基于GMS的矿井涌水量预测分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井涌水量是确定矿床水文地质条件复杂程度的重要指标,更是生产设计部门制定开采方案,确定矿坑排水能力、制定疏干措施,防止重大矿井水害的重要依据。矿井涌水量的预测研究与煤矿安全生产关系重大,一直以来倍受重视。本文以山西省朔南煤田为研究区,利用地下水数值模拟软件GMS中集成的MODFLOW2000对井田地下水流运动进行了数值模拟,对井田先期开采地段开采后的矿井涌水量进行了预测分析。
     在分析研究区地质条件的基础上,针对地层岩性和地质构造特点,对井田地层进行了概化,结合工作区地质勘探钻孔资料,建立了丰予井田地质模型。通过分析区域含水层水文地质特征,地下水补给、径流、排泄等水文地质条件,对井田含水层进行了概化,结合对井田充水因素的分析,建立了丰予井田水文地质概念模型。依据研究区水文地质条件,结合以往工作经验及专家分析意见,对研究区边界条件进行了设定,以井田水文地质概念模型为依据建立了地下水数学模型。利用井田地质模型,按水文地质概念模型含水岩组概化原则,使用GMS软件,建立丰予井田水文地质体,依据所建立的数学模型,根据边界条件,采用网格法建立丰予井田数值模型,通过求解数值模型进行不同开采情况下的矿井涌水量预测,并与大井法矿井涌水量预测结果进行了对比。
     由于煤田开拓方案尚未确定,本次研究以井田初步设计中先期开采地段的初期采区为研究重点。研究区范围内包括了古生代、中生代的马家沟组、本溪组、太原组、山西组地层和新生代松散沉积物,本次研究将其概化为31个大的层次,将含水层概化为9个含水岩组和一个稳定的隔水岩组。数值模拟主要针对初期采区4号煤层全部开采后和4号、9号煤层全部开采后的矿井最大涌水量进行了预测。研究结果表明:开采山西组、太原组的4、6、9号煤层,二叠系上中隔水岩组可以起到隔水层作用,不会造成新生界地下水的大量渗漏;在4号煤层开采后矿井稳定最大涌水量为12910m3/d,略大于大井法预测结果9993.64m3/d;在4号、9号煤层开采后矿井稳定最大涌水量为19385m3/d,比大井法的预测结果29673.8m3/d小。在井田开发前,建议补充专门水文地质工作,查明矿区断层的水文地质性质,结合实际条件,制订井田水文地质动态观测方案,确保煤矿安全生产。
Mine discharge is an Important index to determine the Hydrogeological condition complexity of the Ore Deposit,Mine Discharge is an Important basis for the Production design department of formulating Mining scheme,determining mine drainage capacity,enacting Well-precipitation measures and Preventing major mine flood. Mine discharge prediction research has been attached great importance,it matters to coal mine safety production.GMS is a groundwater Numerical Modelling software,this paper did numerical simulation on the mine groundwater movement with MODFLOW2000 of GMS,it forecasted and analysed the mine discharge of early mining district,the study area is Shuonan Coalfield, Shanxi Province.
     On the basis of analyzing the geological conditions,it generalize the stratum according to the Stratigraphic lithology and Geological Structure characteristics,combined with the borehole data of research area,it establishes the geological model of the mine.By analyzing the hydrological geology characteristics of regional aquifer,the recharge,runoff and discharge of groundwater,and other hydrogeology conditions, it generalize the aquifer,after analyzing the Water filling factors, it establishes the hydrogeological conceptual model. According to the hydrogeology conditions of the research area, considering previous work experience and the expert analysis opinion, it set the boundary conditions and then establishes the Groundwater mathematical model.According to the geological model and the generalized principles on water-bearing zones of the hydrogeological conceptual model,it establishes the hydrological geological body with GMS.In accordance with the mathematical model and the boundary conditions,using grid method, it establishes the numerical model of the mine,it forecast the mine discharge in different exploitation cases by solving the numerical model,and then compares the prediction result with the great well method.
     Because the coalfield pioneering scheme has not yet been set, the emphasis of this research is the initial mining area of early mining section of the preliminary design.The research area scope includes the following strata:Majiagou Formation,Benxi Formation,Taiyuan Formation,Shanxi Formation and Cenozoic loose sediments.This research generalize the strata to 31 big level,and generalized the aquifer to nine water-bearing zones and one stable aquiclude.The numerical simulation forecast the maximum mine drainage after mining 4 coal seam,and the one after mining 4 coal seam and 9 coal seam.The results indicate that:when mining the 4,6 and 9 coal seam of shanxi group and taiyuan group,the upper and middle Permian aquiclude can play the role as a water-resisting layer,it won't cause massive leakage to cenozoic erathem groundwater;The stable biggest mine discharge of 4 coal seam after mining is 12910m3/d, slightly higher than the result 9993.64m3/d that the great well method forecasted; The stable biggest mine discharge of 4 and 9 coal seam after mining is 19385m3/d,smaller than the result 29673.8m3/d of the great well method.It suggest adding specially hydrogeology work and finding out the hydrogeological property of the mining fault,formulating hydrogeological dynamic observation scheme combined with the actual conditions,ensure the safety production in coal mine.
引文
[1]谭政.地下充水空间对隧巷工程的危害模拟与控制研究:(硕士学位论文).长沙:中南大学,2007.
    [2]代敬.安徽白象山铁矿充水因素分析及矿坑涌水量预测:(硕士学位论文).石家庄:石家庄经济学院,2009.
    [3]蒋玲.和县龙塘沿铁矿矿坑涌水量预测研究:(硕士学位论文).合肥:合肥工业大学,2009.
    [4]庞冯秋.荥阳王河煤矿充水条件分析与涌水量预测:(硕士学位论文).焦作:河南理工大学,2009.
    [5] Anon.Recommendations for the treatment of water inflows and outflows in operated underground structures.Tunneling and Underground Space Technology,1989, 4(3):343-407.
    [6] Carslaw H,Jaeger J C.Conduction of heat in solids.Oxford Science Publications,Oxford University Press,1959.
    [7]张宏仁.地下水水力学的发展.北京:地质出版社,1992.
    [8] Polubarinova-Kochina P Ya.Theory of Ground Water Movement.Princeton.New Jersey:Princeton University Press,1962.
    [9] Hantush M S.Depletion of storage,leakance,and river flow by gravity wells in sloping sands.Journal of Geophysical Research,1964,69(12):2551-2560.
    [10] Renard,Philippe.Approximate discharge for constant head test with recharging boundary.Ground Water,2005,43(3):439-442.
    [11] Molinero,Jorge.Samper,Javier.Juanes,Ruben.Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks.Engineering Geology,2002,64(4):369-386.
    [12] Meiri,David.Unconfined groundwater flow calculation into a tunnel.Journalof Hydrology,1985,82(nl-2):69-75.
    [13] Southwell R V.Relaxation methods applied to engineering problems.Phil Trans Roy Soc A,1946,240.
    [14] B.A.Volynskii,Y.Ye Bukhman.Analogues for the Solution of Boundary Value Problems.The Mathematical Gazette,1967,51(378):375-376.
    [15]Richtmyer R D.,Morton K W.Difference methods for initial value problems. 2nd ed.New York:Wiley,1967.
    [16]朱学愚,谢春红.地下水运移模型.北京:中国建筑工业出版社,1990.
    [17]赵永贵,蔡祖煌.岩溶地下水系统研究——以太原地区为例.北京:科学出版社,1990.
    [18]宿青山,张佩华,杨天行等.城市地下水资源科学管理.吉林:吉林科学技术出版社,1991.
    [19]杨永国,韩宝平,谢克俊等.用多变量时间序列相关模型预测矿井涌水量.煤田地质与勘探,1995,23(6):38-42.
    [20]潘志.矿井涌水量的数学模型与预测.宁夏大学学报,1998,19(3):229-232.
    [21]刘国,毛邦燕,许模等.合山煤田矿井涌水量的数值模拟探讨.地质与勘探,2007,43(4):98—103.
    [22]周笑绿,杨国勇.一种矿井突水量预测的近似方法.西安科技大学学报,2005,25(3):341-344.
    [23]张文泉,李家祥,张红日等.矿井顶板涌水量的模糊预测与防治决策研究.矿业研究与开发,2001,21(2):18-20.
    [24]赵向军,李文平,李龙海等.基于人工神经网络的矿井涌水量预测.辽宁工程技术大学学报,1998,17(2):156-159.
    [25]梁秀娟,林学钰,苏小四等.GMS与苏锡常地区地下水流模拟.人民长江,2005,36(11):26-28.
    [26]覃荣高,高建国,臧小豹等.基于GMS基岩矿区地下水三维实体模型的构建.地下水,2009,31(141):15-17.
    [27]祝晓彬.地下水模拟系统(GMS)软件.水文地质工程地质,2003,30(5):53—55.
    [28]平朔煤炭工业公司.山西省宁武煤田朔南矿区丰予井田煤炭勘探报告.2009,68-77.
    [29]中煤邯郸设计工程有限责任公司.中煤能源集团有限公司朔南矿区丰予矿井及选煤厂可行性研究报告.2009,7-13.
    [30]中国地质大学.山西省宁武煤田朔南矿区丰予井田水文地质条件专门研究报告.2009,12-52.
    [31]中国煤炭进出口公司等.朔南煤田地表水赋存环境及采动影响下的演变规律研究.2009,18-25.
    [32]洪家宝,陈鏐芬.沉井施工降水时地下水的动态分析.水利与建筑工程学报,2008,6(4):54-57.
    [33]陈鏐芬.沉井施工降水时地下水动态分析及对江堤影响的研究:(硕士学位论文).扬州:扬州大学,2008.
    [34]黄丹,肖伟,李勇.地下水三维数值模拟及其优化开采.资源调查与环境,2005(02).
    [35]魏文清,马长明,魏文炳.地下水数值模拟的建模方法及应用.东北水利水电,2006(03).
    [36]薛禹群,谢春红.地下水数值模拟.北京:科学出版社,2007.
    [37]卢文喜.地下水运动数值模拟过程中边界条件问题探讨.水利学报,2003(3):33-36.
    [38]陈冬琴.GMS软件在杭嘉湖地下水资源评价中的应用.软件导刊,2007,5:49-5l.
    [39]薛禹群,叶淑君,谢春红.多尺度有限元法在地下水模拟中的应用.水利学报,2004(7):7-13.
    [40]吴吉春,薛禹群,黄海等.山两柳林泉域地下水流数值模拟.水文地质工程地质,2002(2):18-20.
    [41]王荣华.北平原地下水数值模拟.北京:中国地质大学,2006.
    [42]郑世书等,专门水文地质学.北京:中国矿业大学出版社,1999.
    [43]孙峰根.水文地质计算的数值方法.徐州:中国矿业大学出版社,1995.
    [44]薛禹群,朱学愚.地下水动力学.北京:地质出版社,1979.
    [45]董兴文.矿井最大涌水量计算与参数确定.四川地质学报,1995,15(1):75-80.
    [46]钱家忠,吴剑锋,董洪信等.徐州市张集水源地裂隙岩溶水三维等参有限元数值模拟.水利学报,2003(3):37-4l.
    [47]马洪超,林立新.大井法预测矿坑涌水量.采矿技术,2009,9(2):53-54.
    [48]李再兴,梁杏,郭付三.大井法在基坑涌水量计算中的应用.人民长江,2009,40(15):50-52.
    [49]淮南煤炭学院等.矿井地质及矿井水文地质,北京:煤炭工业出版社,1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700