用户名: 密码: 验证码:
可重构网络的流媒体分发技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流媒体推动了互联网整体结构的革新,转变了传统互联网呆板的内容表现形式,赋予了网络应用更多的娱乐性和互动性。提供分众化互动流媒体分发服务已成为网络运营必需的核心功能。基于这一认识,国家863计划信息技术领域重大项目“新一代高可信网络”致力于建设成能够承载新型互动流媒体业务、提供可靠服务保障保证、具有“可重构”特性的下一代网络与业务国家试验床。混合分发技术是目前提供流媒体服务的主流技术,然而,由于缺乏完善的理论基础和数学模型,流媒体混合分发技术的研究目前尚处于起步阶段,诸多关键难题尚未得到解决。因此,可重构网络的流媒体分发技术就成为了新一代高可信网络建设的基础理论。针对互动流媒体业务在资源利用率和服务质量方面的需求,本文依托新一代高可信网络的研究工作,研究可重构网络的流媒体混合分发技术。
     本文首先分别从流媒体混合分发技术和可重构网络资源动态重构技术两个方面展开研究,然后分析混合分发技术在可重构网络中应用的方式、性能及其优势,最后设计可重构网络的流媒体混合分发方案。具体而言,本文主要研究成果如下:
     建立流媒体分发系统的用户行为模型,并基于该模型推导出C/S、P2P和混合分发策略下系统中用户平均时延的解析表达式。首先对流媒体分发系统中用户行为进行分析,建立了基于传染病动力学中经典Kermack-McKendrick模型的用户行为模型;然后对Kermack-McKendrick模型下流媒体分发系统的性能进行分析,推导出C/S、P2P和混合分发策略下系统中用户平均时延的解析表达式,为后续研究和方案设计提供理论指导;最后分析影响用户平均时延的相关因素并发现:给定媒体文件传播参数时,混合分发策略下用户平均时延仅与策略切换时刻占有文件的人数成反比。
     提出一种基于固件虚拟的流媒体分发网络资源重构模型,并基于该模型提出一种基于重构的资源分配算法。针对流媒体分发网络的动态拓扑及带宽需求,基于平台化支撑、构件化处理的思想,构建基于底层承载网络中核心节点虚拟化的流媒体分发网络,提出一种基于固件虚拟的流媒体分发网络资源重构模型,从而提供更为灵活的可定制拓扑及带宽的流媒体分发服务。此外,基于上述模型,面向资源分配过程提出一种基于重构的最小利用率优先算法(Reconfiguration-based Least Ultilization First algorithm,R-LUF),R-LUF算法充分利用资源均衡以及动态重构的优势,能够实现承载网络资源的全网动态均衡,有效提高了资源利用率以及请求成功率。
     针对设计目标的不同,分别提出一种面向跨域时延保证的域间内容路由算法,以及一种面向流量优化的域内内容路由算法。首先在宏观流量管理层面证明了基于网络状态感知提高流媒体分发系统服务质量并进行系统优化的可行性,然后在微观层面设计内容路由算法:域间内容路由方面,基于约束分离思想,对网络层和应用层路由机制进行多约束联合建模,提出一种面向跨层内容路由的时延模型,并基于该模型提出一种提供跨域时延保证的跨层联合内容路由算法(Inter-domain Delay-guaranteed Cross-layer combined contentrouting algorithm, IDC),然后通过仿真实验验证了IDC算法在服务能力、资源分配和传输时延等方面的优势;域内内容路由方面,面向流量优化将域内内容路由过程抽象为多目标匹配优化模型,通过建立下载速率最大化和网络费用开销最小化二者的协同优化实现网络流量的帕累托最优,提出一种基于协同的分布式域内内容路由算法(Cooperation-based Distributed Intra-domain content routing algorithm, CDI),并通过仿真验证了CDI算法的收敛性和性能。
     设计可重构网络的流媒体混合分发方案,并给出一种面向热点数据的动态滑动推送机制。基于本文研究成果,结合新一代高可信网络对流媒体分发的需求,设计基于分层的流媒体混合分发方案(Layer-based Hybrid Multimedia Distribution System,LHMDS),并给出一种面向热点数据的动态滑动推送机制(Dynamic Sliding Push-delivery mechanism, DSP)。DSP机制采用“广播+单播”的独特流媒体分发架构,基于资源重构可支持面向网络拥塞状态的动态分发网络拓扑变化,从而实现热点流媒体数据的滑动推送,在保证用户服务质量的同时提高了资源利用率。仿真结果表明方案中各技术均能达到预期目标,并且该方案已在新一代高可信网络试验床中得到了初步应用,应用效果良好。
Multimedia promotes the architecture innovation of Internet, changes the Internet’s traditional stiff exhibition forms, endows network appplications with more entertainments and interactions. Providing personalized interactive multimedia distribution services has become the core function for network operation. Based on above recognition, the New Generation Highly Trustworthy Network of National High-Tech Research and Development Program of China (863 program) dedicates to build as the next generation network and national service testbed, which could carry new interactive multimedia services, provide reliable quality of services guarantee and exibit reconfiguration characteristic. At present, hybrid distribution technology is the leading technology, however, due to the lack of theoretical basis and mathematic model, researches on the hybrid distribution technology are still at an initial stage, and many key problems have not been resolved. So the multimedia distribution technology of the reconfigurable network has become the foundamental theory of network construction for the New Generation Highly Trustworthy Network. Considering the requirements of multimedia services in resource ultilization and quality of services, this thesis makes researches on the hybrid multimedia distribution technology of the reconfigurable network based on the researches of the New Generation Highly Trustworthy Network.
     This thesis makes researches on hybrid multimedia distribution technology as well as dynamic resource reconfiguration technology of the reconfigurable network respectively at first, and then analyzes the application mode, performance and advantages of hybrid distribution technology in the reconfigurable networks. The hybrid distribution scheme of the reconfigurable network is provided at last. In detail, the main research achievements of this thesis are as follows:
     Establishing the user behavior model of multimedia distribution system, and proposing the analytical expressions of average delay of users in C/S, P2P and hybrid distribution system respectively. This thesis makes researches on the user behavior in multimedia distribution system and establishes the user behavior model based on the classical Kermack-McKendrick model in epidemiology at first, and then analyzes the system performance under Kermack-McKendrick model, proposes the analytical expressions of average delay of users in C/S, P2P and hybrid distribution system, which could provide theoretical guidance for our future researches. The analysis of analytical expressions of average delay is also performed at last and the conclusion is: given the propagation parameters of multimeida file, the delay varies in inverse proportion to the number of people possessing the file at the strategy switching time.
     Presenting a resource reconfiguration model of multimedia distribution network based on hardware virtualization, and providing a resource allocation algorithm based on reconfiguration for multimedia distribution system. Considering the dynamic requirements of multimedia distribution networks in topology and bandwidth, this thesis establishes multimedia distribution networks by the virtualization of core nodes of substrate network based on the design of platformation and component assembling, and then presents a resource reconfiguration model of multimedia distribution network based on hardware virtualization, which could provide more flexible and custom multimedia distribution services based on dynamic topology and bandwidth allocation. In addition, this thesis provides a reconfiguration-based least ultilization first algorithm named R-LUF, which could obtain dynamic resource load-ballance of substrate resources globally by taking advantages of load balance and dynamic resource reconfiguration, and therefore improve the resource ultilization and request acceptance.
     Presenting an inter-domain content routing algorithm to provide corss-domain delay guarantee and an intra-domain content routing algorithm to optimize traffic respectively due to the difference of design goal. This thesis proves the feasibility of quality of service improvement and traffic optimization based on network status perception in macroscopical level at fisrt, and then makes researches on content routing algorithms in microcosmic level. For the inter-domain content routing, this thesis proposes a delay model for inter-domain content routing based on multi-constraints modeling by combining network layer and application layer routing mechanisms, and then provides an cross-layer combined content routing algorithm named IDC to provide corss-domain delay guarantee. The results of simulation show that IDC algorithm performs better in service providing and resource allocation as well as delay. For intra-domian content routing, this thesis models the content routing by multi-objective matching optimization problem to optimize traffic, establishes the cooperation optimization of maximum download rate and mimimum network cost which could get the Pareto Optimum of traffic optimization, and provides a cooperation-based distributed intra-domain content routing algorithm named CDI, whose convergence and performance are also proved by simulation.
     Presenting the architecture of layer-based hybrid multimedia distribution system of the reconfigurable network, and proposing a dynamic sliding push-delivery mechanism for hotspot file. Based on above researches, this thesis presents the architecture of layer-based hybrid multimedia distribution system (LHMDS for short) considering the requirements of the New Generation Highly Trustworthy Network, and provides a dynamic sliding push-delivery mechanism named DSP for hotspot file. DSP mechanism takes the unique multimedia distribution architecture by both broadcast and unicast, could acclimatize itself to the distribution network topology due to the congestion status based on resource reconfiguration, and therefore push hotspot file dynamically, which could guarantee service of quality as well as improve resource ulitilization. The simulation proves the feasiblity of the scheme, and the scheme also has been applied in the testbed of the New Generation Highly Trustworthy Network and performs well.
引文
[1]中国互联网络信息中心.第28次中国互联网络发展状况统计报告[EB/OL].:中国互联网络信息中心官方网站, 2011-07-25.
    [2]中国产业调研网. 2010年中国CDN市场现状及趋势报告[EB/OL].: http://www.Cir.cn/R_2010-04/2010shichangxianzhuangjiqushi.html, 2011-08-20.
    [3]杨明川,解冲锋.宽带网络流媒体技术和应用[EB/OL].: http://www.chinatelecom.com.cn/20030611/00008426.html, 2003-06-11.
    [4]邱菡.基于IP的流媒体业务QoS时延保障[D].郑州:解放军信息工程大学博士学位论文, 2008年.
    [5]尹浩,袁小群,林闯,张法,庞善臣,刘志勇.内容网络服务节点部署理论综述[J].计算机学报, 2010, 33(9): 1611-1620.
    [6] Z. J. Chen, C. Lin, X. G. Wei. Enabling On-demand Internet Video Streaming Services to Multi-terminal Users in Large Scale[J]. IEEE Transactions on Consumer Electronics, 2009, 55(4): 1988-1996.
    [7]中国互联网络信息中心. 2010年中国网民网络视频应用研究报告[EB/OL].:中国互联网络信息中心官方网站, 2011年1月.
    [8] 863计划信息技术领域办公室.国家高技术研究发展计划(863计划)信息技术领域“新一代高可信网络”重大项目2007年度课题申请指南[EB/OL].:科技部高技术研究发展中心官方网站, 2007-11-06.
    [9]李玉峰,邱菡,兰巨龙.可重构路由器研究的现状与展望[J].中国工程科学, 2008, 10(7): 82-89.
    [10]汪斌强,邬江兴.下一代互联网的发展趋势及相应对策分析[J].信息工程大学学报, 2009, 10(1): 1-6.
    [11]王浩学,汪斌强,于婧,姜明.一体化承载网络体系架构研究[J].计算机学报, 2009, 32(3): 371-376.
    [12] J. Apostolopoulos, T. Wong, S. Wee, D. Tan. On Multiple Description Streaming with Content Delivery Networks[A]. In: Proc. the INFOCOM2002[C], New York, USA, 2002: 1731-1745.
    [13] S. Chen, H. Wang, X. Zhang, B. Shen, S. Wee. Segment-based Proxy Caching for Internet Streaming Media Delivery[J]. IEEE Multimedia, 2005, 12(3): 59-67.
    [14] L. Hanan. Optimal Content Distribution in Video-on-Demand Tree Networks[J]. IEEE Transactions on Systems, Man, and CyberNetics-Part A: Systems and Humans, 2010, 40(1): 68-75.
    [15] P. Branch, G. Egan, B. Tonkin. A Client Caching Scheme for Interactive Video-on-Demand[A]. In: Proc. IEEE of Int l Conf. Networks (ICON1999)[C], Brisbane, Australia, 1999: 391-397.
    [16] Z. M. Fei, M. H. Ammar, I. Kamel, S. Mukberje. An Active Bufer Management Techniquefor Providing Interactive Functionsin Broadcast Viedo-on-Demand Systems[J]. IEEE Transactions on Multimedia, 2005, 7(5): 942-950.
    [17] S. Sen, J. Rexford, D. Towsly. Proxy Prefix Caching for Multimedia Streams[A]. In: Proc. IEEE INFOCOM1999[C], Amherst, MA, USA, 1999: 1310-1319.
    [18] Z. L. Zhang, Y. Wang, D. H. C. Du, D. Su. Video Staging: a Proxy-server-based Approach to End-to-end Video Delivery over Wide-area Networks[J]. ACM Transactions on Networking, 2000, 8(4): 429-442.
    [19] S. Ramesh, I. Rhee, K. Guo. Multicast with Cache (Mcache): an Adaptive Zero-delay Video-on-Demand Service[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(3): 440-456.
    [20] J. Kangasharju, F. Hartanto, M. Reisslein, K. W. Ross. Distributing Layered Encoded Video Through Caches[J]. IEEE Transactions on Computers, 2002, 51(6): 622-636.
    [21]雷正雄,廖建新,朱晓民.基于补丁流传输机制的移动流媒体系统的缓存替换算法[J].高技术通讯, 2006, 16(7): 671-675.
    [22]杨戈,廖建新,朱晓民,杨波,黄海.基于段流行度的移动流媒体代理服务器缓存算法[J].通信学报, 2007, 28(2): 33-39.
    [23] J. T. Robinson, M. V. Devarakonda. Data Cache Management Using Frequency-based Replacement[A]. In: Proc. SIGMETRIC on Measuring and Modeling of Computer Systems [C]. Boulder, Colorado, USA, 1990: 134-142.
    [24] J. Alghazo, A. Akaaboune, N. Bolros. SF-LRU Cache Replacement Algorithm[A]. In: Proc. 2004 International Workshop Workshop on Technology, Design and Testing[C]. Carbondale, IL, USA. 2004: 19-24.
    [25] W. S. Seung, Y. K. Ki, S. J. Jong. LRU based Small Latency First Replacement(SLFR) Algorithm for the Proxy Cache[A]. In: Proc. IEEE International Conference on Web Intelligence[C]. Daejon, South Korea, 2003: 499-502.
    [26]肖明忠,李晓明,刘翰宇等.基于流媒体文件字节有用性的代理服务器缓存替代策略[J].计算机学报, 2004, 27(12): 1633-1641.
    [27] S. Q. Chen, B. Shen, S. S. Wee, X. D. Zhang. Designs of High Quality Streaming Proxy Systems[A ]. In: Proc. IEEE INFOCOM2004[C]. HongKong, 2004, 3: 1512- 1521.
    [28]张东辉,李文辉,李鸣.基于焦点分段的流媒体代理缓存策略[J].吉林大学学报(工学版), 2007, 37(5): 1137-1141.
    [29]杨戈,廖建新,朱晓民,樊秀梅.流媒体分发系统关键技术综述[J].电子学报, 2009, 37(1): 137-145.
    [30] R. Steinmetz, K. Wehrle. Peer-to-Peer Networking & Computing[J]. Infomatik Spektrum, 2004, 27(1): 51-54.
    [31] B. Li, H. Yin. The Peer-to-Peer Live Video Streaming in the Internet: Issues, Existing Approaches and Challenges[J]. IEEE Communications Magazine, 2007, 45(6): 94-99.
    [32] D. N. Ren, Y. T. Li, S. H. Chan. Fast-Mesh: A Low-Delay High-Bandwidth Mesh for Peer-to-Peer Live Streaming[J]. IEEE Transactions on Multimedia, 2009, 11(8): 1446-1456.
    [33] Y. Liu, Y. Guo, C. Liang. A Survey on Peer-to-Peer Video Streaming Systems. Journal of Peer-to-Peer Networking and Applications, 2008, 1(1): 18-28.
    [34] H. Matthias, U. R. Halldorsson, G. Hasslinger. Potentials and Challenges of Peer-to-Peer based Content Distribution[A]. In: Proc. CICT[C], Kgs. Lyngby, Denmark, 2005: 348-365.
    [35] P. Rodriguez, S. Tan, C. Gkantsidis. On the Feasiblitiy of Commercial, Legal P2P Content Distribution[J]. ACM SIGCOMM Computer Communication Review, 2006, 36(1): 75-78.
    [36] F. Clevenot, P. Nain. A Simple Fluid Model for the Analysis of the Squirrel Peer-to-Peer Caching System[A]. In: Proc. IEEE INFOCOM2004[C], Hong Kong, 2004: 86-95.
    [37] I. Rimac, A. Elwalid, S. Borst. On Server Dimensioning for Hybrid P2P Content Distribution Networks[A]. In: Proc. Peer-to-Peer Computing2008[C], Anchen, Germany, 2008: 321-330.
    [38] R. F. La, C. D. Carothers, W. D. Smith, et al. Simulating Large Scale P2P Assisted Video Streaming[A]. In: Proc. HICSS2009[C], Hawaii, USA, 2009: 1-10.
    [39] S. Agarwal, J. P. Singh, A. Mavlankar, et al. Performance and Quality of Service Analysis of a Live P2P Video Multicast Session on the Internet[A]. In: Proc. IEEE IWQoS2008[C], Enschede, Netherlands, 2008: 11-19.
    [40]刘琼,徐鹏,杨海涛,彭芸. Peer-to-Peer文件共享系统的测量研究[J].软件学报, 2006, 17(10): 2131-2140.
    [41]李泽平,卢显良,聂晓文,李林. P2P流媒体中的数据分配算法[J].计算机研究与发展, 2009, 46(11): 1803-1813.
    [42]郑常熠,王新,赵进,薛向阳. P2P视频点播内容分发策略[J].软件学报, 2007, 18(11): 2942-2954.
    [43] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, P. Rodriguez. Is High-quality VoD Feasible Using P2P Swarming[A], In: Proc. the 16th International World Wide Web Conference(WWW2007)[C], Banff, Alberta, Canada, 2007: 903-912.
    [44] X. J. Hei, Y. Liu, K. W. Ross. IPTV over P2P Streaming Networks: the Mesh-pull Approach[J]. IEEE Communications Magazine, 2008, 46(2): 86-92.
    [45]张晖,董育宁,杨龙祥,朱洪波.多媒体异构Mesh网络体系设计及跨层QoS路由算法研究[J].电子学报, 2010, 38(10): 2436-2440.
    [46] N. Magharei, R. Rejaie, Y. Guo. Mesh or Multiple-tree: a Comparative Study of Live P2P Streaming Approaches[A]. In: Proc. the IEEE INFOCOM[C], Anchorage, AK, USA, 2007: 1414-1432.
    [47] H. Y. Xie, Y. Yang. P4P: Provider Portal for Application[A]. In: Proc. Sigcomm2008[C], Seattle, WA, USA, 2008: 351-362.
    [48] R. C. David, F. E. Bustamante. Taming the Torrent: a Practical Approach to Reducing Cross-ISP Traffic in Peer-to-Peer Systems[J]. SIGCOMM Computer Communication Review, 2008, 38(4): 363-374.
    [49] V. Gnawal, A. Feldmann, C. Scheldeler. Can ISPs and P2P Systems Cooperation for Improved Performance[J], ACM Computer Communication Review, 2007, 37(3): 29-40.
    [50] Y. Guo, K. Suh, J. Kurose, D. Towsley. P2Cast: P2P Patching Scheme for VoD Service[A].In: Proc. WWW2003[C]. New York, USA, 2003: 301-309.
    [51]尹浩,林闯,文浩,陈志佳,吴大鹏.大规模流媒体应用中关键技术的研究[J].计算机学报, 2008, 31(5): 755-774.
    [52] D. Xu, S. Kulkarni, C. Rosenberg, H. Chai. Analysis of a CDN-P2P Hybrid Architecture for Cost-Effective Streaming Media Distribution[J]. Multimedia Systems, 2006, 11(4): 383-399.
    [53] M. Andrew, B. Andrew, N. J. P. Race, L. Mathy, M. Fry. A Case for Hybrid Content Distribution for Interactive Video-on-Demand[A]. In: Proc. FMN08, Cardiff, United Kingdom, 2008: 556-561..
    [54] E. D. Manal, P. Esther, K. Bettina. Flower-CDN: a Hybrid P2P Overlay for Efficient Query Processing in CDN[A]. In: Proc. EDBT2009[C], Saint-Petersburg, Russia, 2009: 427-438.
    [55] J. Y. He, A. Chaintreau, C. Diot. A Performance Evaluation of Scalable Live Video Streaming with Nano Data Centers[J]. Computer Networks Journal, 2009, 53(2): 153-167.
    [56] T. A. Neves, L. M. A. Drummond, L. S. Ochi, C. Albuquerque, E. Uchoa. Solving Replica Placement and Request Distribution in Content Distribution Networks[J]. Electronic Notes in Discrete Mathematics, 2010, vol. 36: 89-96.
    [57] C. Huang, A. Wang, J. Li, K. W. Ross. Understanding Hybrid CDN-P2P: Why Limelight Needs its Own Red Swoosh[A]. In: Proc. NOSSDAV[C], braunschweig, germany, 2008: 28-30.
    [58]蒋海,李军,李忠诚.混合内容分发网络及其性能分析模型[J].计算机学报, 2009, 32(3): 473-482.
    [59] H. Yin, X. N. Liu, T. Y. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, B. Li. Design and Deployment of a Hybrid CDN-P2P System for Live Video Streaming: Experiences with LiveSky[A]. In: Proc. MM2009[C], Beijing, China, 2009: 19-24.
    [60] Dario Rossi, Paolo Veglia. A Hybrid Approach to Assess the Network Awareness of P2P-TV Applications[J]. International Journal of Digital Multimedia Broadcasting, 2010, 1:1-11.
    [61] R. Kumar, Y. Liu, K. W. Ross. Stochastic Fluid Theory for P2P Streaming Systems[A]. In: Proc. IEEE INFOCOM2007[C], Anchorage, AK, USA, 2007: 919-927.
    [62] L. Massoulie. Randomized Decentralized Broadcasting Algorithms[A]. In: Proc. INFOCOM2007[C], Anchorage, AK, USA, 2007: 1073-1081.
    [63] X. Yang, G. D. Veciana. Service Capacity of Peer to Peer Networks[A]. In: Proc. IEEE INFOCOM2004[C], HongKong, 2004: 2242-2252.
    [64] D. Y. Qiu, R. Srikant. Modeling and Performance Analysis of Bittorrent-like Peer-to-Peer Networks[J]. ACM Computer Communication Review, 2004, 34(4): 367-378.
    [65] F. M. Bass, A New Product Growth Model for Consumer Durables[J]. Management Science, 1969, 15(5): 215-227.
    [66] Srinivas Shakkottai, Ramesh Johari. Demand-Aware Content Distribution on the Internet[J]. IEEE/ACM Transcactions on Networking, 2010, 18(2): 476-489.
    [67] W. O. Kermack, A. G. McKendrick. Contributions to the Mathematical Theory ofEpidemic[A]. Proc. Roy.Soc[C], London, U. K. 1927, A115: 700-721.
    [68] W. O. Kermack, A. G. McKendrick. Contributions to the mathematical theory of epidemic[A]. Proc. Roy.Soc[C], London, U. K. 1932, A138: 55-83.
    [69] R. Pastor-Satorras, A. Vespignani. Epidemic Spreading in Scale-free Networks[J]. Physical Review Letters, 2001, 86 (14): 3200-3203.
    [70] M. J. Freedman, E. Freudenthal, D. Mazieres. Democratizing Content Publication with Coral[A]. in Proc. NSDI2004[C], San Francisco, USA, 2004: 239-252.
    [71] M. Cha, H. Kwak, P. Rodriguez, Y. Y. Ahn, S. Moon. I Tube, You Tube, Everybody Tubes: Analyzing the World’s Largest User Generated Content Video System[A]. ACM Internet Measurement Conference[C], San Diego, USA, 2007: 1-14.
    [72] T. Roscoe. The End of Internet Architecture[A]. In: Proc. the 5th workshop on Hot Topics in Networks[C], Irvine, California, USA, 2006: 55-60.
    [73] T. Anderson, L. Peterson, et al. Overcoming the Internet Impasse through Virtualization[J]. IEEE Computer, 2005: 34-41.
    [74] G. Bouabene, C. Jelger, C. Tschudin. Virtual Network Stacks[A]. In: Proc. ACM workshop on Programmable Routers for Extensible Services of Tomorrow[C], Seattle, Washington, USA, 2008: 45-50.
    [75] J. S. Turner, D. E. Taylor. Diversifying the Internet[A]. In: Proc. IEEE Global Telecommunications Conference[C], St. Louis, Missouri, USA, 2005: 760-765.
    [76] B. Pfaff, J. Pettit, T. Koponen, K. Casado, S. Shenker. Extending Networking into the Virtualization Layer[A]. In: Proc. the HotNets-VIII[C], New York, USA, 2009: 22-23.
    [77] T. T. Hung, Z. Thomas. A Design Framework towards the Profitable Operation of Service Overlay Networks[J]. IEEE/ACM Computer Networks, 2007, 51(1): 94-113.
    [78] M. L. Yu, Y. Yi, J. Rexford, et al. Rethinking Virtual Network Embedding: Substrate Support for Path Splitting and Migration[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 17-29.
    [79] L. V. Sibelius, L. Jorg. Topology Design for Service Overlay Networks with Bandwidth Guarantees[A]. In: Proc. IEEE IWQoS[C], Toronto, Canada, 2004: 211-220.
    [80] Y. Zhu, M. Ammar. Algorithms for Assigning Substrate Network Resources to Virtual Network Components[A]. In: Proc. IEEE INFOCOM[C], Barcelona, Spain, 2006: 1-12.
    [81] D. Eppstein. Finding the k shortest paths[A]. In: Proc. IEEE Symposium on Foundations of Computer Science[C], Santa Fe, NM, USA, 1994: 154-165.
    [82] R. Dantu, T. Anderson, R. Gopal. Forwarding and Control Element Separation (ForCES) Framework[S]. FRC 3746, 2004.
    [83] N. Carlsson, D. L. Eager. Server Selection in Large-scale Video-on-Demand Systems[J]. TOMCCAP, 2010, 6(1): 1:1-1:26.
    [84] Y. Qiao, F. E. Bustamante, P. A. Dinda, S. Birrer, D. Lu. Improving Peer-to-Peer Performance through Server-side Scheduling[J]. ACM Transactions on Computer System, 2008, 26(4): 10.1-10.30.
    [85] A. J. Su, R. C. David, K. Aleksandar, E. B. Fabian. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections[J]. IEEE/ACM Transactions onNetworking, 2009, 17(6): 1752-1765.
    [86] A. Leff, J. Wolf, P. Yu. Replication Algorithms in a Remote Caching Architecture[J]. IEEE Transactions On Parallel And Distributed Systems, 1993, 17(4): 1185-1204.
    [87] I. Cidon, S. Kutten, R. Soffer. Optimal Allocation of Electronic Content[J]. Computer Networks, 2002, 40(10): 205-218.
    [88] J. Kangasharju, J. Roberts, K. Ross. Object Replication Strategies in Content Distribution Networks[J]. Computer Communications, 2002, 25(10): 373-383.
    [89] M. Yang, Z. Fei. A Model for Replica Placement in Content Distribution Networks for Multimedia Applications[A]. In: Proc. IEEE international conference on communications (ICC03)[C], Anchorage, Alaska, USA, 2003, 557-561.
    [90] J. Almeida, D. Eager, M. Vernon, et al. Minimizing Delivery Cost in Scalable Streaming Content Distribution Systems[J]. IEEE Transactions on Multimedia, 2004, 6(10): 356-365.
    [91] T. Nguyen, F. Safaei, P. Boustead, et al. Provisioning Overlay Distribution Networks[J]. Computer Networks, 2005, 49(10): 103-118.
    [92] T. Bektas, O. Oguz, I. Ouveysi. Designing Cost-effective Content Distribution Networks[J]. Computers & Operations Research, 2007, 34(10): 2436-2449.
    [93] T. Bektas, J. Cordeau, E. Erkut, et al. Exact Algorithms for the Joint Object Placement and Request Routing Problem in Content Distribution Networks[J]. Computers & Operations Research, 2008, 35(12): 3860-3884.
    [94] B. Novella, L. Francesco, P. Chiara. Dynamic Replica Placement and User Request Redirection in Content Delivery Networks[A]. In: Proc. IEEE ICC2005[C], Seoul, Korea, 2005: 1495-1501.
    [95] Y. Liu, H. Zhang, W. Gong, D. Towsley. On the Interaction between Overlay Routing and Traffic Engineering[A]. In: Proc. IEEE INFOCOM2005[C], Miami, FL, USA, 2005: 2543-2553.
    [96]兰巨龙. 973计划项目“可重构信息通信基础网络体系研究”项目申请书[M], 2011年.
    [97]侯定丕.博弈论导论[M].合肥:中国科学技术大学出版社, 2004: 98-99.
    [98] Bates T, et al. Multiprotocol Extensions for BGP4[S]. RFC 2858, June 2000.
    [99]唐治果,李乐民.针对MPLS网络流量工程的链路关键性路由算法[J].电子与信息学报, 2007, 29(5): 1187-1190.
    [100] P. Wendell, W. J. Jiang, M. J. Freedman, et al. DONAR: Decentralized Server Selection for Cloud Services[J]. ACM SIGCOMM Computer Communication Review, 2010, 40(4): 231-242.
    [101] T. Wu, D. Starobinski. A Comparative Analysis of Server Selection in Content Replication Networks[J]. IEEE/ACM Transactions on Networking, 2008, 16(6): 1461-1474.
    [102] S. C. Han, Y. Xia. Network Load-aware Content Distribution in Overlay Networks[J]. Computer Communications. 2009, 32(1): 51-61.
    [103] Y. T. Han, M. G. Kim, H. S. Park. A Novel Server Selection Method to Achieve Delay-based Fairness in the Server Palm[J]. IEEE Communications Letters, 2009, 13(11): 868-870.
    [104] E. W. Dijkstra. A Note on Two Problems in Connection with Graphs[J]. Number Math, 1959, 1: 269-271.
    [105] M. Goldbergav. Expected Performance of Dijkstra’s Shortest Path Algorithm[D]. Princeton, NJ, USA: Princeton University, 1996.
    [106] S. Horovitz, D. Dolev. LiteLoad: Content Unaware Routing for Localizing P2P Protocols[A]. In: Proc. IPDPS2008[C], Miami, Florida, USA, 2008: 1-8.
    [107] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, A. Zhang. Improving Traffic Locality in BitTorrent via Biased Neighbor Selection[A]. In: Proc. ICDCS2006[C], Lisboa, Portugal, 2006: 66-66.
    [108] F. Mathieu, G. Postelnicu, J. Reynier. The Stable Configuration in Acyclic Preference-based Systems[A]. In: Proc. IEEE INFOCOM2009[C], Rio De Janeiro, Brazil, 2009: 1440-1448.
    [109]宋迎梅,沈富可.基于P4P的CDN系统中内容分发节点选择算法[J].计算机应用, 2009, 29(11): 2928-2931.
    [110] Z. Chen, H. Yin, C. Lin, Y. Chen, M. Feng. Towards a Universal Friendly Peer-to-Peer Media Streaming: Metrics, Analysis and Explorations[J]. IET Communications, 2009, 3(12): 1919-1933.
    [111] B. Huang, T. Jebara. Loopy Belief Propagation for Bipartite Maximum Weight b-Matching[A]. In: Proc. AISTATS2007[C], San Juan, Puerto Rico, 2007: 1-8.
    [112]汪斌强. 863重大专项“新一代高可信网络”之课题“可重构路由器构件组研制”项目申请书[M]. 2008年,项目号: 2008AA01A323.
    [113]刘勤让. 863重大专项“新一代高可信网络”之课题“可重构柔性试验网组网设备工程化实施”项目申请书[M]. 2009年,项目号: 2009AA01A334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700