):2037-2041,
    [72] Long B Q, Zhang P, Hu J D, A generalized QS-CDMA system and the design of newspreading codes [J], IEEE Trans. Vch. TechnoL,1998,47(4):1268-1275.
    [73] Massey J L. Shift register synthesis and BCH decoding [J], IEEE Transactions on InformationTheory,1969,15(1):122-127.
    [74] Massey J L, Serconek S. Linear complexity of periodic sequences: a general theory [A].Advances in Cryptology-CRYPTO'96[C]. LNCS1109. Berlin: Springer-Verlag,1996:358-371.
    [75] Matolak D W, Manchiraju D. Evaluation of pseudorandom sequences for third generationspread spectrum [A], Proceedings of the35th IEEE Southeastern Symposium on SystemTheory [C]. Morgantown,2003:288-290.
    [76] Meidl W, Niederreiter H, Counting functions and expected values for the k-error linearcomplexity [J]. Finite Fields and Their Applications,2002,8(2):142-154.
    [77] Meidl W, Niederreiter H. Linear complexity, k-error linear complexity, and the discreteFourier transform [J]. Journal of Complexity,2002,18(1):87-103.
    [78] Meidl W, Niederreiter H, On the expected value of the linear complexity and k-error linearcomplexity of periodic sequences [J]. IEEE Transactions on Information Theory,2002,48(11):2817-2825.
    [79] Meyer C H, Tuchman W L. Breaking a Cryptographic Scheme Employing a Linear ShiftRegister with Feedback[J]. IBM Systems Product Division, TR,1972,21.
    [80] Moriuchi T, Uehara S, Imamura K. Correlation distribution of quaternary sequences obtainedfrom modified binary gold sequences. The Proceedings IEEE International Symposium onInformation Theory.2003:308
    [81] Niederreiter H. Periodic sequences with large A:-error linear complexity [J]. IEEETransactions on Information Theory,2003,49(2):501-505.
    [82] Niederreiter H, Paschinger H. Counting functions and expected values in the stability theoryof stream ciphers [A]. Sequences and Their Applications [M]. London, U, K.: Springer-Verlag,1999:318-329.
    [83] Niederreiter H, Shparlinski I E. Periodic sequences with maximal linear complexity andalmost maximum k-error linear complexity [A]. Cryptography and Coding2003[C]. LNCS2898. Berlin: Springer-Verlag,2003:183-189.
    [84] No J S, Kumar P V. A new family of binary pseudorandom sequences having optimal periodiccorrelation properties and large span [J]. IEEE Transactions on Information Theory,1989,35(2):371-379.
    [85] No J S. P-ary unified sequences: p-ary extended d-form sequences with the idealautocorrelation property [J], IEEE Transactions on Information Theory,2002,48(9):2540-2546.
    [86] No J S. Generalizetion of GMW sequences and No sequences [J]. IEEE Transactions onInformation Theory,1996,42(l):260-262.
    [87] No J S, Golomb S W, Gong G, et al. Binary pseudorandom sequences of period2n-1with idealautocorrelation [J]. IEEE Transactions on Information Theory,1998,44(2):814-817.
    [88] No J S, Kumar P V. A new family of pseudorandom sequences having optimal periodiccorrelation properties and large linear span [J]. IEEE Transactions on Information Theory,1989,35(2):371-379.
    [89] No J S, Lee H K, Chung H, et al. Trace representation of Legendre sequences of Mersenneprime period [J]. IEEE Transactions on Information Theory,1996,42(6):2254-2255.
    [90] No J S, Gil G M, Shin D J. Generalized construction of binary bent sequences with optimalcorrelation property [J]. IEEE Transactions on Information Theory,2003,49(7):1769-1780.
    [91] No J S. New cyclic difference sets with singer parameters constructed from d-homogeneousfunctions [J]. Designs, Codes and Cryptography,2004’33(3):199-213.
    [92] Olsen J D, Scholtz, R A, Welch L R. Bent-function sequences [J], IEEE Transactions onInformation Theory,1982,28(6):
    [93] Pless V. Introduction to the Theory of Error Correcting Codes [M]. Second Edition. New York:Wiley,1989,
    [94] Peng D Y, Fan P Z, Suehiro N. Construction of sequences with large zero correlation zone [J].IEICE Trans, Fundamentals,2005, E88-A(ll):3256-3259.
    [95] Rueppel R A. Analysis and Design of Stream Ciphers [M]. Berlin: Springer-Verlag,1986.
    [96] Rueppel R A. Stream Ciphers [M]. in Contemporary Cryptology-The Science of InformationIntegrity. New York: IEEE Press,1992:65-134.
    [97] Sarwate D V. Bounds on crosscorrelation and autocorrelation of sequences [J]. IEEETransactions on Information Theory,1979’25(6):720-724.
    [98] Simon M K, Omura J K,Schlotz R A et al. Spread Spectrum Communications. Vol, I.Rockville, MD: Computer Science Press,1985.
    [99] Simon M K, Omura J K, Scholtz R A, et al. Spread Spectrum Communications Handbook [M].McGrawHill, Inc., revised version,1994.
    [100] Sidelnikov V M. On mutual correlation of sequences [J]. Soviet math Dokl.,1971,12:197-201.
    [101] Scholtz R A, Welch L R. GMW sequence [J]. IEEE Transactions on Information Theory,1984,30(3):548-553.
    [102] Song H Y, Golomb S W. On the existence of cyclic hadamard difference sets [J]. IEEETransactions on Information Theory,1994,40(4):1266-1268.
    [103] Stamp M, Martin C F. An algorithm for the k-error linear complexity of binary sequences withperiod2n[J]. IEEE Transactions on Information Theory,1993,39(4):1398-1401.
    [104] Storer T. Cyclotomy and Difference Sets [M], Chicago, IL: Markham,1967:24-83.
    [105] Sung C W, Leung K K. On the stability of distributed sequences adaptation for cellularasynchronous DS-CDMA systems [J]. IEEE Transactions on Information Theory,2003,49(7):1828-1831.
    [106] Tang X H, Fan P Z, Matsufuji S. Lower bounds on correlation of spreading sequences set withlow or zero correlation zone [J]. Electron. Lett.,2000,36(6):551-552.
    [107] Tang X H, Fan P Z. A class of pseudonoise sequences over GF(p) with low correlation zone [J].IEEE Trans. Inf. Theory,2001,47(4):1644-1649.
    [108] Trinh Q K, Fan P Z, Gabidulin E M. Multilevel Hadamard matrices and zero correlation zonesequences [J]. Electron. Lett.,2006,42(13):
    [109] Torii H, Makamura M, Suehiro N. A new class of zero-correlation sequences [J]. IEEE Trans.Inf. Theory.2004,50(3):559-565.
    [110] Wah P K S. Construction of binary almost perfect sequences based on extended cyclicdifference sets [A].1998International Zurich Seminar on Broadband Communications [C].1998:243-248.
    [111] Wang X B, Wu Y, Caron B. Transmitter identification using embedded pseudo random,sequences [J]. IEEE Trans. Inf. Theory.2004,50(3):244-252.
    [112] Welch L R. Lower bounds on the maximum cross correlation of signals [J]. IEEE Transactionson Information Theory,1974,20(3):397-399.
    [113] Whiteman A L. A family of difference sets [J]. Illinois Journal of Mathematics,1962,6(2):107-121,
    [114] Xiang Q. On balanced binary sequences with two-level autocorrelation functions [J]. IEEETransactions on Information Theory,1998,44(7):3153-3156.
    [115] Yan T J, Hong L, Xiao G Z. The linear complexity of new generalized cyclotomic binarysequences of order four [J]. Information Sciences(2007), doi:10.1016/j.ins.2007.09.012.
    [116] Yan T J, Li S Q, Xiao G Z, On the linear complexity of generalized cyclotomic sequences withthe period [J]. Applied Mathematics Letters,2007’1-7.
    [117]ECRYPT. The State of the art of Stream Ciphers[C]. Novotel Brugge Centrum, October14-15,2004
    [118] Xiao Guozheng,Massey. A Spectral Characterization of Correlation-Imm une Function.IEEE Transactions on Information Theory,1988,34(3):569-571
    [119]Siegenthaler T. Correlation-immunity of nonlinear combining functions forcryptographic applications. IEEE Transactions on Information Theory,1984,30(5):776-780
    [120] Zhang Weiguo. Construction of plateaued functions satisfying multiple criteria. HighTechnology Letters,2005,11(4):364-366
    [121]Zheng Y,Zhang X M. Improved upper bound on the nonlinearity of high ordercorrelation immune functions. In: Selected Areas in Cryptography.7th AnnualInternational Workshop, SAC2000, Lecture Notes in Computer Science,Springer-Verlag,2001,2012:262-274
    [122] Chee S,Lee S,Sung S H. On the correlation immune functions and their nonlinearity.In: Advances in Cryptology-Asiacrypt'96,Lecture Notes in Computer Science,Springer-Verlag,1996,1163:232-243
    [123] Kalouptsidis N, Manolarakis M. Sequences of linear feedback shift registers with nonlinearfeed-forward logic [J], Proceedings of IEEE,1983,16:174-176.
    [124] Groth E J. Generation of binary sequences with controllable complexity. IEEE Transactions onInformation Theory,1971,17:288-296.
    [125] Key E L.An analysis of the structure and complexity of nonlinear binary sequence generators[J]. IEEE Trans.Inform.Theory,1976,22:732-736.
    [126] S. W. Golomb and G. Gong, Signal Designs With Good Correlation: For WirelessCommunications, Cryptography and Radar Applications. Cambridge, U.K.:CambridgeUniversity Press,2005
    [127] C. Ding, T. Helleseth, H. Martinsen, New families of binary sequences withoptimal three-level autocorrelation, IEEE Trans. Information Theory, Vol.47, No.1, January2001,428–433.
    [128] T.Helleseth and G.Gong. New nonbinary sequences with ideal two-level autocorrelation, IEEETrans, Inform. Theory, Vol.48, no.11, November2002, pp.2868-2872.
    [129]白恩健.伪随机序列构造及其随机性分析研究[D].西安:西安电子科技大学,2004.
    [130]丁存生,肖国镇.流密码学及其应用[M[.北京:国防工业出版社,1994.
    [131]冯克勤,聂灵沼.代数学[M].长沙:湖南教育出版社,1985.
    [132]胡健栋,郑朝晖,尤必起等.码分多址与个人通信[Mj.北京:人民邮电出版社,1996.
    [133]胡予濮,魏仕民,肖国镇.广义Legendre序列和广义Jacobi序列的线性复杂度[J].电子学报,2000,28(2):113-117.
    [134]柯召,孙琦.数论讲义[M].上、下册.北京:高等教育出版社,1987.
    [135]林可祥,汪一飞.伪随机码的原理与应用[M].北京:人民邮电出版社,1978.
    [136]卢开澄,计算机密码学(第2版)[M].北京:清华大学出版社,1998.
    [137]王德文.密码通信入门[M].北京:人民邮电出版社,1987.
    [138]王新梅,肖国镇,纠错码-原理与方法[M].西安:西安电子科技大学出版社,2001,
    [139]吴伯修,曹秀英.密码学与语音保密通信[M],南京:东南大学出版社,1996.
    [140]肖国镇,梁传甲,王育民.伪随机序列及其应用[M],北京:国防工业出版社,1985.
    [141]闫统江.伪随机序列的构造及其性质研究[D].西安:西安电子科技大学,2007.
    [142]朱近康.CDMA通信技术[M].北京:人民邮电出版社,2001.
    [143]冯登国.频谱理论及其在密码学中的应用.北京:科学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700