四足机器人行走步态及CPG控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动机器人不仅需要适应已知结构化环境,还需适应非结构化未知环境。足式机器人具有障碍跨越、沙地及崎岖等特殊路面行走能力,可用于工程探险勘测、反恐防爆、军事侦察等人类无法完成或危险工作,在移动机器人领域具有重要的研究意义。由于四足机器人静态稳定性能大大优于双足机器人,而且机构的冗余和控制复杂程度比六足和八足简单,因此四足结构在足式机器人领域具有较好的综合性能。足式机器人具有越障能力强、速度较低的特点,而轮式机器人具有与足式机器人互补的特点,本文以轮足复合式四足机器人系统为研究目标,结合轮式机器人和足式机器人的优点,实现良好的运动灵活性和较高的移动速度。课题在机器人结构设计及系统实现的基础上重点研究机器人稳定运动的能力及其生物控制特性。
     通过结构形式比较分析,研制成功一种轮足复合运动方式四足移动机器人。该机器人采用鳄鱼式结构,单足具有3个关节转动自由度和一个足底滚进轮,单足具有独立的DSP控制节点,负责采集传感器信号、状态判断以及足内关节控制,采用CAN总线实现DSP控制节点和嵌入式主控计算机之间通讯,由主控计算机实现机器人的任务。该结构使得机器人具备轮式机器人的快速移动能力及足式机器人的灵活越障能力。研究了该机器人的滚进能力、运动学、运动空间以及重心求解方法,为机器人的稳定性分析及步态规划提供依据。
     研究机器人的步态对机器人稳定行走具有重要的指导意义。采用稳定裕度作为四足机器人静态稳定的判据,并以象限为分界线明确了不同初始落足点时机器人迈腿的可能性;建立了步态描述的数学模型,基于模型对步态进行了分类,明确了静平衡步态的模型参数;基于迈腿次序将所有步态划分为24种类型,并对比分析了24种步态的三个基本特性参数:运动空间需求、最小稳定裕度以及机器人的运动协调性。基于机器人平台实际参数进行了平面直行、平面转向步态的仿真研究;此外,基于ZMP理论进行了机器人动平衡步态研究和仿真,得到固定ZMP点步态、随动ZMP点步态及比例步态;这些步态研究为机器人多运动方式提供了理论基础。
     为增强移动机器人的环境适应能力,提出了基于投影分析法结合平面静平衡步态理论的楼梯爬越步态规划方法;从运动空间需求最小、稳定裕度最大、步态协调性最好三个方面对楼梯爬越步态进行了仿真研究,得出各种需求下可用的步态参数;研究了本机器人的侧爬步态及其参数;为机器人的典型环境移动步态选定提供了理论依据。
     为协调机器人多足控制,采用中枢神经模式控制机器人的步态。基于互抑神经元建立了振荡器模型,并利用振荡器模型组建了四足机器人的CPG(Central Pattern Generator)控制网络;采用计算机仿真法分析了CPG模型各参数对输出的影响并整定了机器人CPG控制网络的参数;建构了机器人步态的CPG控制模型,提出了阈值法步态占空比控制方法,实现不同占空比步态的切换,阐述了基于CPG理论的步态切换方式;基于CPG网络的自适应特性建构了机器人的反射机制,增强了机器人的环境自适应能力。
     最后,搭建了基于三级控制体系的机器人实验系统,进行了不同占空比下的平面直行、平面转向、楼梯爬越、平面滚进等运动性能实验,实验结果验证了机器人系统设计及理论分析的有效性。
Walking robot is not only required to adapt to the known and structured environment, but also the unknown and unstructured environment. Since the legged robot is capable of navigating obstacles, sand land and rugged road, it possesses good environmental adaptability and could be applied to the tasks which are dangerous or couldn’t be accomplished by human beings, such as engineering exploration and survey, anti-terrorism detection, military reconnaissance, etc. Quadruped robot possesses the preferred all-round performance in legged robot field for its better stability than biped, and the mechanism and control system is simpler than hexapod and octopod. The shortcoming of legged robot is the low velocity, whereas the wheeled robot possesses the complementary characteristics. Therefore, the purpose of this thesis is aimed at the study of a wheel-leg hybrid quadruped robot, which could combine the virtue of legged robot and wheel robot. On the basis of robot platform design, the thesis focuses on the correlative research of the stable gait and biological control.
     Based on thorough analysis, a wheel-leg hybrid crocodile-like quadruped robot is proposed. Each leg of the robot possesses three joints and one wheel on the toe, by which the robot could move ahead quickly and step over obstacles. There is also independent DSP controller node for each leg, which is responsible for sensor signal collection, state judgment and inner joints control. And moreover, the embedded master computer communicates with DSP nodes via CAN bus. So the robot is capable of rapid mobility as the wheeled robot and flexibility for stepping over the obstacles as the legged robot. Rolling ability, kinematics, working space and Center of Mass solve method is studied, which provides the basis for stability analysis and gait plan.
     Balanced gait study is important guide for robot stable walk. Taking stability margin as the criterion of the robot’s stability, and quadrant boundary as the criterion of swing leg possibility for the robot in different initial posture, gait mathematical model is established, which is classified by duty facotr; and statically balanced gait parameters are proposed. All quadruped gaits are classified into 24 kinds by swing orders; three essential characteristic parameters are contrasted with all 24 kinds of gaits: working space demand, minimum stability margin and body adjustment harmony. According to the robot actual structure parameters, plane walking and turning gaits are simulated. Dynamic balanced gait is simulated based on ZMP (zero moment point) theory, which establishes the theoretical basis for multi-locomotion ways of robot.
     In order to enhance the ability of environmental adaptation, stair climbing gait study based on projection analysis method is proposed. Stairs climbing gaits of minimum working space demand, maximum stability margin, and the most harmony body adjustment are simulated, and furthermore to obtain the suitable gait parameters for all necessities. The lateral stair climbing gaits and parameters are studied, which provide the theoretical basis for robot locomotion in classical environment.
     Based on mutual inhibition neurons, the oscillating model is established, by which the CPG (Central Pattern Generator) control network of the quadruped robot is developed. The impact on the output by parameters of CPG model is analyzed by computer simulation, and the CPG control network parameters of the robot is set. The CPG control model of the robot’s gait is constructed. Output threshold is adopted for different duty factor gait control, and the gait switching mode by CPG is described, then robot reflex mechanism is established based on the adaptive property of CPG network, which testifies the excellent environment adaptation ability of CPG gait control method.
     Finally, an experiment robot platform based on 3-hierachical control architecture is established. Plane walking of different duty factor, turning, stairs climbing and rolling ahead experiments confirmed the validity of the designing and theoretical analysis of the robot system.
引文
1卢桂章.“863”计划智能机器人研究进展,机器人技术与应用, 1995, 2(1): 7~8
    2国家中长期科学和技术发展规划纲要(2006-2020)2005:10~45
    3张福学.机器人技术及其应用,电子工业出版社. 2000:1~45,165~225
    4范印越.机器人技术.电子工业出版社, 1988:49~63
    5蒋新松.机器人学导论[M].辽宁:辽宁科学技术出版社, 1994: 29~114
    6施拉夫特.服务机器人.机器人技术与应用.1997(1):3~5
    7刘海波,武学民.国外建筑业的机器人化——国外建筑机器人发展概述.机器人.1994,16(2):119~128
    8 S. HIROSE, K. KATO. Study on Quadruped Walking Robot in Tokyo Institute of Technology-Past, Present and Future-Proc. of IEEE Int. Conf. on Robotics and Automation, San Francisco, CA. 2000:414~419
    9李满天等.模块化可重构履带式微小型机器人的研究.机器人. 2006,11(28): 481~484
    10 Freya Hardarson. Stability analysis and synthesis of statically balanced walking for quadruped robots. Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden. 2002:20~70
    11 Berns.K, Ilg.W, Deck.M, Dillmann.R. The Mammalian-like Quadrupedal Qalking Machine BISAM. 5th International Workshop on Advanced Motion Control, Coimbra., 1998: 429~433
    12 Berns.K, Ilg.W, Deck.M, Albiez.J, Dillmann.R. Mechanical Construction and Computer Architecture of the Four-legged Walking Machine BISAM., IEEE/ASME Transactions on Mechatronics, 1999: 32~38
    13 Albiez.J, Ilg.W, Luksch.T, Berns.K, Dillmann.R, Learning a Reactive Posture Control on the Four-legged Walking Machine BISAM. IEEE Int. Conf. on Intelligent Robots and Systems, 2001: 999~1004
    14 Kurazume R , Hirose S , Yoneda K. Feedforward and Feedback Dynamic T rot Gait Control for a Quadruped Walking Vehicle. IEEE Int . Conf . on Robotics and Automation , Korea , 2001:3172~3180
    15 Hiroshi Kimura. Three-dimensional Adaptive Dynamic Walking of aQuadruped-rolling Motion Feedback to CPGs Controlling Pitching Motion. Proc. of IEEE Robotics and Automation (ICRA), Washington D.C. 2002:2228~2233
    16 K. Hiroshi, Y. Fukuoka. Biologically Inspired Adaptive Dynamic Walking in Outdoor Environment Using a Self-contained Quadruped Robot Tekken. IEEE Int. Conf. on Intelligent Robots and Systems, Sendai, Japan, 2004: 986 ~992
    17 Hiroshi Kimura. Three-dimensional Adaptive Dynamic Walking of a Quadruped - rolling motion feedback to CPGs controlling pitching motion, Proc. of IEEE Robotics and Automation (ICRA2002), Washington D.C. 2002.5: 2228~2233
    18 S. Hirose et al.―Titan III, a quadruped walking vehicle– its structure and basic Characteristics‖2nd Int. Symp. Robotics Research. 1985:325~331
    19 Arikawa K, Hirose S. Development of Quadruped Walking Robot TITAN-VIII. IEEE Int. Conf. on Intelligent Robots and Systems,1996: 208 ~214
    20 Tanie K. Humanoid Robot and Its Application Possibility. IEEE Int. Conf. on Multi-sensor Fusion and Integration for Intelligent Systems, 2003: 213~ 214
    21 Yasuhiro Fukuoka. Adaptive Dynamic Walking of a Quadruped Robot 'Tekken' on Irregular Terrain Using a Neural System Model, Proc. of IEEE Robotics and Automation (ICRA). 2003:2037~2042
    22 P. Didier, M. Buehler. Stable Running in a Quadruped Robot with Compliant Legs. IEEE Int. Conf. on Robotics and Automation. San Francisco. 2000: 444~450
    23 S. A. James, P. Ioannis. Rotary Gallop in the Untethered Quadrupedal Robot Scout II. IEEE Int. Conf. on Intelligent Robots and Systems, Japan. 2004: 2556~ 2562
    24 Yasuhiro Fukuoka. Adaptive Dynamic Walking of a Quadruped Robot 'Tekken' on Irregular Terrain Using a Neural System Model, Proc. of IEEE Robotics and Automation (ICRA2003). 2003:2037~2042
    25 S. Hirose et al. Design of a quadruped walking vehicle for dynamic walking and stair climbing, Advanced Robotics, Vol. 9, No. 2. 1995:107~124
    26 H. Kimura. Dynamics Based Integration of Motion Adaptation for aQuadruped Robot, Proc. of Int. Symp, on Adaptive Motion of Animals and Machines (AMAM2003), ThP-I-2, Kyoto, 2003.3:1~4
    27 Robert F. Battaglia. Design of the SCOUTⅡquadruped with preliminary stair-climbing. Master thesis, McGill University, Montreal, Quebec, Canada, March 1999:10~25
    28 Martin de lasa. Dynamic Compliant Walking of the SCOUTⅡQuadruped Department of Electrical and Computer Engineering McGill University, Montreal, Canada, July 2000:5~10
    29 S. Guccione, G. Muscato, The Wheeleg Robot. IEEE Robotics and Automation Magazine, 2003(12):33~43.
    30 I. Lepp?nen, S. Salmi, A. Halme. WorkPartner, HUT Automation’s New Hybrid Walking Machine. First international symposium, Brussels, Belgium, 1998:26~28
    31张秀丽,郑浩峻,段广洪.动物运动控制机理及对机器人控制的启示.机器人技术与应用. 2002(5): 24~26
    32张秀丽,郑浩峻,陈恳,段广洪.机器人仿生学研究综述.机器人. 2002 (2): 188~192
    33孙杏初,张之伟.四足步行运行机构及步态参数对行走稳定性影响分析[j].北京航空航天大学学报. 1993: 18~25
    34高峰,陈秉聪,杨红旗.研究四足步行机步态稳定性的临界状态法[j].机械工程学报. 1992: 28~33
    35陈立新.足步行机器人步态及运动稳定性分析.现代机械, 1995: 28-31
    36陈学东,郭鸿勋,渡边桂吾.四足机器人爬行步态的正运动学分析.机械工程学报, 2003: 8~12
    37王新杰,李培根,陈学东.四足步行机器人动力学模型及脚力分配的研究.华中科技大学学报. 2005,33(12):12~15
    38王新杰,李培根,陈学东.四足步行机器人关节位姿和稳定性研究.中国机械工程. 2005,16(17):1561~1567
    39黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社.1996:29~35
    40陈东良.仿生机器蟹两栖步行机理与控制方法研究.哈尔滨工程大学博士学位论文. 2006:49~50
    41苏军.多足步行机器人步态规划及控制的研究.华中科技大学硕士论文.2004:15~17
    42柳洪义,闻邦椿, H.斯欧格.轮腿结合步态稳定裕度的研究.东北大学学报, 1994:51~55
    43俄晋武,干东英.六足步行机横向行走最佳步态及运动特性初探.机器人, 1982(5):45~49
    44徐跌群,万隆军,四足步行机器人稳定性步态分析,制造业自动化,机器人技术专栏, 2001: 5~7
    45 Mc Ghee R B. Some Finite State Aspects of Legged Locomotion [j] . Mathematical Bioscience, 1968, 2(1/2): 67~84
    46 Bessonov A.P. and N.W.Umnov. Choice of Geometric Parameters of Walking Machines, Proceedings of Symposium on Theory and Practice of Robots and Manipulators. 1976:5~7
    47 Song, S. M. and B. S. Choi. A Study on Continuous Follow-The-Leader (FTL) Gaits: An Effective Walking Algorithm over Rough Terrain,‖Mathematical Biosciences 97. 1989:199~233
    48 Song, S. M. , C. D. Zhang. A Study of the Stability of Generalized Wave Gaits, Mathematical Biosciences 115. 1993:1~32
    49 Song, S. M. and C. D. Zhang. Turning Gait of a Quadruped Walking Machine, Proceeding of IEEE International Conference on Robotics and Automation. 1991:2106~2113
    50 D.J.Pack. Sensor-based Planning and Control for a Quadruped Walking Robot. Ph.D. thesis, School of Electrical and Computer Engineering, Purdue University, West Lafeyette, IN,1995:10~34
    51 D.J.Pack and A.C.Kak. A Simplified Forward Gait Control for a Quadruped Walking Robot proceedings of the 1994 IEEE/RSJ International Conference on Intelligent Robots and systems,vol.2. Munich, Germany, 1994:1011~1018
    52 D.J.Pack and H.Kang. An Omnidirectional Gait Control using a Graph Search Method for a Quadruped Walking Robot Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan,1995:5~8
    53 Ruixiang Zhang, and Prahlad Vadakkepat. An Evolutionary Algorithm for Trajectory Based Gait Generation of Biped Robot, Department of Electrical and Computer Engineering, National University of Singapore. ,1999:5~8
    54 M. Buehler, R. Battaglia, A. Cocosco, G. Hawker, J. Sarkis, and K. Ya-mazaki. Scout: A simple quadruped that walks, climbs, and runs. Proc. IEEE Int. Conf. Robotics and Automation. 1998: 1701~1712
    55 D. Papadopoulos and M. Buehler. Stable running in a quadruped robot with compliant legs. Proc. IEEE Int. Conf. Robotics and Automation, April 2000
    56 H.Igarashi, M.Kakikura. Adaptive Gait for a Quadruped Robot on 3D Path Planning, IEEE Int. Conf. Robotics and Automation, 2003:2049~2054
    57 P.K.Pal and K.Jayarajan. Generation of Free Gait-A Graph Search Approach. IEEE Transaction on Robotics and Automation, vol.7(3) 1991:3~8
    58 Gonzalez de Santos, P. and Jimenez, M. A. Generation of discontinuous gaits for quadruped walking machines, Journal of Robotic Systems, Vol. 12, 1995:599~611
    59 LEE T T,SHIN C.L.A. A study of the gait control of a quadruped walking vehicle[C]. IEEE Journal of Robotics and Automation.1986,2(2):61~68
    60 Adachi H. Koyachi N. Nakamura T., Nakano E. Development of Quadruped Walking Robots and Their Gait Study. Journal of Robotics and Mechatronics. vol. 5, no. 6. 1993:548~560
    61 V.R. Kumar, K.J. Waldron. Adaptive gait control for a walking robot,J. Robotic Systems, 6(1). 1989: 49~76
    62 J. A. Golden and Y. F. Zheng. Gait synthesis for the SD-2 biped robot to climb stairs, Int. J. Robotics and Automation. Vol 5, No. 4.1990:149~159
    63付京逊, R.C.冈萨雷斯, C.S.G.李.机器人学2控制2传感技术2视觉2智能.中国科学技术出版社:1993:1~143
    64蔡自兴,周翔,李枚毅,雷鸣.基于功能/行为集成的自主式移动机器人进化控制体系结构.机器人. 2000(3): 169~175
    65 Adachi H. Koyachi N. Nakano E. Mechanism and Control of a Quadruped Walking Robot. IEEE Control Systems Magazine. Oct, 1988:14~19
    66蔚东晓,贾霞彦.模糊控制的现状与发展.自动化与仪器仪表. 2006(6): 4~7
    67刘宇.模糊控制的现状与发展.油气田地面工程. 2006(9): 13~21
    68刘曙光,王志宏,费佩燕,王斌.模糊控制的发展与展望.机电工程. 2000(1):9~12
    69靖稳峰,魏红,段惠娣.遗传算法及其发展现状.西安工业学院学报.2000(3): 230~235
    70张丽萍,柴跃廷.遗传算法的现状及发展动向.信息与控制. 2001(6): 531~536
    71喻宗泉.神经控制的应用与展望.自动化与仪器仪表. 2000(4): 1~2
    72顾毅.智能控制发展综述.信息技术. 2000(6): 39~40
    73 Delcomyn F. Neural basis of rhythmic behavior in animals. [J]. Science. 1980, 210: 492~498
    74 Sandro Nicole, Eliano Pessa. A network model with auto-oscillating output and dynamic connections. [J]. Biological Cybernetics. 1994, 70(3): 275~280
    75 Zhenli Lu,Shugen Ma,Bin Li,Yuechao Wang. Serpentine locomotion of a snake-like robot controlled by cyclic inhibitory CPG model. Intelligent Robots and Systems. 2005, 8, 2~6. 96~101
    76 Matsugu M. Entrainment, Instability, Quasi-periodicity, and Chaos in a Compound Neural Oscillator" [J]. Journal of Computational Neuroscience. 1998, 5: 35-51
    77 Johan Ingvast, A two dimensional bidirectional ground interaction model, In Int. Conf, on Climbing and Walking Robots, Paris. France, September 2002:3~10
    78 Johan Ingvast and Jan Wikander. A passive load-sensitive revolute transmission, In Int. Conf. on Climbing and Walking Robots, Paris, France, September 2002:2~5
    79 S. Hirose and Y. Umetani.―The basic motion regulation system for quadruped walking vehicle,‖Proc. ASME Design Engineering Technical Conf. 1981:3~5
    80 Brewer B G, Jung R.―Sensitivity analys is of a hybrid neural network for locomotor control in the lamprey‖[J]. IEEE.Biomedical Engineering. 1997: 353~356
    81 Selverston AI,Rowat PF.Modeling phase synchronization in a biologically-based network.In:Neural Net-works.IJCNN,1992:395~396
    82 Bj?rn Brembs. Operant conditioning in invertebrates. Current Opinion in Neurobiology. Volume 13. Issue 6. 2003, 9.: 710~717
    83 Miyakoshi S,Taga G,Kuniyoshi Y,etal./"Three dimensional bipedal stepping motion using neural oscillators-towards humanoid motionin the real world"[A]. IEEE/RSJ.Intelligent Robots and Systems [C]. 1998.84~89
    84 Kimura,H. Fukuoka,Y. Adaptive dynamic walking of a quadruped robot on irregular terrain by using neural system model. Intelligent Robots and Systems. 2000.10.31~11.5(2): 979~984
    85 Hiroshi Kimura, Yasuhiro Fukuoka, Hiroyuki Nakamura. Biologically Inspired Adaptive Dynamic Walking of the Quadruped on Irregular Terrain. Intelligent Robots and Systems 3 (1999): 1657~1662
    86 Fukuoka, Y. , Kimura, H. , Hada, Y. , Takase, K. Adaptive dynamic walking of a quadruped robot 'Tekken' on irregular terrain using a neural system model. Robotics and Automation. 2003, 9(2): 2037~2042
    87 Kimura, H. Fukuoka, Y. Biologically inspired adaptive dynamic walking in outdoor environment using a self-contained quadruped robot: 'Tekken2'. Intelligent Robots and Systems. 2004, 9(1): 986 ~ 991
    88 Shinkichi Inagaki. Hideo Yuasa. Tamio Arai. CPG model for autonomous decentralized multi-legged robot system—generation and transition of oscillation patterns and dynamics of oscillators. Robotics and Autonomous Systems 2003:171~179
    89 HILLEL J. CHIEL, RANDALL D. BEER, JOHN C. GALLAGHER. Evolution and Analysis of Model CPGs forWalking: I. Dynamical Modules. Journal of Computational Neuroscience 7, 1999: 99~118
    90 William Bialek, Fred Rieke, Rob R. De. Ruyter van Steveninck, David Warland, Reading a Neural Code, Science, Jun 28, 1991, 252, 5014, 1854~1857
    91 Tenore. F. , Etienne-Cummings. R. , Lewis, M.A. A programmable array of silicon neurons for the control of legged locomotion. Circuits and Systems. 2004:23~26, 349~ 352
    92 Tenore. F. , Vogelstein. R.J. , Etienne-Cummings. R. , Cauwenberghs. G. , Lewis. M.A. , Hasler. P. A spiking silicon central pattern generator with floating gate synapses [robot control applications]. Circuits and Systems. 2005, 5, 23~26(4): 4106~4109
    93 Arena. P. , Fortuna. L. , Frasca. M. , Patane. L. , Pavone. M. Climbing obstacles via bio-inspired CNN-CPG and adaptive attitude control. Circuits and Systems. 2005,5,23~26(5): 5214~5217
    94 Zhang,Z.G. Fukuoka,Y. Kimura,H. Adaptive Running of a Quadruped Robot Using Delayed Feedback Control. Robotics and Automation. 25.4.18~22 3739~3744
    95 Lewis,M.A. Tenore,F. Etienne-Cummings,R. CPG Design using Inhibitory Networks. Robotics and Automation. 2005,4,18~22: 3682~3687
    96 Gen Endo, Jun Nakanishi, Jun Morimoto, Gordon Cheng. Experimental Studies of a Neural Oscillator for Biped Locomotion with QRIO. Robotics and Automation. 2005.4.18~22. 596~602
    97 Long Wang, Shuo Wang, Zhiqiang Cao, Min Tan, Chao Zhou, Haiquan Sang, Zhizhong Shen. Motion Control of a Robot Fish Based on CPG. Industrial Technology. 2005,12,14~17. 1263~ 1268
    98杨东超,汪劲松,刘莉.基于ZMP的拟人机器人步态规划.机器人. 2001, 23 (6):504~509
    99 Or. J. , Takanishi. A. A biologically inspired CPG-ZMP control system for the real-time balance of a single-legged belly dancing robot. Intelligent Robots and Systems. 2004, 9, 28: 931~936
    100张金超.四足移动机器人平地稳定行走步态的研究.哈尔滨工业大学硕士学位论文. 2005:22~23
    101 S.Hirose, K.Yoneda and H.Tsukagoshi,―TITAN VII: Quadruped Walking and Manipulating Robot on a Steep Slope,‖Proc. Int. Conf. on Robotics and Automation, Albuquerque, New Mexico, 1997:494~500
    102罗育峰.四足移动机器人静态稳定楼梯爬越步态研究.哈尔滨工业大学硕士学位论文. 2005:20~43
    103 Kenneth S. Yamazaki. the Design and Control of SCOUNT, A Simple Quadruped Robot, Department of Electrical and Computer Engineering McGill University, Montreal, Canada, July 1999:5~8
    104孙培生,孙培华.钢筋混凝土楼梯设计手册.中国建筑出版社出版, 1999: 8~15
    105寿天德.神经生物学.高等教育出版社. 2001. 6:10~40
    106郑浩峻,张秀丽,李铁民,段广洪.基于CPG原理的机器人运动控制方法.高技术通讯. 2003(7): 64~68
    107郑浩峻,张秀丽,关旭,汪劲松.基于生物中枢模式发生器原理的四足机器人.清华大学学报(自然科学版)2004,44(2): 166~169
    108 K. Matsuoka. Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 561987: 345~353,
    109张秀丽.四足机器人节律运动及环境适应性的生物控制研究.清华大学博士学位论文. 2004:124~140
    110田文罡.多足步行机器人控制系统的研究.华中科技大学硕士论文. 2005:30~40
    111李满天.微小型尺蠖式壁面移动机器人的研究.哈尔滨工业大学博士学位论文.2006:72~75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700